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THE SIZE-RAMSEY NUMBER OF TREES
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Abstract. Given a graph G, the size-Ramsey number r̂(G) is the minimum number m for which
there exists a graph F on m edges such that any two-coloring of the edges of F admits a monochro-
matic copy of G.

In 1983, J. Beck introduced an invariant β(·) for trees and showed that r̂(T ) = Ω(β(T )). More-
over he conjectured that r̂(T ) = Θ(β(T )). We settle this conjecture by providing a family of graphs
and an embedding scheme for trees.

1. Introduction

For graphs G and H, the size-Ramsey number r̂(G,H), introduced by Erdős et al. [3], is the
smallest number m such that there exists a graph F on m edges with the property that, in any
red-blue coloring of the edges of F , there exists either a red copy of G or a blue copy of H.

For a real number α ∈ [0, 1] and graphs F , G we shall write F →α G if any subgraph F ′ ⊆ F
with e(F ′) ≥ αe(F ) contains a copy of G as a subgraph. Notice that if F →1/2 G then r̂(G) =
r̂(G,G) ≤ e(F ).

It is well known that r̂(Kn) grows exponentially with n. In contrast, Beck [1], answering a
question of Erdős, showed that for Pt, the path on t vertices, we have

r̂(Pt) = r̂(Pt, Pt) ≤ 900t.

In fact, Beck proved that for any α ∈ (0, 1] there is c = c(α) such that a.a.s. (asymptotically almost
surely) the random graph G = Gn,c/n satisfies G→α Pbn/cc.

Friedman and Pippenger [5] improved this result by showing that any tree with maximum de-
gree ∆ and t vertices has size-Ramsey number c(∆)t, where c(∆) = O(∆4). This was later improved
to c(∆) = O(∆2) by Ke [8] and to c(∆) = O(∆) by Haxell and Kohayakawa [6].

Although certain trees T have size-Ramsey of order ∆(T ) |T |, it is clear that the size-Ramsey
of the star K1,t is not of order t2. Indeed, K1,α−1t →α K1,t for any α ∈ (0, 1]. Hence, the
bound ∆(T ) |T | may be far from optimal in many cases.

In [2], Beck introduced the tree invariant β(T ) which is defined as follows. Let V (T ) = V0(T )∪
V1(T ) be the partition determined by the unique proper two-coloring of the vertex set of T . Set ∆i =
∆i(T ) = max{dT (v) : v ∈ Vi(T )} and ni = ni(T ) = |Vi(T )| for i = 0, 1 and let β(T ) =
n0∆0 + n1∆1. Improving his previous result, Beck [2] proved that for any tree T ,

β(T )/4 ≤ r̂(T ) ≤ O
(
β(T )(log |T |)12

)
and conjectured that r̂(T ) = O(β(T )). Haxell and Kohayakawa [6] significantly improved the upper
bound to r̂(T ) = O

(
β(T ) log ∆(T )

)
.

We settle this conjecture by showing that for any (n0,∆0, n1,∆1) and α ∈ (0, 1] there exists N0,
N1 and p ∈ [0, 1] with pN0N1 = Oα(n0∆0 +n1∆1) such that a.a.s. the random bipartite graph G =
GN0,N1;p satisfies G →α T for any tree T with ∆i(T ) ≤ ∆i and ni(T ) ≤ ni, for i = 0, 1. Since
a.a.s. G has O(pN0N1) edges, the size-Ramsey of any tree T is of the order of β(T ).

The embedding of T into G is done algorithmically. We believe that this algorithmic method is
interesting in its own right and that it could be useful in other similar contexts. In fact, in joint
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work with Kohayakawa, Rödl and Ruciński [7], we have used analogous techniques in an algorithm
that embed graphs of bounded degree into sparse random graphs.

1.1. Organization of the paper. In order to prove Beck’s conjecture we establish several prop-
erties that hold a.a.s. for random graphs. Any graph satisfying these properties may be used as an
upper bound for the size-Ramsey number of trees. However, there is no known graph construction
satisfying all these properties. Thus we have resorted to the probabilistic method in order to prove
the existence of such graphs. The results on random graphs are stated in Theorem 6 of Section 4.

In Section 6 we exhibit an embedding scheme for trees, Algorithm 1, that finds an isomorphic copy
of any tree with prescribed parameters into a graph satisfying the properties listed in Theorem 6.

We shall give an outline of a simpler (somewhat unrealistic) case for the sake of introducing, in
an easier context, some of the techniques employed in the general case. This informal outline is
given in Section 3.

2. Preliminaries

Given a graph G = (V,E) and disjoint sets S, T ⊂ V , we denote by EG(S, T ) the set of all
edges with one endpoint in S and the other endpoint in T and let eG(S, T ) = |EG(S, T )|. The
neighborhood of a vertex v ∈ V is denoted by ΓG(v) and the neighborhood of a set S ⊆ V is
denoted by ΓG(S) =

⋃
v∈S ΓG(v).

Definition 1. Given a graph G = (V,E), for any set S ⊆ V , we define

Γ∗G(S) = {v ∈ V : eG({v}, S) = 1}
as the set of unique neighbors of S. Let d∗G(S) = |Γ∗(S)|.

We may omit the subscript if the graph is clear from the context.
If x, t ∈ R, ε > 0 are such that x ∈ [(1 − ε)t, (1 + ε)t] then we write x ∼ε t. We shall also use

the standard notations Ωγ(f(n)), Oγ(f(n)) for the classes of all functions lower/upper bounded
by c(γ)f(n), where c = c(γ) is a constant that only depends on γ. In many computations we
implicitly use well-known inequalities such as

(1) 1 + x ≤ ex and
(a
b

)b
≤
(
a

b

)
≤
(ea
b

)b
.

The Chernoff inequality is also used extensively: for any ε > 0 and any Binomial random variable X
with parameters n and p we have

(2) P
[
|X − np| ≥ ε np

]
≤ exp{−Ωε(np)}.

Definition 2 (LE sets). We say that a set of vertices S in a graph G is ε-lossless expanding
if |Γ(S) \ S| ∼ε e(S, V (G) \ S), that is, almost every edge in the S-cut corresponds to a unique
neighbor of S. We may refer to S as an LE set for short.

A useful feature of LE sets is their resilience: even if a large fraction of the edges incident to an
LE set is removed, the LE property persists. This is stated formally in the following simple lemma.

Lemma 3. Let G be a graph and S ⊆ V = V (G). For any G′ ⊆ G we have

|ΓG′(S) \ S| ≥ eG′(S, V \ S) + 2{|ΓG(S) \ S| − eG(S, V \ S)}.

Proof. Let N denote the number of edges e = uv in EG(S, V \S) such that the end-vertex v ∈ V \S
satisfies eG(v, S) ≥ 2. Note that |ΓG(S) \ S| ≤ {eG(S, V \ S) − N} + N/2, since each edge not
counted by N corresponds to exactly one unique neighbor of S and all the edges counted by N
may contribute with at most N/2 neighbors. We obtain −N ≥ 2{|ΓG(S) \ S| − eG(S, V \ S)}. The
claim follows as |ΓG′(S) \ S| ≥ eG′(S, V \ S)−N . �
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Definition 4. Let T be a tree and V (T ) = V0(T ) ∪ V1(T ) be the canonical bi-partition of T .
Set ni = |Vi(T )| and ∆i = max{dT (v) : v ∈ Vi(T )}, for i = 0, 1. The parameter β(T ) is defined as

β(T ) = n0∆0 + n1∆1.

A tree with these parameters is called an (n0,∆0, n1,∆1)-tree.

3. Outline of a simpler case

In this section we consider a simpler, specific case, where we can apply easier versions of the
techniques used in the proof of our result. Let us assume that the ni’s and ∆i’s are fixed and
satisfy n0∆0 = n1∆1. Our unrealistic1 assumption is the existence of a bipartite graph G having
classes V0, V1 with 100ni ≤ |Vi| = Ni = O(ni), i = 0, 1, such that all vertices in Vi have degree Di =
O(∆i) and such that for any i and any set S ⊆ Vi, with |S| ≤ |Vi−1|/Di we have |ΓG(S)| ≥ (1−ε)Di

for some small ε ≥ 0. In particular, G is a bipartite graph for which we have lossless expansion for
essentially all sets (obviously, if S is too large, it cannot expand losslessly).

Next we outline how one could find a copy of an (n0,∆0, n1,∆1)-tree T in any sufficiently dense
subgraph of G. Suppose that G′ ⊆ G is such that e(G′) ≥ e(G)/2. By sequentially removing
vertices of low degree, we may ensure that every v ∈ V ′i = Vi ∩ V (G′) has degree at least Di/4 and
that e(G′) ≥ e(G)/4.

Suppose that f is a partial embedding of T into G′. A vertex v ∈ V ′ = V (G′) is inactive with
respect to f if there is a vertex u ∈ V (T ) such that v = f(u) and, moreover, all neighbors of u are
already embedded by f (namely, f−1(V ′) ⊃ ΓT (u)).

A vertex is called free with respect to some partial embedding f if it is neither reserved nor in
the image of f . We shall describe how a vertex becomes reserved in what follows.

Critical vertices. The main ingredient in the embedding scheme is how to deal with active
vertices in G′ which have few free neighbors. These vertices will be called critical. We associate
to every critical vertex v a subset Rv of its free neighborhood which shall be reserved exclusively
to embed neighbors of f−1(v) (if v ever gets used in the embedding, otherwise they shall remain
unused). In particular, those vertices in Rv will not longer be free.

Let c ∈ (0, 1) be a fixed constant to be defined later. A vertex from class V ′i (i = 0, 1) is classified
as critical if it has less than cDi free neighbors.

There are basically two difficulties in dealing with critical vertices: since the reserved subsets
must be exclusive, they must be disjoint from each other. Moreover, after reserving vertices, one
may produce more critical vertices, as those reserved vertices are no longer free. It is therefore
essential to make sure that the number of critical vertices is bounded at all times.

To ensure that there are not too many critical vertices, the set of reserved vertices for each
critical vertex is relatively small—it has size ∆0 or ∆1, depending on which class the critical vertex
belongs. Therefore, for each new critical vertex, we reserve a small number of vertices (making
then non-free). On the other hand, every critical vertex must send a considerable fraction of its
edges into the set of non-free vertices. By the LE property and Lemma 3, the set of critical vertices
must be small, otherwise the expansion of the LE set of critical vertices would contradict the fact
that the set of non-free vertices is not large.

More formally, let Ci be the set of critical vertices in the class Vi. The number of non-free
vertices in V1−i is at most n1−i+ |Ci|∆i. However, every vertex v ∈ Ci sends at least dG′(v)−cDi ≥
(1/4−c)Di edges into the set of non-free vertices of V1−i. If |Ci| ever reaches 16n1−i/Di < |V1−i|/Di,
one can establish a contradiction with the LE property by way of Lemma 3. Indeed, the set of

1Such graphs do not exist for all range of parameters, for instance, if N0 = 2N1 such a strong expander needs D0 ≥
c(ε)N1, which means that the graph needs to be very dense (see [9, Theorem 1.5(a)]).
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non-free vertices would have to be larger than

|Ci|Di/8 ≥ (8n1−i/Di + |Ci|/2)Di/8 = n1−i + |Ci|Di/16 > n1−i + |Ci|∆i

if we choose c sufficiently small and Di/∆i sufficiently large.
Embedding scheme. Fix an arbitrary root v1 ∈ V1(T ) and map it to an arbitrary vertex

in V ′1 . At each step we take an already embedded vertex and embed all of its children at once.
Suppose that we have a partial embedding f of T into G′. Let C be the collection of critical
vertices and R = {Rv}v∈C be the family of reserved sets. Let u ∈ V (T ) be an embedded vertex
and w = f(u).

If w is critical then Rw ∈ R contains enough vertices to embed every child of u. No other critical
vertex can be created after this embedding occurs (since no free vertex is used).

If w ∈ V ′i is not critical, then the number of free neighbors of w is at least cDi � ∆i, which
is more than enough to embed every child of u. After embedding the children of u (arbitrarily
choosing vertices among the free neighbors of w), we might have created new critical vertices.

A new critical vertex had cDi free neighbors before the above embedding extension. Since the
extension can only make ∆i vertices non-free and cDi � ∆i, this new critical vertex still has many
free neighbors immediately after the extension.

Pick one of the (possibly many) new critical vertices and choose an arbitrary ∆i-subset of its free
neighborhood. We construct reserved sets for the new critical vertices using the following iterative
procedure.

Suppose that Cj ⊂ V ′i is the collection of the first j critical vertices in V ′i created by the embedding
extension. Let {Rv}v∈Cj be a family of disjoint ∆i-subsets such that each Rv may only contain free
neighbors of v. Set Xj =

⋃
v∈Cj Rv.

If there is a (non-critical) vertex w having less than cDi free neighbors outside of Xj we set Cj+1 =
Cj ∪{w} and obtain a new family of disjoint ∆i-sets {Rv}v∈Cj+1 as above. We also impose an extra
restriction on this family: Xj ⊂ Xj+1, that is, once a vertex is chosen to be reserved to a critical
vertex, it will be reserved to some critical vertex (but not necessarily to the one it was originally
assigned to). This restriction is important since we use the fact that the set of non-free vertices
is monotonically increasing. In particular, once a vertex is classified as critical, it always has less
than cDi free neighbors.

After the above procedure finishes, every non-critical vertex of V ′i (i = 0, 1) has at least cDi free
neighbors and every critical vertex has an exclusive set of reserved vertices. Therefore, it is possible
to continue the embedding until the whole tree is embedded.

Clearly, it is necessary to show that it is possible to obtain the above family of reserved sets. Each
new critical vertex must have at least cDi−∆i neighbors that are either free or temporarily reserved
to another new critical vertex. Using the LE property of the graph and a Hall-type argument, it is
simple to obtain a new family of reserved sets as long as j = |Cj | is not too large. However, since
we have a global upper bound on the number of critical vertices, this strategy always work. (See
Lemma 12 for a formal version of this argument.)

4. Properties of random bipartite graphs

In this section we state a technical theorem describing several properties of random bipartite
graphs that we use when embedding trees. We remark that, in contrast with the assumptions
of Section 3, having lossless expansion on both classes of a sparse bipartite graph is not always
possible (see [9, Theorem 1.5(a)]). To overcome this shortcoming we show that there are plenty of
LE sets in “useful places”, namely, most neighborhoods of vertices are rich in LE sets.

Definition 5. Let ε > 0, p ∈ (0, ε/8), N0, N1, D0 = pN1, D1 = pN0 ∈ N. A bipartite graph G =
(U,W ;E) with |U | = N0, |W | = N1 satisfies Property (‡) if there exists W ′ ⊆ W with |W ′| ≥
(1− 2ε)N1 such that the following conditions hold:
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(i) deg(w) ∼ε D1 for all w ∈W ′ and, moreover, #{u ∈ Γ(w) : deg(u) 6∼ε D0} < εD1;
(ii) for every S ⊆W ′ with |S| ≤ εN1/(8D0), we have d∗(S) ∼ε D1 |S|;

(iii) for every S ⊆ W ′ with |S| ≤ εN1/(D0D1) and for every T ⊆ Γ(S) with
√
εD1 |S| ≤ |T |, we

have d∗(T ) ≥ (1− 5
√
ε)D0 |T |;

(iv) if εN1 < D0D1 then for every w ∈ W ′ and every subset T ⊆ Γ(w) with |T | ≥ εD1 we have
disjoint sets T1, . . . , Tr, each of cardinality min{εD1/8, εN1/(4D0)}, such that

∣∣⋃r
i=1 Ti

∣∣ ≥ 3
4 |T |

and d∗(T ′i ) ∼ε D0 |T ′i | for every T ′i ⊆ Ti, i = 1, . . . , r;
(v) for every X ⊆ U and Y ⊆ W with |X| ≥ ε3N0, |Y | ≥ ε3N1 we have eG(X,Y ) ∼ε2 p |X| |Y |;

in particular, e(U,W ′) ≥ (1− 4ε) e(G).

Using the probabilistic method we show that there are graphs satisfying Property (‡).

Theorem 6. Suppose that n0 ≥ n1 and n0∆0 = n1∆1. Let 0 < ε < 1/100 be given. There
exists C = C(ε) such that, with probability at least 1 − ε, the bipartite random graph GN0,N1;p =
(U,W ;E), with N0 = Cn0, N1 = Cn1, and p = ∆0/n1 = ∆1/n0 < ε/8 satisfies Property (‡).

Before proving the above theorem, we observe that the condition p < ε/8 is not very restrictive.
In the case p ≥ ε/8, we may use a complete bipartite graph.

Lemma 7. Let α ∈ (0, 1] and T be a tree with (bipartite) classes having cardinalities n0 and n1.
We have G = K4n0/α,4n1/α →α T .

Proof. First observe that G has 16n0n1/α
2 edges. When p ≥ ε/8, we must have β(T ) ≥ pn0n1 ≥

εn0n1/8 and hence e(G) = O(β(T )).
Let G′ ⊆ G be any subgraph with e(G′) ≥ α e(G). While there is a vertex v in the left class (or a

vertex w in the right class) with degG′(v) < n1 (or degG′(w) < n0) remove v (or w) from G′ together
with all of the edges incident to the removed vertex. The total number of edges removed is upper
bounded by (4n0/α)n1 +(4n1/α)n0 = α

2 e(G). Therefore, the remaining graph G′ is non-empty and
has minimum degree on the left at least n1 and minimum degree on the right at least n0.

Now we can inductively embed any tree T with classes having cardinalities n0 and n1. Fix an
arbitrary root v1 ∈ V1(T ) and set f : v1 7→ w1 where w1 is an arbitrary vertex on the right class
of G′.

Suppose that we have a partial embedding f of T into G. Pick some vertex v ∈ Vi(T ), i = 0, 1,
that was already embedded together with some w ∈ ΓT (v) which was not yet embedded. Since
the degree of f(v) in G′ is at least as large as |V1−i(T )|, there must be some w′ ∈ ΓG(f(v)) such
that w′ /∈ f(V1−i(T )). Extend f by mapping w to w′. �

To simplify the proof of Theorem 6 we shall avoid floors and ceilings by making every parameter—
such as ε, p, C, n0, n1, ∆0, ∆1—a power of 2. This is not a problem given our final goal since this
shall affect the parameter β(T ) by only a multiplicative constant.

Proof. The proof of Theorem 6 is divided into several claims.

Claim 8. Let G = GN0,N1;p = (V0, V1;E) be a random bipartite graph and S ⊆ Vi be a set with s
vertices. Then d∗(S) is a binomial variable with parameters N1−i and sp(1 − p)s−1. Moreover,
if sp ≤ ε then E[d∗(S)] ≥ (1− 2ε)spN1−i.

Proof. We may represent d∗(S) as a sum of indicator variables Iv = I[eG(v, S) = 1], v ∈ V1−i. Since
the Iv’s are independent and each has probability sp(1−p)s−1, the first part of the claim is proved.
For the second part, notice that

(3) E[d∗(S)] = N1−isp(1− p)s−1 ≥ spN1−ie
−2sp ≥ (1− 2ε)spN1−i,

since (1− p) ≥ e−p−p2 ≥ e−2p (as p ≤ ε/s ≤ 1/2). �
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Claim 9. With probability at least 1−3ε/4 there exists W ′ ⊆W with |W ′| ≥ (1−ε)N1 for which (i)
and (ii) hold.

Proof. Notice that for any vertex v, we have E[deg(v)] = Di, where i = 0 if v ∈ U and i = 1
if v ∈W . By the Chernoff inequality, for any fixed vertex v,

P
[∣∣deg(v)−Di

∣∣ ≥ εDi

]
≤ exp{−Ωε(Di)} ≤ ε2/4

for sufficiently large C.
Note that the degrees in W are independent random variables (since the graph is bipartite).

Given a fixed vertex w ∈ W , let us estimate the probability that more than εD1 of its neighbors
have degree 6∼ε D0 conditioned on deg(w) ∼ε D1. For each u ∈ Γ(w), the degree of u is one more
than the number of its neighbors in W − w, which is a binomial variable independent of other
vertices in Γ(w) and of w itself. Hence, the probability of having εD1 neighbors failing to have the
“correct” degree is bounded by(

(1 + ε)D1

εD1

)
exp{−Ωε(D0) · εD1} = exp{−Ωε(D0D1)} < ε2/4,

for sufficiently large C.
Let E0 denote the event in which the set of vertices having exceptional degree or having many

neighbors of exceptional degree has at most εN1/2 elements. Since the expected number of such
vertices is less than ε2N1/4, by Markov’s inequality, we obtain P[E0] ≥ 1− ε/2.

Next, we prove that the event

E1 =
{

for all S ⊆W with s = |S| ∈
[ ε

8p
,
ε

4p

]
, we have d∗(S) ≥ (1− ε)D1 |S|

}
holds with probability at least 1 − ε/4. By Claim 8, we have E[d∗(S)] ≥ (1 − ε/2)sD1 for all sets
considered in E1.

By the Chernoff inequality, the probability that one fixed set S in E1 has d∗(S) < (1− ε)sD1 is
at most by exp{−Ωε(sD1)}. A simple union bound gives an upper bound on the probability that
some set S has small d∗(S), that is,

ε/(4p)∑
s=ε/(8p)

(
N1

s

)
exp{−Ωε(sD1)} ≤

∑
s

{eN1e
−Ωε(D1)

s

}s
≤
∑
s

{8eD0e
−Ωε(D1)

ε

}s
.

Note that since D1 ≥ D0, we may take C sufficiently large in order to have e1−Ωε(D1)D0/ε < ε/64.
In particular, the last sum is at most

∑∞
s=1(ε/8)n < ε/4.

To prove (ii) let us assume that E1 holds. Suppose that there are disjoint sets S1, S2, . . . , Sk such
that |Si| ≤ ε/(8p) − 1 and d∗(Si) < (1 − ε)D1 |Si|. We call such sets Si non-expanding. Suppose
that S =

⋃k′

i=1 Si (k′ ≤ k), is such that ε/(8p) ≤ |S| ≤ 2(ε/(8p) − 1) ≤ ε/(4p). Then d∗(S) ≤∑k′

i=1 d
∗(Si) < (1− ε)D1 |S|, which contradicts E1. It follows that by removing non-expanding sets

from W sequentially we eventually get rid of all of them while removing at most ε/(4p) = εN1/(4D0)
vertices.

In total, if both E0 and E1 hold, we need to remove less than εN1 vertices from W to get (i)
and (ii). Since P[E0 ∧ E1] ≥ 1− 3ε/4 the claim is proved. �

Set s0 = εN1/(D0D1). We assume that s0 ≥ 1 as otherwise (iii) is trivial. Let us estimate
the probability that a fixed S ⊆ W with s = |S| ∈ [s0, 3s0] and |Γ(S)| ∼ε D1 |S| is such that
there exists T ⊆ Γ(S) with εsD1 ≤ |T | having d∗(T ) < (1− 10ε)D0 |T |. Such (S, T ) will be called
a bad pair. Apply Claim 8 to the random subgraph G[U,W \ S] and the set T (observe that we
have exposed the edges incident to S but no other edge of G, hence G[U,W \S] is a random graph
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independent of what was already exposed). Note that p |T | ≤ (1+ε)D1sp ≤ 3(1+ε) εN1
D0
p = 3ε(1+ε)

and |W \ S| ≥ (1− ε)N1. From Claim 8 we get that E[d∗(T )] ≥ (1− 8ε)D0 |T |.
Applying the Chernoff inequality, we get that the probability that a fixed choice of (S, T ) becomes

a bad pair can be upper bounded by exp{−Ωε(D0 |T |)}. The union bound over all choices of S and
all choices of T gives the following upper bound for the probability of any bad pair occurring in G:

[∗] =
3s0∑
s=s0

2sD1∑
t=εsD1

(
N1

s

)(
2sD1

t

)
exp{−Ωε(tD0)}

≤
3s0∑
s=s0

2sD1∑
t=εsD1

(eN1

s

)s(2sD1

t

)t
exp{−Ωε(tD0)}.

Replacing the occurrences of s and t in the denominators by lower bounds (s0 and εs0D1, respec-
tively) and their occurrences in the numerators or exponents by upper bounds (3s0 and 6s0D1,
respectively) we obtain

[∗] ≤
6s0D1∑
t=εs0D1

∑
s

(2eD0D1/ε)3s0(6e/ε)t exp{−Ωε(tD0)}

≤
∑
t

2s0 · exp
{

3s0 log(2eD0D1/ε) + t log(6e/ε)− Ωε(tD0)
}

≤ 12s2
0D1 · exp

{
3s0 log(2eD0D1/ε) + 6s0D1 log(6e/ε)− Ωε(s0D0D1)

}
≤ exp{−Ωε(N1)},

(4)

for a sufficiently large C.
Let E2 be the event

E2 ≡
{

for all S ⊆W, with s = |S| ∈ [s0, 3s0] and |Γ(S)| ∼ε sD1,

if T ⊆ Γ(S), εsD1 ≤ |T |, then d∗(T ) ≥ (1− 10ε)D0 |T |
}
.

(5)

By equation (4), E2 holds with probability at least 1− ε/16.

Claim 10. Conditioning on E0, E1 and E2, there is W ′ ⊆W satisfying (i), (ii), (iii).

Proof. Initially, let W ′ be the set obtained by Claim 9 (here we use E0 and E1). Suppose that
there exists S1 ⊆ W ′ with |S1| ≤ s0 − 1 and ΓG(S1) ∼ε D1 |S1| such that there is T1 ⊆ ΓG(S1)
with

√
εD1 |S1| ≤ |T1| and d∗(T1) < (1− 5

√
ε)D0 |T1|. Remove S1 from W ′. Repeat this procedure

until there are no more bad sets or until the union S =
⋃
i Si has at least s0 elements. If there is a

(first) step k in which |S| =
∑k

i=1 |Si| ≥ s0, we also have |S| ≤ 2s0 since we are always adding sets
with less than s0 elements. Next we show that S cannot have more than s0 elements.

