Abstract: The most naive definition of modular linear differential equations (MLDEs) would be linear differential equations whose space of solutions are invariant under the slash action of the weight \(k \) of \(\Gamma_1 = SL_2(\mathbb{Z}) \), where \(k \) is fixed. Then under an analytic condition for coefficients functions and the Wronskians of a basis of the space of solutions of equations, we have (obvious) expressions of MLDEs as:

\[
L(f) = d^n_k(f) + \sum_{i=2}^{n} P_{2i}d^{n-i}_k(f)
\]

where \(P_{2i} \) is a modular form of weight \(2i \) on \(SL_2(\mathbb{Z}) \) and \(d_k(f) \) is the Serre derivative. (Of course, we could replace \(\Gamma \) as a Fuchsian group of \(SL_2(\mathbb{R}) \) and modular forms \(P_{2i} \) as being meromorphic.) However, the iterated Serre derivative \(d^n_k(f) \) (which is also called “the higher Serre derivation” because this operator preserves the modularity.) is very complicated since it involves the Eisenstein series \(E_2 \).

MLDEs, of course, can be given in the form

\[
L(f) = D^n(f) + \sum_{i=1}^{n} Q_iD^i(f)
\]

where

\[
D = \frac{1}{2\pi i} \frac{d}{d\tau}.
\]

Then it is not easy to know if the equation above is an MLDE except the fact that \(Q_i \) are quasimodular forms. (It seems hopeless that we verify if \(L(f) = 0 \) is a MLDE.) Very recently, Y. Sakai and D. Zagier (my collaborators) found formulas of \(L(f) \) by using the Rankin-Cohen products between \(f \) and \(g_i \). The latter is a modular form of weight \(2i \), which is a linear function of the differential of \(Q_j \). Moreover, there is an inversion formulas which express \(Q_i \) as a linear function of the differential of \(g_j \). The most important fact is that the order \(n \) and \(n - 1 \) parts are equal to the so-called higher Serre derivative in the sense of Kaneko and Koike, where the group is \(\Gamma_1 \). (It can be proved for any Fuchsian group.)

Tuesday, April 16, 2019, 4:00 pm
Mathematics and Science Center: W201