MATH Seminar

Title: On an Eigenvector-Dependent Nonlinear Eigenvalue Problem
Seminar: Numerical Analysis and Scientific Computing
Speaker: Ren-Cang Li of University of Texas at Arlington
Contact: Yuanzhe Xi,
Date: 2019-04-05 at 2:00PM
Venue: MSC W301
Download Flyer
We first establish existence and uniqueness conditions for the solvability of an algebraic eigenvalue problem with eigenvector nonlinearity. We then present a local and global convergence analysis for a self-consistent field (SCF) iteration for solving the problem. The well-known sin? theorem in the perturbation theory of Hermitian matrices plays a central role. The near-optimality of the local convergence rate of the SCF iteration is demonstrated by examples from the discrete Kohn-Sham eigenvalue problem in electronic structure calculations and the maximization of the trace ratio in the linear discriminant analysis for dimension reduction. This is a joint work with Yunfeng Cai (Peking University), Lei-Hong Zhang (Shanghai University of Finance and Economics), Zhaojun Bai (University of California at Davis).

See All Seminars