Suppose that s0 ≤ |S| ≤ 2s0 and let T =
⋃k
i=1 Ti ⊆ ΓG(S). Exploiting the LE property

of W ′ we shall show that |T | is close to
∑k

i=1 |Ti| and, since T ⊆ Γ(S), this contradicts E2. Note
that eG(S, T ) ≥

∑k
i=1 eG(Si, Ti), since the Si’s are disjoint. However, we know that eG(Si, Ti) ≥

|Ti| ≥
√
εD1|Si|. Take G′ ⊆ G with E(G′) =

⋃k
i=1 eG(Si, Ti). Clearly, e(G′) ≥

∑k
i=1 |Ti| ≥√

εD1 |S|. On the other hand, since W ′ was initially obtained from Claim 9, every vertex of W ′

has degree at most (1 + ε)D1 and |ΓG(S)| ≥ d∗G(S) ≥ (1− ε)D1 |S|. Hence, by Lemma 3, it follows
that

|T | = |ΓG′(S)| ≥ eG′(S, T )− 2{eG(S, T )− |ΓG(S)|}

≥
k∑
i=1

|Ti| − 4εD1 |S| ≥ (1− 4
√
ε)

k∑
i=1

|Ti|,
(6)
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where we have used that
√
εD1 |S| ≤

∑k
i=1 |Ti|. Therefore |T | ≥ 1

2

∑k
i=1 |Ti| ≥

1
2

√
εD1 |S| >

εD1 |S|.
Since, Γ∗G(T ) ⊆

⋃k
i=1 Γ∗G(Ti) and ε < 1/100, we have from (6),

d∗G(T ) ≤
k∑
i=1

d∗G(Ti) < (1− 5
√
ε)D0

k∑
i=1

|Ti|

≤ 1− 5
√
ε

1− 4
√
ε
D0 |T |

< (1− 10ε)D0 |T |,

a contradiction with E2. Hence, by removing less than s0 elements from W ′ we may ensure that (iii)
holds together with (i) and (ii). �

Claim 11. If εN1 < D0D1 then a.a.s. every w ∈W for which deg(w) ∼ε D1 and every T ⊆ Γ(w)
with |T | ≥ εD1 satisfy the conditions of Property (‡).(iv).

Proof. Suppose that εN1 < D0D1. Let w ∈ W be fixed and assume that deg(w) ∼ε D1 (as
otherwise w /∈ W ′). Let T = {t1, t2, . . . , tm} ⊆ Γ(w) be an arbitrary set with m ≥ εD1. In the
random graph G[U,W \ {w}], the vertex t1 has expected degree p(N1 − 1) ∼ε/2 D0. Hence, by the
Chernoff inequality,

P[deg(t1) ∼ε D0] ≥ 1− exp{Ωε(D0)}.
We shall (attempt to) construct a set T1 with k = min{εD1/8, εN1/(4D0)} elements satisfying

condition (iv). Let X = {w}. We say that ti succeeds if |Γ(ti) \ X| ∼ε D0 and deg(ti) ∼ε D0,
otherwise it fails. If ti succeeds, we add ti to T1 and Γ(ti) to X. If it fails, both X and T1

remain unchanged. If T1 contains k elements then we have obtained our final T1. By construction,
every T ′1 ⊆ T1 is such that d∗(T ′1) ∼ε D0 |T ′1|.

Suppose that t` was the last element added to T1. Then we start building T2 ⊂ {t`+1, . . . , tm} in
the same way we constructed T1: setX = {w} and sequentially add vertices ti that succeed to T2 and
their neighborhoods Γ(ti) to X. Repeat the procedure for other Ti’s until we have constructed Tr or
the vertex tm was reached. Note that we always have |X| ≤ εN1

4D0
(1 + ε)D0 + 1 ≤ εN1/2. Therefore,

by the Chernoff inequality, the probability that a fixed ti fails is at most exp{−Ωε(D0)} for any i.
If we were unable to construct the desired collection T1, . . . , Tr then at least m/8 elements

from T have failed. Indeed, we need rk elements to succeed, where 3m/4 ≤ rk < 3m/4 + k ≤
3m/4+εD1/8 ≤ 7m/8. Even though the sequence of indicator variables I[ti fails] is not independent,
it is dominated by a sequence of independent Bernoulli variables. Therefore, the probability that a
fixed sequence of (m/8) ≥ εD1/8 vertices fails is at most exp{−Ωε(mD0/8)} = exp{−Ωε(D0D1}.
Consider the union bound over (1) all choices w ∈W having deg(w) ∼ε D1; (2) all subsets T ⊆ Γ(w)
with |T | ≥ εD1; (3) all possible (m/8)-subsets of failing vertices of T . The probability that we fail
to construct the desired collection for some vertex is at most

(7) N1 · 22D1 · 22D1 · exp{−Ωε(D0D1)} → 0 as D0D1 →∞,

since D0D1 > εN1. (Note that we can make D0D1 as large as needed by taking a sufficiently
large C.) Thus the claim is proved. �

It is a well-known fact that the number of edges among linear-sized sets in a random graph is
a.a.s. very close to the expected value. Indeed, let E3 be the event corresponding to (‡).(v) and
let E4 denote the event described by Claim 11. Note that the events E0, . . . , E4 hold together with
probability at least 1−ε. Conditioning on all those events, (v) is satisfied (by E3), Claim 10 ensures
(i)–(iii) and E4 together with (i) imply (iv). �
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5. Auxiliary results

In this section we prove lemmas that will be used to ensure that certain steps in our tree
embedding scheme can be performed.

Lemma 12. Let S1, . . . , Sm be a collection of sets and b ∈ Nm be such that, for every I ⊆ [m], we
have

∣∣⋃
i∈I Si

∣∣ ≥∑i∈I bi.
Then, there exists a disjoint family S = {S′i ⊆ Si}mi=1 with |Si| = bi for all i. Moreover, if {S′′i ⊆

Si}ki=1, k ≤ m, is any disjoint family with |S′′i | = bi, we may find S such that
⋃k
i=1 S

′′
i ⊆

⋃m
i=1 S

′
i.

Proof. We reduce this problem to a matching problem. Consider a bipartite graph H with vertex
classes A =

⋃m
i=1{i} × [bi] and B =

⋃m
i=1 Si and edges given by {(i, j), u} for all i ∈ [m], j ∈ [bi]

and u ∈ Si. Observe that we are adding bi copies of a vertex i that has neighborhood Si for all i.
Given a set A′ ⊆ A, let I = I(A′) be the projection of A′ onto the first coordinate. We

have |A′| ≤
∑

i∈I bi and, on the other hand, |ΓH(A′)| =
∣∣⋃

i∈I Si
∣∣ ≥ ∑i∈I bi ≥ |A′|. Hence, Hall’s

condition is satisfied for H and there is a matching M covering A. From M we get sets S′i ⊆ Si by
letting S′i be the set of elements matched to (i, 1), . . . , (i, bi).

Suppose that there exists a disjoint family {S′′i ⊆ Si}ki=1, k ≤ m, with |S′′i | = bi. By performing
small local changes to the family {S′i ⊆ Si}mi=1 we may ensure that

⋃k
i=1 S

′′
i ⊆

⋃m
i=1 S

′
i. If there

exists x ∈
⋃k
i=1 S

′′
i \
⋃m
i=1 S

′
i then let j ∈ [k] be such that x ∈ S′′j . Since bj = |S′j | = |S′′j |, there

exists some y ∈ S′j \ S′′j . Set S′j ← S′j − y + x. Note that this strictly decreases

k∑
i=1

|S′i4S′′i |.

In particular, since this number is always non-negative, in at most
∑k

i=1 |S′i4S′′i | steps we can
obtain the desired family. �

Lemma 13. Let G = (U,W ;E) be a graph with W ′ ⊆W satisfying Property (‡). Let α ≥ α0(ε) =
Ω(
√
ε).

Suppose that S ⊆ W ′, with |S| ≤ εN1/(D0D1), is such that there is a disjoint family {Av ⊂
Γ(v)}v∈S and a (not necessarily disjoint) family {Bx ⊂ Γ(x)}x∈S

v∈S Av
with |Av| = αD1 for ev-

ery v ∈ S and |Bx| = αD0 for every x ∈
⋃
v∈S Av.

Then there is a disjoint family of ∆1-sets {Xv ⊆ Av}v∈S and a disjoint family of ∆0-sets {Yv,x ⊆
Bx}v∈S,x∈Xv .

Proof. We shall assume that D0D1 ≤ εN1 as otherwise S = ∅ and there is nothing to prove. The
desired families will be obtained in three steps.

In step one we obtain a disjoint family {X ′v ⊆ Av}v∈S such that, for every v ∈ S, we have
that |X ′v| = m = (α−O(

√
ε))D1 and every u ∈ X ′v has deg(u) ∼ε D0. This is done by deleting at

most εD1 vertices from Av (see Property (‡).(i)).
In step two we obtain a disjoint family{

Y ′v ⊆ Yv =
⋃
x∈X′v

Bx

}
v∈S

with |Y ′v | = (α − O(
√
ε))D0 |X ′v|. For S′ ⊆ S, denote by XS′ the union XS′ =

⋃
v∈S′ X

′
v. Note

that we have XS′ ⊆ Γ(S′) with |XS′ | = m |S′| ≥
√
εD1 |S′|. Hence, from Property (‡).(iii) we get

that |Γ(XS′)| ≥ d∗(XS′) ≥ (1− 5
√
ε)D0 |XS′ |. Using the degree hypothesis on the elements of the
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set X ′v and applying Lemma 3 we conclude that∣∣∣ ⋃
v∈S′

Yv

∣∣∣ ≥ #
{
{x, y} ∈ E(G) : x ∈ XS′ , y ∈ Bx

}
− 2{Γ(XS′)− e(XS′ ,W )}

≥ (α−O(
√
ε))D0 |XS′ | = (α−O(

√
ε))D0m |S′|.

Using Lemma 12 we may obtain the desired family of disjoint sets Y ′v ⊆ Yv with |Y ′v | = (α −
O(
√
ε))D0m for all v ∈ S.

In step three we obtain the families described in the statement of this lemma.
Consider the pair (X ′v, Y

′
v) for some v ∈ S. Let us construct a ∆1-set Xv ⊂ X ′v in the following

way. Initially, set Xv ← ∅. Suppose that we have a disjoint family of ∆0-sets {Yv,x ⊂ Y ′v}x∈Xv .
While |Xv| < ∆1 and there exists x ∈ X ′v \Xv such that Zx = (Bx∩Y ′v)\

⋃
u∈Xv

Yv,u satisfies |Zx| ≥
∆0, add x to Xv and take an arbitrary ∆0-subset Yv,x ⊆ Zx.

Let Y ′′v = Y ′v \
⋃
x∈Xv

Bx and suppose that |Xv| < ∆1. Notice that we have |Y ′′v | ≥ (α −
O(
√
ε))D0m−∆1αD0 > ∆0m. Since Y ′′v ⊂

⋃
x∈X′v\Xv

Bx, it follows that∑
x∈X′v\Xv

|Bx ∩ Y ′′v | ≥ |Y ′′v | > ∆0m

and hence there must be some x ∈ X ′v \Xv with |Bx ∩Y ′′v | > ∆0. Because Yv,u ⊂ Bu for all u ∈ Xv

we have Zx ⊇ Bx ∩ Y ′′v and thus x can be added to Xv. As the sets {Y ′v}v∈S are pairwise disjoint,
so are the sets {Yv,x ⊆ Bx ∩ Y ′v}v∈S,x∈Xv . �

6. An embedding scheme for trees

In this section we present Algorithm 1, which embeds trees in suitable graphs. This algorithm
takes advantage of the lossless expansion property of the host graph when constructing the embed-
ding. Although many of the techniques and ideas involved in this algorithm were already discussed
in a superficial level in Section 3, there are many new details and subtleties that are addressed
solely in this section.

A formal analysis of the algorithm is done through several invariants that must be true at the
beginning of every iteration. Once the invariants are known to hold at the beginning of every
iteration, we must prove that the algorithm does not abort. If the algorithm does not abort then
it succeeds in embedding the tree, which is our goal.

In what follows, α will be a fixed number and rC , rD ∈ N will be sufficiently large absolute
constants.

Invariant 14. At the beginning of every iteration of Algorithm 1 (line 1.10), the following holds:
I. (cardinality of |Z|), we have

|Z ∩ U | ≤ |fM (T ) ∩ U |+ |D|+ |C|(α2−rCD1)

and
|Z ∩W | ≤ |fM (T ) ∩W |+ |U|(α22−rC−rUD0D1);

II. (non-critical/non-dangerous vertices) for every u ∈ U \ D, w ∈W \ C, we have

degG(u,W \ Z) ≥ αD0

2
and degG(w,U \ Z) ≥ αD1

2
;

III. (dangerous vertices) we have |D| < ε3N0 and, for every u ∈ D ⊆ U ,

degG(u, Z ∩W ) ≥ αD0

2
.
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IV. (critical vertices) for every w ∈ C ⊆W we have

degG(w,Z ∩ U) ≥ αD1

2
,

and the set Sw ∈ S has α2−rCD1 elements exclusively reserved for embedding the children
of w; moreover, if w /∈ U , then

(8) |Sw \ D| = #{u ∈ Sw : degG(u,W \ Z) ≥ αD0/2} ≥ |Sw|/2 = α2−1−rCD1;

V. (ultra-critical vertices) for every w ∈ U ⊆ C,

(9) #{u ∈ Sw : degG(u,W \ Z) < αD0/2} > |Sw|/2 = α2−1−rCD1;

moreover, we also have S′′w ∈ SU with |S′′w| = ∆1 and a family of ∆0-sets {Zw,u}u∈S′′w ⊆ W,
where S′′w is reserved for children of w and Zw,u is reserved for children of u (grandchildren
of w).

Algorithm 1: Embedding trees
Input : A tree T with root r ∈ V1(T );

A graph G = (U,W ;E).
Output: An embedding of T into G represented by a matching M .
M ← {(r,min(W ))} ; // initialize embedding1.1

Q← {min(W )} ; // queue of active vertices1.2

C ← ∅ ; // critical vertices1.3

D ← ∅ ; // dangerous vertices of U1.4

S ← ∅ ; // reserved neighborhoods (family of subsets of U, S = {Sv}v∈C)1.5

U ← ∅ ; // ultra-critical vertices1.6

SU ← ∅ ; // reserved neighborhoods for children of ultra-critical vertices1.7

W ← ∅ ; // reserved neighborhoods for grandchildren of ultra-critical vertices1.8

Z ← {1} ; // set of used, reserved or dangerous vertices1.9

while Q 6= ∅ do1.10

p← pop (Q) ; // get an active vertex1.11

if p ∈ U then1.12

(M,S′′p , {Z ′p,u}u∈S′′p )← embed-descendants (M,p, S′p, {Zp,u}u∈S′p) ; // S′p ∈ SU and1.13

Zp,u ∈ W
enqueue

(
Q,
⋃
u∈S′′p Z

′
p,u

)
;1.14

go-to 1.10 ; // skip to the next iteration1.15

Cp ← {v1, . . . , vl : vi is a child of f−1
M (p)} ;1.16

if p /∈ C then1.17

Sp ← ΓG(p) \ Z ; // if p ∈ C then Sp ∈ S is already defined1.18

find a subset S′p = {u1, . . . , ul} ⊆ Sp and a disjoint family {Zi ⊆ ΓG(ui) \ Z}ui∈S′p ,1.19

with |Zi| = #{children of vi}; if not possible, abort ;
extend M : match vi to ui and {children of vi} to Zi arbitrarily for all i ;1.20

enqueue
(
Q,
⋃l
i=1 Zi

)
;1.21

Z ← Z ∪ S′p ∪
⋃l
i=1 Zi ;1.22

restore-invariants;1.23

11



Procedure embed-descendants(M,p, Sp, {Zp,u}u∈Sp)

Input : M – current embedding, f = fM is the corresponding function;
p – a vertex in the host graph already used in the embedding;
Sp – children of p should be mapped into this set;
{Zp,u}u∈Sp – if a child v of f−1(p) is mapped to u ∈ Sp, the children of v will be

mapped into Zp,u.
Output: M – updated embedding;

S′p ⊆ Sp – vertices used for children of f−1(p);
{Z ′p,u ⊆ Zp,u}u∈S′p – vertices used for grandchildren of f−1(p).

choose S′p ⊆ Sp arbitrarily with |S′p| = degT (f−1(p)) ;2.1

match each v ∈ ΓT (f−1(p)) to some vertex in S′p and update M ;2.2

for each u ∈ S′p, take arbitrarily some Z ′p,u ⊆ Zp,u with |Z ′p,u| = degT (f−1(u)) ;2.3

for each u ∈ S′p and each w ