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STRONG RAMSEY PROPERTIES OF SIMPLICES

PETER FRANKL AND VOJTĚCH RÖDL

Abstract. In this paper we will show that every simplex X with circum-

radius % satisfies the following geometric partition property, which proves a

conjecture from [FR90].
For every positive real δ there exists a positive real σ such that every

χ-colouring of the n-dimensional sphere of radius % + δ with χ ≤ (1 + σ)n

results in a monochromatic copy of X.
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1. Introduction

In this section we first introduce a few, related geometrical concepts and its
history before we state the main result in section 1.4. Furthermore, we will
outline the organisation of this paper in section 1.5.
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1.1. Ramsey sets. In a series of papers Erdős et al. [EGM+73, EGM+75a,
EGM+75b], introduced and investigated the following concept.

Definition 1.1. A subset X of the d-dimensional Euclidean space Rd is called
Ramsey if for every χ ≥ 2 there exists an integer n = n(X, χ) such that for every
χ-colouring of the points of Rn there exists a monochromatic subset X ′ ⊆ Rn

congruent to X.

Erdős et al. [EGM+73] have shown that all Ramsey sets are spherical, that
is, every Ramsey set is contained in an appropriate sphere. On the other hand,
they also proved that vertex sets of d-dimensional boxes (i.e., the vertex set of
rectangular parallelepipeds) are Ramsey. Since then, the list of Ramsey sets was
extended; first it was shown in [FR90] that any simplex (i.e., d + 1 points span-
ning Rd) is Ramsey. In [Kř́ı91] Kř́ıž proved that if X has a solvable, transitive
automorphism group, then X is Ramsey.

The fundamental problem to characterise Ramsey sets remains, however, unan-
swered. In [Gra94] R. L. Graham conjectured that all spherical sets are Ramsey
and offered $1000 for the solution.

1.2. Sphere Ramsey sets. In [Gra85], R. L. Graham introduced a concept
stronger than being Ramsey.

Definition 1.2. A subset X of Rd is called sphere Ramsey if for every χ ≥ 2
there exists an integer n = n(X, χ) and a positive real % = %(X, χ) such that for
any χ-colouring of the points of the sphere S(%, n) = {x ∈ Rn: ‖x‖ = %} there
exists a monochromatic subset X ′ ⊆ S(%, n) congruent to X.

For a spherical set X let %(X) denote its circumradius, i.e., the radius of the
smallest sphere containing X.

In [Gra85] R. L. Graham proved that boxes are sphere Ramsey and he asked
if one can choose in Definition 1.2, % = %(X) + δ for an arbitrary small δ > 0.
This was shown to be true in [Fra87]. The following related result for X being a
simplex was proved in [MR95].

Theorem 1.3. Let X be a simplex with circumradius %(X) = %. Then for every
χ ≥ 2 and every real δ > 0 there exists an integer n = n(X, χ, δ) such that for any
χ-colouring of the points of the sphere S(% + δ, n) there exists a monochromatic
subset X ′ ⊆ S(% + δ, n) congruent to X.

1.3. Exponentially Ramsey sets. Another area of investigation was to study
how large the minimum n = n(X, χ) from Definition 1.1 is. The special case that
X consists of two points was proposed by Hadwiger and Nelson. In [Had61] the
question for determining the chromatic number χ(n) of the Euclidean space Rn

was raised, i.e., what is the maximum integer χ(n) such that for every real ∆ > 0
and every (χ(n)− 1)-colouring of the points of Rn there are two monochromatic
points with distance precisely ∆. It was proved in [Had61], [MM61], and [Woo73]
that 4 ≤ χ(2) ≤ 7. The current bounds for χ(n) are

(1.2 . . . )n ≤ χ(n) ≤ (3 + o(1))n.
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The first exponentially growing lower bound was proved by Frankl and Wilson
in [FW81]. The base of the exponential lower bound was recently improved by
Răıgorodskĭı in [Răı00, Răı01]. The upper bound was shown by Larman and
Rogers in [LR72].

Extending this phenomenon to sets X consisting of more than two points we
introduce the following concept.

Definition 1.4. A subset X of Rd is called exponentially Ramsey if there
exists a positive real σ = σ(X) such that for every integer n ≥ d and every
χ-colouring of the points of Rn with χ ≤ (1 + σ)n there exists a monochromatic
subset X ′ ⊆ Rn congruent to X.

In other words X is exponentially Ramsey if the chromatic number of the
hypergraph with vertex set Rn and edges formed by congruent copies of X grows
exponentially with n.

It was proved in [FR90] that boxes and simplices are exponentially Ramsey.

1.4. Strong Ramsey sets. The following definition combines the concepts con-
sidered in section 1.2 and 1.3.

Definition 1.5. A subset X of Rd with circumradius %(X) = % is called strong
Ramsey if for every real δ > 0 there exists a positive real σ = σ(X) such that for
every integer n ≥ d and every χ-colouring of the points of the sphere S(% + δ, n)
with χ ≤ (1+σ)n there exists a monochromatic subset X ′ ⊆ S(%+δ, n) congruent
to X.

From results in [FW81] and [FR90] it follows that boxes are strong Ramsey (see
also section 3.1). Present knowledge, however, does not exclude the possibility
that all spherical sets are strong Ramsey. A first step toward this problem is
to answer the question of whether obtuse triangles are strong Ramsey. The
main purpose of this paper is to answer this question positively and to extend
Theorem 1.3 in the sense that it remains true if χ grows exponentially with n
(i.e., χ ≤ (1 + σ)n, where σ = σ(X) > 0). More precisely we will prove the
following.

Theorem 1.6. Every simplex is strong Ramsey.

1.5. Organisation of the paper. This paper is organised as follows. In sec-
tion 2 we state some already known results, which were proved in earlier papers.
Then in section 3 we introduce the concept of hyper Ramsey sets. This concept
is stronger than strong Ramsey and, in fact, later we prove Theorem 3.3, which
claims that every simplex is hyper Ramsey. In section 3.2 – 3.4 we develop some
tools about hyper Ramsey sets. These lemmas simplify the proof of the main
result. Finally, the proof of Theorem 3.3 which implies Theorem 1.6 is given in
section 4.
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2. Preliminary facts

In this section we review a few previously proved results that will be useful in
section 3 and 4.

2.1. Embedding of finite metric spaces. First, we state a well known result
that characterises finite metric spaces, which are embeddable into the Euclidean
space.

Let M = (mij)
d+1
i,j=1 be a symmetric real matrix with zeros on the diagonal.

Then M is said to be of negative type if

d∑

i=1

d+1∑

j=i+1

mijζiζj ≤ 0 (1)

holds for all choices of ζ1, ζ2, . . . , ζd+1 with
∑d+1

i=1 ζi = 0 and
∑d+1

i=1 ζ2
i = 1.

The following well-known Theorem is due to I. J. Schoenberg (see [Sch38]).

Theorem 2.1. A finite metric space X = {x1, x2, . . . , xd+1} with distances dij

between xi and xj for 1 ≤ i, j ≤ d+1 can be embedded into the Euclidean space Rd

if and only if the matrix M with general entry mij = d2
ij is of negative type.

Moreover, the embedded image of X is affine independent if and only if in-
equality (1) is always strict.

2.2. Intersections of partitions. Another tool we are going to use is taken
from [FR87]. It asserts that every sufficiently large family of (l0, l1, . . . , lk)-
partitions of an n-element set contains r partitions intersecting in precisely a
given pattern.

For positive integers l0, l1, . . . , lk with l0 + l1 + · · ·+ lk = n let
(

[n]
l0,l1,...,lk

)
denote

the set of all ordered partitions A = (A0, A1, . . . , Ak) of [n] = {1, 2, . . . , n} with
|Ai| = li. Obviously, the number of such partitions is

∣∣∣∣
(

[n]

l0, l1, . . . , lk

)∣∣∣∣ =

(
n

l0, l1, . . . , lk

)
=

n!

l0!l1! · · · lk!
.

For r given (l0, l1, . . . , lk)-partitions

A(1) = (A
(1)
0 , A

(1)
1 , . . . , A

(1)
k ), A(2) = (A

(2)
0 , A

(2)
1 , . . . , A

(2)
k ), . . . ,

A(i) = (A
(i)
0 , A

(i)
1 , . . . , A

(i)
k ), . . . , A(r) = (A

(r)
0 , A

(r)
1 , . . . , A

(r)
k )

consider the (k + 1)× · · · × (k + 1) (r times) array M = M(A(1),A(2), . . . ,A(r))
with general entry

mt1t2...tr
= |A(1)

t1 ∩A
(2)
t2 ∩ · · · ∩A

(r)
tr
|, (2)

for 0 ≤ t1, t2, . . . , tr ≤ k. Observe that for a fixed 0 ≤ i ≤ k
∑

t1,...,tr

{mt1t2...tr
: tj = i} =

∣∣∣A(j)
i

∣∣∣ = li

In [FR87] we proved the following result.
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Theorem 2.2. Let r and k be positive integers. Then for every real λ > 0 there
exists a real ε = ε(λ) > 0 such that for every positive integer n the following
holds:

If l0, l1, . . . , lk are positive integers with
∑k

i=0 li = n and M is a (k +1)× (k +
1)× · · · × (k + 1) (r times) array satisfying

(i) mt1t2...tr
≥ λn for any 0 ≤ t0, t1, . . . , tr ≤ k and

(ii)
∑

t1,...,tr
{mt1t2...tr

: tj = i} = li for i = 0, 1, . . . , k

then for every K ⊆
(

[n]
l0,l1,...,lk

)
satisfying

(iii) |K| ≥ (1− ε)n
(

n
l0,l1,...,lk

)

there exists A(1),A(2), . . . ,A(r) ∈ K such that

M(A(1),A(2), . . . ,A(r)) = M.

2.3. Approximation of spherical sets. In this section we consider a result
from [MR95]. This lemma roughly says that for every d and η there exist s, k, a
unit vector a = (a1, a2, . . . , ak) and a unit sphere S(1, d) in Rs such that every z
in that sphere can be η approximated by some y in Rs, whose only nonzero
entries are a1, a2, . . . , ak.

More precisely, for Z a linear subspace of Rs let S(Z) = S(1, s)∩Z be the set
of all unit vectors in Z. Let Es = (e1, e2, . . . , es) denote an orthonormal basis
of Rs. Furthermore, let a = (a1, a2, . . . , ak) ∈ Rk be a k-dimensional vector and
let K = {u1, u2, . . . , uk} be a k-element subset of [s] with u1 < u2 < · · · < uk.

We will need the following definition

spread(a,K) =
k∑

j=1

ajeuj
.

Furthermore, let K̃1, K̃2, . . . , K̃d ∈ [s]k be disjoint sets each of cardinality k,

such that K̃1 < K̃2 < · · · < K̃d (here K̃ < K̃ ′ means that all elements of K̃ are

smaller than any element of K̃ ′).
We set

zi = zi(a, K̃i) = spread(a, K̃i)

for 1 ≤ i ≤ d and we denote by

Z = Z(a, K̃1, K̃2, . . . , K̃d) = span({z1, z2, . . . , zd})
the vector space spanned by z1, z2, . . . , zd. Let [I]k denote the set of all k-element
subsets of a set I.

The following lemma was proved in [MR95].

Lemma 2.3. For every real η > 0 and every integer d, there exist integers s, k,

and a k-dimensional unit vector a ∈ S(1, k), such that for some K̃1 < K̃2 <

· · · < K̃d, K̃i ∈ [s]k, i = 1, 2, . . . , d the linear space

Z = Z(a, K̃1, K̃2, . . . , K̃d)
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has the following property:
For every z ∈ S(Z) there exists K ∈ [s]k such that for y = spread(a,K)

d(z, y) ≤ η

holds, where d(z, y) denotes the Euclidean distance between z and y in Rs.

3. Preliminary lemmas

In this section we introduce the concept of hyper Ramsey sets and we will
prove a few, somewhat technical lemmas which will simplify the proof of the
main result, Theorem 1.6.

3.1. Hyper Ramsey sets. The following concept of hyper Ramsey sets, which
was already introduced in [FR90] is stronger, but more technical than the concept
of strong Ramsey sets.

Definition 3.1. Let α > 0 be a real number. A subset X of Rd with circumradius
%(X) = % is called α-hyper Ramsey if there exist reals c = c(X, α), ε =
ε(X, α) > 0, and an integer m0 = m0(α) such that for every m ≥ m0 there exist
a finite subset H = H(m) ⊆ Rm satisfying

(i) H(m) ⊆ S
(√

%2 + α, m
)
,

(ii) |H(m)| < cm, and
(iii) if K ⊆ H(m) and |K| ≥ (1−ε)m|H(m)|, then there exists a subset X ′ ⊆ K

congruent to X.

Furthermore, X is called hyper Ramsey if X is α-hyper Ramsey for every
real α > 0.

For sets X ⊆ Rn and Y ⊆ Rm consider their product X ∗ Y = {x ∗ y: x ∈
X, y ∈ Y } where x ∗ y = (x1, x2, . . . , xn, y1, y2, . . . , ym) for x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , ym).

It follows from [FW81] that sets of cardinality two are hyper Ramsey (see
also [Gra83, Röd83]). Moreover, it was shown in [FR90] that the product of two
hyper Ramsey sets is hyper Ramsey. Both results together imply the following
theorem.

Theorem 3.2. Every box is hyper Ramsey.

Again, stressing the fact that if X is hyper Ramsey then X is also strong
Ramsey, we observe that every box is strong Ramsey as mentioned in section 1.4.
By the same reason the main result of this paper, Theorem 1.6, is a consequence
of the following theorem.

Theorem 3.3. Every simplex is hyper Ramsey.

The rest of this paper is devoted to the proof of Theorem 3.3.
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3.2. Products of α-hyper Ramsey sets. The following “product result”,
which is needed in our proof of the main result, is a modification of Theorem 2.2
in [FR90].

Lemma 3.4. Let V ⊆ Rd1 be a finite, αV -hyper Ramsey set with %(V ) = %V

and let T ⊆ Rd2 be a finite, αT -hyper Ramsey set with %(T ) = %T , then V ∗ T is
αV ∗T -hyper Ramsey for αV ∗T = αV + αT .

Proof. Let cV , εV , mV
0 be constants, and let HV (m) for each m ≥ mV

0 be sets
witnessing that V is αV -hyper Ramsey (see Definition 3.1). In the same way, let
cT , εT , mT

0 , and HT (m) for each m ≥ mT
0 correspond to T . Set τ to the solution

of (cT )(|T |−1)τ = (1 − εV )−1/2, let mV ∗T
0 = mV ∗T

0 (V, αV , T, αT ) be sufficiently
large and ñ = n+bτnc ≥ mV ∗T

0 . We will show thatHV ∗T (ñ) = HV (n)∗HT (bτnc)
witnesses that V ∗ T is αV ∗T -hyper Ramsey.

Clearly, %V ∗T = %(V ∗ T ) =
√

(%V )2 + (%T )2 and

HV ∗T (ñ) ⊆ S

(√
(%V )2 + αV + (%T )2 + αT , ñ

)
= S

(√
(%V ∗T )2 + αV ∗T , ñ

)

shows that (i) of Definition 3.1 is satisfied. Suppose that X = X (ñ) ⊆ HV ∗T (ñ)
does not contain a copy of V ∗ T . For each v ∈ HV (n) consider the set Xv =
X ∩({v}∗HT (bτnc)). Xv is congruent to a subset of HT (bτnc) and, therefore, Xv

contains more than |Xv| − (1− εT )bτnc|HT (bτnc)| copies of T . Now we estimate

the number X (T ) of copies T ∗ of T such that T ∗ ⊆ X and T ∗ = v ∗ T̃ for some

v ∈ HV (n) and T̃ a copy of T in HT (bτnc).

X (T ) ≥
∑

v∈HV (n)

(
|Xv| − (1− εT )bτnc · |HT (bτnc)|

)

= |X | − |HV (n)||HT (bτnc)|(1− εT )bτnc. (3)

On the other hand, for every copy T̃ of T in HT (bτnc) let VT̃ = {v ∈
HV (n): {v} ∗ T̃ ⊆ Xv}. Since X contains no copy of V ∗ T

|VT̃ | < (1− εV )n|HV (n)|.
This means that the number X (T ) can be bounded from above by

X (T ) =
∑

{|VT̃ |: T̃ is a copy of T in HT (bτnc)}

<

(|HT (bτnc)|
|T |

)
|HV (n)| · (1− εV )n

< (cT )bτnc(|T |−1)|HT (bτnc)||HV (n)| · (1− εV )n

≤ |HT (bτnc)||HV (n)| · (1− εV )n/2,

(4)

where the last inequality follows due to the choice of τ and n.
Combining (3) and (4), we infer that

|X | < |HV (n)||HT (bτnc)|
(
(1− εV )n/2 + (1− εT )bτnc

)
,
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and thus

|X | < |HV (n)||HT (bτnc)|(1− εV ∗T )ñ = (1− εV ∗T )ñ|HV ∗T (ñ)|
for some appropriately chosen εV ∗T > 0 and n sufficiently large, which implies
(iii) of Definition 3.1. In order to verify (ii) of Definition 3.1, set

cV ∗T = max{cV , cT }.
As

|HV ∗T (ñ)| = |HV (n)||HT (bτnc)| ≤ (cV )n(cT )bτnc ≤ (cV ∗T )ñ,

the sequence HV ∗T (ñ) = HV (n) ∗ HT (bτnc) for all ñ ≥ mV ∗T
0 shows that V ∗ T

is αV ∗T -hyper Ramsey. �

3.3. α-hyper Ramsey simplices are dense. The aim of this section is to
show that for every simplex Z = {z1, z2, . . . , zd+1} and for every positive real ϑ
there exists an α-hyper Ramsey simplex V = {v1, v2, . . . , vd+1} such that for all
1 ≤ i, i′ ≤ d + 1

|d2(vi, vi′)− d2(zi, zi′)| ≤ ϑ. (5)

This is proved in Lemma 3.9.
The construction of V is done in two steps. First, using Lemma 2.3 we find

integers s and k, a vector a = (a1, a2, . . . , ak) and yji
= spread(a,K(ji)) with

1 ≤ j1, . . . , jd+1 ≤
(

s
k

)
(where {K(i): 1 ≤ i ≤

(
s
k

)
} is an enumeration of all

k-element subsets of [s]) such that

|d2(yji
, yji′

)− d2(zi, zi′)| is “small” for every 1 ≤ i, i′ ≤ d + 1. (6)

The aim of the second step is to construct an α-hyper Ramsey simplex V =
{v1, v2, . . . , vd+1} such that

|d2(vi, vi′)− d2(yji
, yji′

)| is “small” for every 1 ≤ i, i′ ≤ d + 1. (7)

For this we associate vi with a conveniently chosen partition of [n] for some
sufficiently large n. For a partition A = (A0, A1, . . . , Ak) of [n] and the vector a =
(a1, a2, . . . , ak) we will consider the n-dimensional vector vA = (ξA1 , ξA2 , . . . , ξAn )
defined as follows

ξAt =

{
0 if t ∈ A0

aj/
√

l if t ∈ Aj

.

The aim of the next lemma, Lemma 3.5, is to construct a family

A = {A(i) = (A
(i)
0 , A

(i)
1 , . . . , A

(i)
k ): 1 ≤ i ≤ r}

of partitions of [n] such that
∣∣∣d2(vA

(i)

, vA
(i′)

)− d2(yi, yi′)
∣∣∣ ≤ 4

n− ls

l(k + 1)
. (8)

for all 1 ≤ i, i′ ≤
(

s
k

)
. Setting vi = vA

(ji)

and choosing n and l appropriately will
imply (7). Then (6) combined with (7) yields (5).

Next we will formulate Lemma 3.5 in which we will work with the following
set up:



STRONG RAMSEY PROPERTIES OF SIMPLICES 9

(I) l, s, k, and n are integers, set

r =

(
s

k

)
, λ =

n− ls

n(k + 1)r
, and

lj = λn(k + 1)r−1 +

{
(s− k)l if j = 0

l if j = 1, 2, . . . , k

(II) {K(i): 1 ≤ i ≤ r} is the family of all k-element subsets of [s],

(III) A = {A(i) = A(i)(K(i)) = (A
(i)
0 , A

(i)
1 , . . . , A

(i)
k ): 1 ≤ i ≤ r} is a family of

(l0, l1, . . . , lk)-partitions of [n], where A(i) will depend on K(i),
(IV) a = (a1, a2, . . . , ak) ∈ S(1, k) is a unit vector and we define for i =

1, 2, . . . , r the n-dimensional vector vA
(i)

= (ξA
(i)

1 , ξA
(i)

2 , . . . , ξA
(i)

n ) by

ξA
(i)

t =

{
0 if t ∈ A0

aj/
√

l if t ∈ Aj

, and

(V) set yi = spread(a,K(i)) for i = 1, 2, . . . , r

The next lemma ensures the existence of a family A satisfying (8).

Lemma 3.5. Let l, s, k, and n be integers such that n > ls and (k+1)(
s

k) divides
n− ls. Then there exists a family of (l0, l1, . . . , lk)-partitions of [n]

A = {A(i) = A(i)(K(i)): 1 ≤ i ≤ r}
such that for every a = (a1, a2, . . . , ak) ∈ S(1, k) the following holds

mt1t2...tr
= |A(1)

t1 ∩A
(2)
t2 ∩ · · · ∩A

(r)
tr
| ≥ λn for 0 ≤ t1, t2, . . . , tr ≤ k, (9)

{vA: A ∈ A} is an affine independent set, and (10)

for every 1 ≤ i 6= i′ ≤ r
∣∣∣d2(vA

(i)

, vA
(i′)

)− d2(yi, yi′)
∣∣∣ ≤ 4

n− ls

l(k + 1)
. (11)

Proof. Given integers l, s, k, and n satisfying the assumptions of the lemma,
first, we will construct a family A consisting of (l0, l1, . . . , lk)-partitions A(i) =

(A
(i)
0 , A

(i)
1 , . . . , A

(i)
k ) for 1 ≤ i ≤ r satisfying (9).

Let {K(i) = {u(i)
1 , u

(i)
2 , . . . , u

(i)
k }: 1 ≤ i ≤ r} be an enumeration of all k-element

subsets of [s] with u
(i)
1 < u

(i)
2 < · · · < u

(i)
k . Furthermore, let L1, L2, . . . , Ls be

pairwise disjoint sets, each of size l. For each i = 1, 2, . . . , r we define a different

partition (B
(i)
0 , B

(i)
1 , . . . , B

(i)
k ) of

⋃s
t=1 Lt by

B
(i)
0 =

s⋃

t∈[s]\K(i)

Lt

B
(i)
1 = L

u
(i)
1

, B
(i)
2 = L

u
(i)
2

, . . . , B
(i)
k = L

u
(i)
k

.
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For each r-tuple (j1, j2, . . . , jr) with 0 ≤ ji ≤ k let Cj1j2...jr
be a set of cardinal-

ity λn (which is an integer by the assumptions of the lemma) and let Cj1j2...jr

and Cj′

1j′

2...j′

r
be disjoint whenever the r-tuples (j1, j2, . . . , jr) and (j′1, j

′
2, . . . , j

′
r)

differ in at least one entry. We now define A by setting

A
(i)
j (K(i)) = A

(i)
j = B

(i)
j ∪

⋃

ji=j

Cj1j2...jr
, (12)

where the union is taken over all (k +1)r−1 different r-tuples (j1, j2, . . . , jr) with
ji being fixed.

Claim 3.6. Let A be defined as in (12), then

(i) A ⊆
(

[n]
l0,l1,...,lk

)
and

(ii) inequality (9) holds.

Proof of Claim 3.6. Note that A(i) = (A
(i)
0 , A

(i)
1 , . . . , A

(i)
k ) forms a partition of

N =
s⋃

t=1

Lt ∪
⋃

(j1,j2,...,jr)

Cj1j2...jr

for each i = 1, 2, . . . , r. Clearly

|N | = ls + λn(k + 1)r = n,
∣∣A(i)

0

∣∣ =
∣∣B(i)

0

∣∣ +
∣∣∣

⋃

ji=0

Cj1j2...jr

∣∣∣

= (s− k)l + λn(k + 1)(r−1) = l0, and
∣∣A(i)

j

∣∣ =
∣∣B(i)

j

∣∣ +
∣∣∣

⋃

ji=j

Cj1j2...jr

∣∣∣

= l + λn(k + 1)(r−1) = lj for each j = 1, 2, . . . , k

which implies (i) of Claim 3.6.
Also note that given 0 ≤ t1, t2, . . . , tr ≤ k

A
(i)
ti
⊇

⋃

ji=ti

Cj1j2...jr
⊇ Ct1t2...tr

for each i = 1, 2, . . . , r

and consequently,

mt1t2...tr
= |A(1)

t1 ∩A
(2)
t2 ∩ · · · ∩A

(r)
tr
| ≥ |Ct1t2...tr

| = λn

holds, which yields (9). �

It is easy to see that (10) holds. In fact, since a is a unit vector aq 6= 0

for some 1 ≤ q ≤ k. Let ν1, ν2, . . . , νr be reals such that
∑

i νiv
A(i)

= 0. For
each i = 1, 2, . . . , r we are going to fix 1 ≤ xi ≤ n such that the xi-th coordinate

of vA
(i′)

is not equal to 0 if and only if i = i′.
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For i = 1, 2, . . . , r we consider the set Ci = Cj1j2...jr
, where ji = q and all the

other indices are 0. Observe that for such a set

Ci = C0,0,...,0,q,0,...,0 ⊆
{

A
(i′)
q if i′ = i

A
(i′)
0 if i′ 6= i

.

In particular for every x ∈ Ci the x-th coordinate of the vector vA
(i′)

satisfies

(
vA

(i′)
)

x
=

{
aq√

l
6= 0 if i′ = i

0 if i′ 6= i

and therefore for every i = 1, 2, . . . , r there is a 1 ≤ xi ≤ n such that (vA
(i′)

)xi
6= 0

for vA
(i)

only. This implies νi = 0 for each i = 1, 2, . . . , r. In other words
{vA: A ∈ A} is a linearly and therefore affine independent set.

In order to prove inequality (11), we need to calculate the cardinalities of

intersections of A
(i)
j ∩A

(i′)
j′ . These cardinalities will depend on u

(i)
j and u

(i′)
j′ . We

summarise these straightforward calculations in the following claim.

Claim 3.7. Let A
(i)
j for j = 0, 1, . . . , k and i = 1, 2, . . . , r be defined as in (12),

then for 1 ≤ j, j′ ≤ k and 1 ≤ i 6= i′ ≤ r

|A(i)
j ∩A

(i′)
j′ | =

{
λn(k + 1)r−2 if u

(i)
j 6= u

(i′)
j′

λn(k + 1)r−2 + l if u
(i)
j = u

(i′)
j′

and (13)

|A(i)
j ∩A

(i′)
0 | =

{
λn(k + 1)r−2 + l if u

(i)
j 6∈ K(i′)

λn(k + 1)r−2 if u
(i)
j ∈ K(i′)

. (14)

Proof of Claim 3.7. First, suppose 1 ≤ j, j′ ≤ k, and K(i) = {u(i)
1 , u

(i)
2 , . . . , u

(i)
k },

K(i′) = {u(i′)
1 , u

(i′)
2 , . . . , u

(i′)
k } are given and u

(i)
j 6= u

(i′)
j′ holds. This implies

B
(i)
j ∩B

(i′)
j′ = ∅, and therefore

|A(i)
j ∩A

(i′)
j′ | =

∣∣∣∣
⋃

ji=j, ji′=j′

Cj1j2...jr

∣∣∣∣ = λn(k + 1)r−2.

Now, if on the other hand u
(i)
j = u

(i′)
j′ , then B

(i)
j = B

(i′)
j′ = L

u
(i)
j

which yields

|A(i)
j ∩A

(i′)
j′ | = |L

u
(i)
j

|+
∣∣∣∣

⋃

ji=j, ji′=j′

Cj1j2...jr

∣∣∣∣ = l + λn(k + 1)r−2.

Next we want to calculate |A(i)
j ∩ A

(i′)
0 | for j ≥ 1 and i 6= i′. If u

(i)
j 6∈ K(i′) then

L
u

(i)
j

⊆ A
(i)
j ∩A

(i′)
0 and thus

|A(i)
j ∩A

(i′)
0 | = |L

u
(i)
j

|+
∣∣∣∣

⋃

ji=j, ji′=j′

Cj1j2...jr

∣∣∣∣ = l + λn(k + 1)r−2.
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Finally, u
(i)
j ∈ K(i′) implies

|A(i)
j ∩A

(i′)
0 | =

∣∣∣∣
⋃

ji=j, ji′=j′

Cj1j2...jr

∣∣∣∣ = λn(k + 1)r−2.

�

We now finish the proof of Lemma 3.5 by showing (11). Let a = (a1, a2, . . . , ak)

in S(1, k) be given, for the sake of convenience we set a0 = 0. Consider K(i), K(i′)

and the corresponding partitions A(i) = A(i)(K(i)) and A(i′) = A(i′)(K(i′)). Fur-

thermore, let vA
(i)

and vA
(i′)

be defined as stated above. Having in mind that i

and i′ (and thus K(i) = {u(i)
1 , u

(i)
2 , . . . , u

(i)
k } and K(i′) = {u(i′)

1 , u
(i′)
2 , . . . , u

(i′)
k })

have been fixed we now infer

d2
(
vA

(i)

, vA
(i′)

)
=

n∑

t=1

(
ξA

(i)

t − ξA
(i′)

t

)2

=
k∑

j=1

k∑

j′=1

∣∣∣A(i)
j ∩A

(i′)
j′

∣∣∣
(aj − aj′)

2

l

+
k∑

j=1

∣∣∣A(i)
j ∩A

(i′)
0

∣∣∣
a2

j

l
+

k∑

j′=1

∣∣∣A(i)
0 ∩A

(i′)
j′

∣∣∣
a2

j′

l

=
∑

j,j′≥1

{
(aj − aj′)2: u

(i)
j = u

(i′)
j′

}

+
∑

j≥1

{
a2

j : u
(i)
j 6∈ K(i′)

}
+

∑

j′≥1

{
a2

j′ : u
(i′)
j′ 6∈ K(i)

}

+
λn(k + 1)r−2

l

k∑

j=0

k∑

j′=0

(aj − aj′)2,

(15)

where we used (13) and (14) for the last equality. Finally, let yi = spread(a,K(i))

and yi′ = spread(a,K(i′)) then

d2 (yi, yi′) =
∑

j,j′≥1

{
(aj − aj′)2: u

(i)
j = u

(i′)
j′

}

+
∑

j≥1

{
a2

j : u
(i)
j 6∈ K(i′)

}
+

∑

j′≥1

{
a2

j′ : u
(i′)
j′ 6∈ K(i)

}
(16)

Before we finally prove (11), we derive the following (easy provable, but not best
possible) bound

k∑

j=0

k∑

j′=0

(aj − aj′)2 =
k∑

b=0

k∑

j′=0

(
a(j′+b)mod k+1 − aj′

)2 ≤ 4(k + 1)
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from the fact that a = (a0, a1, . . . , ak) has length 1. We finish the proof and
infer (11) from (15), (16), the bound above, and λn = (n− ls)/(k + 1)r

∣∣∣d2(vA
(i)

, vA
(i′)

)− d2(yi, yi′)
∣∣∣ =

λn(k + 1)r−2

l

k∑

j=0

k∑

j′=0

(aj − aj′)2 ≤ 4
n− ls

l(k + 1)
.

�

Remark 3.8. Keeping k, s (and thus r), and a = (a1, a2, . . . , ak) fixed, we later
(see Lemma 3.9) let l and n tend to infinity. The ratio λn/l, however, will be
a constant independent of l and n (see equality (22)). Consequently, it follows

from the right-hand-side of (15) that the distances d(vA
(i)

, vA
(i′)

) will be fixed
for 1 ≤ i, i′ ≤ k as l and n tend to infinity.

We now are able to prove the main lemma of this section.

Lemma 3.9. Let Z = {z1, z2, . . . , zd+1} be an arbitrary simplex with circumra-
dius %(Z) = %Z and let ϑ > 0 be an arbitrary real. Then there exists a simplex

V = {v1, v2, . . . , vd+1} with %(V ) ≤ %Z
√

1 + ϑ
8 which is α-hyper Ramsey for

α =
(
%Z

)2
(

1 +
ϑ

8

)
− %(V )2

and, moreover, such that
∣∣d2 (vi, vi′)− d2 (zi, zi′)

∣∣ ≤ ϑ (17)

for all 1 ≤ i, i′ ≤ d + 1.

Proof of Lemma 3.9. Without loss of generality, assume that %Z = 1 and ϑ is
rational, ϑ = p/q with p, q > 0. Set η = ϑ/16 and apply Lemma 2.3 for η
and d to find s, k, a k-dimensional unit vector a = (a1, a2, . . . , ak) ∈ S(1, k), and

k-element sets K̃1 < K̃2 < · · · < K̃d, with K̃i ∈ [s]k for i = 1, 2, . . . , d (recall

K̃ < K̃ ′ means that all elements of K̃ are smaller than any element of K̃ ′).
Without loss of generality (using the notation of section 2.3), assume that

Z ⊆ S(Z) where Z = Z(a, K̃1, K̃2, . . . , K̃d). Moreover, by Lemma 2.3, we also
find sets K(i1),K(i2), . . . ,K(id+1) such that for t = 1, 2, . . . , d + 1 the set Y =
{y1, y2, . . . , yd+1} defined by yt = spread(a,K(it)) ∈ S(1, s) satisfies

d(zt, yt) ≤ η. (18)

Clearly, the following inequality holds for every 1 ≤ i, i′ ≤ d + 1 by (18) and our
choice of η

∣∣d2 (yi, yi′)− d2 (zi, zi′)
∣∣ = |d (zi, zi′) + d (yi, yi′)| · |d (zi, zi′)− d (yi, yi′)|
≤ |d (zi, zi′) + d (yi, yi′)| · |d (zi, yi) + d (zi′ , yi′)|
≤ 4 · 2η = 8η

=
ϑ

2
.

(19)
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On the other hand, let l be an arbitrary multiple of ω = 8q(k + 1)(
s

k)−1 and
set

n = l

(
s +

ϑ(k + 1)

8

)
. (20)

Consequently, (k + 1)(
s

k) divides

n− ls =
lϑ(k + 1)

8
. (21)

Hence, l, s, k, and n satisfy the assumptions of Lemma 3.5 and we find a family
of partitions

A = {A(i) = A(i)(K(i)) = (A
(i)
0 , A

(i)
1 , . . . , A

(i)
k ): 1 ≤ i ≤

(
s

k

)
}.

From now on we will refer to the set up (I)–(V) stated before Lemma 3.5.
Now, consider the subfamily of partitions, {A(i1),A(i2), . . . ,A(id+1)} ⊆ A (asso-
ciated with K(i1),K(i2), . . . ,K(id+1)) and corresponding vectors (see Lemma 3.5)

v1 = vA
(i1)

, v2 = vA
(i2)

,. . . , vd+1 = vA
(id+1)

. Lemma 3.5 yields that V =
{v1, v2, . . . , vd+1} is a simplex. Furthermore, in the notation of Lemma 3.5

λn

l
=

n− ls

l(k + 1)r
=

ϑ

8(k + 1)r−1
(22)

holds and λn/l is independent of l and n. This implies, by Remark 3.8, that the
simplex V is independent of l and n. Moreover, (11) and (21) yield

∣∣d2(vi, vi′)− d2(yi, yi′)
∣∣ ≤ 4

n− ls

l(k + 1)
=

ϑ

2
(23)

for every 1 ≤ i, i′ ≤ d + 1. Notice that the upper bound in (23) is independent
of n. Combining (19) and (23) we obtain (17).

Now we are going to show that V is α-hyper Ramsey. This means that for every
sufficiently large n we need to show the existence of a set H(n) satisfying (i)–(iii)
of Definition 3.1. We first show the existence of H(n) for every n satisfying (20)
with l an arbitrary multiple of ω.

Consider the family

H(n) =

{
vA: A ∈

(
[n]

l0, l1, . . . , lk

)}

of n-dimensional vectors. Again using the notation of Lemma 3.5 by (21) we
infer

∥∥vA
∥∥2

=
k∑

j=1

lj
a2

j

l
=

l1
l

= 1 +
n− ls

l(k + 1)
= 1 +

ϑ

8
(24)

for every vA ∈ H(n) and therefore H(n) ⊆ S(
√

1 + ϑ/8, n). This verifies (i) of
Definition 3.1 for %Z = 1 which we assumed above. If %Z 6= 1 the same calculation
yields

H(n) ⊆ S(%Z
√

1 + ϑ/8, n). (25)
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Since {vA: A ∈
(

[n]
l0,l1,...,lk

)
} contains V = {v1, v2, . . . , vd+1} we have %(V ) ≤

%Z
√

1 + ϑ/8. Clearly (25) is equivalent to

H(n) ⊆ S(
√

%(V )2 + α, n) with α =
(
%Z

)2
(

1 +
ϑ

8

)
− %(V )2.

Therefore, the property (i) of Definition 3.1 is verfied for every %Z .
On the other hand,

|H(n)| < (k + 1)n

and thus (ii) holds as well. Finally, we will verify property (iii) of Definition 3.1.
For λ mentioned above consider ε = ε(λ) guaranteed by Theorem 2.2 and let
K ⊆ H(n) be such that |K| ≥ (1 − ε)n|H(n)| (i.e., K satisfies condition (iii)
of Theorem 2.2, where we use the natural correspondence between vA and A
for vA ∈ K). Let M = M(A(i1),A(i2), . . . ,A(id+1)) be an array (as defined
in (2)) corresponding to the simplex V . Note that due to (9), condition (i) of
Theorem 2.2 is satisfied, while (ii) holds trivially. Consequently, one can apply
Theorem 2.2 to find a congruent copy of V in K and therefore property (iii) of
Definition 3.1 is verified.

There is, however, as mentioned earlier one more issue we need to clarify. By
Definition 3.1, one needs to guarantee the existence of the family H(n) for all
n sufficiently large. Unfortunately, the construction above applies only for some
choices of n. Given ϑ = p/q recall that s and k were defined by Lemma 2.3 with

η = ϑ/16. Due to the choice of l which must be a multiple of ω = 8q(k +1)(
s

k)−1,
say l = iω, we infer that n is of the form l(s+ϑ(k+1)/8) = iω(s+ϑ(k+1)/8) = iD
for D = ω(s + ϑ(k + 1)/8). Observe also, that the values of n for which the set
H(n) satisfies Definition 3.1 form an infinite arithmetic progression {iD}∞i=1. It
remains to verify Definition 3.1 for all n sufficiently large. This will follow from
the fact below.

Fact 3.10. Let c, α, and ε be fixed and let {iD}∞i=1 be an infinite arithmetric
progression. Let V be a finite set such that for every i ≥ 1 there exists a set
H(iD) ⊆ RiD satisfying (i)–(iii) of Definition 3.1. Then V is α-hyper Ramsey.

Proof of Fact 3.10. Fix some ε̃ < ε and choose i0 sufficiently large such that

(1− ε)iD ≤ (1− ε̃)(i+1)D (26)

for all i ≥ i0. Set m0 = i0D. In order to prove that V is α-hyper Ramsey
consider m ≥ m0 such that iD < m < (i + 1)D for i ≥ i0. We set H(m) =

H(iD) ⊂ S(
√

%(V )2 + α, iD) ⊂ S(
√

%(V )2 + α, m). Since c is fixed, property
(ii) of Definition 3.1 holds. Moreover property (iii) of Definition 3.1 (with ε̃
instead of ε) follows from (26). �

We apply Fact 3.10 with D = ω(s + ϑ(k + 1)/8) and this finishes the proof of
Lemma 3.9. �
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3.4. Almost regular simplices are α-hyper Ramsey sets. In this section
we apply a result from [FR90] to show that almost regular simplices are α-hyper
Ramsey. At first we precisely define almost regular (i.e., (µ, β)-regular) simplices.

Definition 3.11. Let 1 ≥ µ ≥ 0 and β > 0 be given reals. A simplex T =
{t1, t2, . . . , td+1} is called (µ, β)-regular if for every 1 ≤ i < j ≤ d + 1

β(1− µ) ≤ d2(ti, tj) ≤ β(1 + µ).

The following lemma was proved in [FR90] (c.f. Lemma 3.1 in [FR90]).

Lemma 3.12. For every integer d ≥ 1 there exists a real 1 ≥ µ = µ(d + 1) > 0
such that for every (µ, β)-regular simplex T = {t1, t2, . . . , td+1}, there exists a(
d+1
2

)
-dimensional box (i.e., the vertex set of a rectangular parallelepiped) P such

that there exists a subset T ′ ⊆ P congruent to T .

Due to the fact that any two vertices of T ′ (from the lemma above) are not
more than β(1 + µ) apart, we can assume without loss of generality that each
edge of the box is not longer than β(1+µ). Therefore, without loss of generality
we only consider boxes P with circumradius

%(P ) ≤ 1

2

√(
d + 1

2

)
β2(1 + µ)2 =

β(1 + µ)

2

√(
d + 1

2

)
.

Since due to Definition 3.11 µ ≤ 1, we infer that

%(P ) ≤ β

√(
d + 1

2

)
< β(d + 1).

Combining this observation with Lemma 3.12 and Theorem 3.2 we derive the
following.

Lemma 3.13. For every integer d ≥ 1 there exists µ = µ(d + 1) > 0 such that
every (µ, β)-regular simplex T = {t1, t2, . . . , td+1} with circumradius %(T ) = %T

is α-hyper Ramsey for every α ≥ β2(d + 1)2 − (%T )2.

4. Proof of the main result

In this section we prove the main result, Theorem 1.6, by proving the stronger
statement, Theorem 3.3. We first outline the idea of the proof.

Given a simplex X and α > 0, we construct a “smaller” simplex Z and a

regular simplex Z̃ such that X ⊆ Z ∗ Z̃. Then we find an αV -hyper Ramsey
simplex V which is “ϑ-close” to Z (see Lemma 3.9). Furthermore, we define a
simplex T such that V ∗ T contains a subset X ′ congruent to X. Since V is very

close to Z, T will be very close to Z̃, and the right choice of constants will ensure
that T is almost regular. Therefore, we will derive, by Lemma 3.13, that T is αT -
hyper Ramsey for some appropriate αT . Finally the product result, Lemma 3.4,
will yield that X is (αV + αT )-hyper Ramsey with αV + αT ≤ α. Since α > 0
was arbitrary X is hyper Ramsey.
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Proof of Theorem 3.3. Let X = {x1, x2, . . . , xd+1} be a simplex and 1 > α > 0
be given. Without loss of generality assume that %(X) = 1 and set

mij = d2(xi, xj).

As X is an affine independent set, we infer from Schoenberg’s theorem, Theo-
rem 2.1, that there exists a real γ > 0 such that the left-hand-side of (1) is always
less than −γ. Let

0 < β < min

{
γ

(d + 1)2
,

√
α

2(d + 1)2

}
(27)

be a sufficiently small real number (one additional upper bound on β will be

stated later, after Remark 4.1). Then the matrix M ′ = (m′

ij)
d+1
i,j=1 with m′

ij =

mij − β is of strictly negative type (by our choice of β in (27)) and thus, again
by Theorem 2.1, there exists a simplex Z = {z1, z2, . . . , zd+1} ⊆ Rd such that for
1 ≤ i < j ≤ d + 1

d2(zi, zj) = m′

ij = mij − β. (28)

Remark 4.1. The regular simplex Z̃ mentioned in the outline of the proof is the
unique simplex with distance β between every two vertices. Due to the fact that

we make no use of Z̃, we don’t explicitly mention it in the proof.

Moreover, assume we earlier choose β to be small enough such that

%(Z) = %Z ≤ 1 +
α

8
. (29)

Let µ = µ(d + 1) be given by Lemma 3.13. Fix a small positive real ϑ by

ϑ = min {α, βµ} (30)

and apply Lemma 3.9 for Z and ϑ. Consequently, we obtain an αV -hyper Ramsey
simplex V = {v1, v2, . . . , vd+1} with

αV =
(
%Z
)2
(

1 +
ϑ

8

)
−
(
%V
)2

satisfying

d2(zi, zj)− ϑ ≤ d2(vi, vj) ≤ d2(zi, zj) + ϑ (31)

for all 1 ≤ i < j ≤ d + 1, where %V equals the circumradius of V .
Finally, let T = {t1, t2, . . . , td+1} be the (last auxiliary) simplex defined by

d2(ti, tj) = mij − d2(vi, vj) (32)

with circumradius %(T ) = %T . The simplex T is (µ, β)-regular by our choice of ϑ

in (30). Indeed by (28) and (31)

β − ϑ ≤ d2(ti, tj) ≤ β + ϑ

and hence

β (1− µ) ≤ d2(ti, tj) ≤ β (1 + µ) .

holds.



18 PETER FRANKL AND VOJTĚCH RÖDL

Thus, we may apply Lemma 3.13 and infer that T is αT -hyper Ramsey for

αT = β2(d + 1)2 −
(
%T
)2

.

Now, Lemma 3.4 implies that V ∗T is (αV +αT )-hyper Ramsey. Consequently,
there exists an integer mV ∗T

0 and sets HV ∗T (m) for m ≥ mV ∗T
0 such that

HV ∗T (m) ⊆ S

(√
(%V )2 + αV + (%T )2 + αT ,m

)

= S

(√
(%Z)2

(
1 +

ϑ

8

)
+ β2(d + 1)2,m

)
. (33)

By, (27), (29), and (30) we infer

(%Z)2
(

1 +
ϑ

8

)
+ β2(d + 1)2 ≤

(
1 +

α

8

)3

+
α

2
≤ 1 + α

which implies that

HV ∗T (m) ⊆ S(
√

1 + α, m + 1).

On the other hand, it is easy to see that V ∗T contains a subset X ′ congruent
to X. In fact, setting X ′ = {x′

i = vi ∗ ti: i = 1, 2, . . . , d + 1} yields by (32) that

d2(x′

i, x
′

j) = d2(vi, vj) + d2(ti, tj) = mij = d2(xi, xj),

which implies that X ′ ⊆ V ∗ T is congruent to X. Combining this with (33) we
infer that X is α-hyper Ramsey. Since, α > 0 was chosen arbitrarily X is hyper
Ramsey. �
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