Abstract: Let $X \hookrightarrow \mathbb{P}^r$ be a smooth projective variety defined by homogeneous polynomials of degree $\leq d$ over an algebraically closed field k. Let $\text{Pic} X$ be the Picard scheme of X, and $\text{Pic}^0 X$ be the identity component of $\text{Pic} X$. The Néron–Severi group scheme of X is defined by $\text{NS} X = (\text{Pic} X)/(\text{Pic}^0 X)_{\text{red}}$, and the Néron–Severi group of X is defined by $\text{NS} X = (\text{NS} X)(k)$. We give an explicit upper bound on the order of the finite group $(\text{NS} X)_{\text{tor}}$ and the finite group scheme $(\text{NS} X)_{\text{tor}}$ in terms of d and r. As a corollary, we give an upper bound on the order of the torsion subgroup of second cohomology groups of X and the finite group $\pi^1_{\text{et}}(X, x_0)_{\text{ab}}$. We also show that $(\text{NS} X)_{\text{tor}}$ is generated by $(\deg X - 1)(\deg X - 2)$ elements in various situations.

Tuesday, February 27, 2024, 4:00 pm
Mathematics and Science Center: MSC W301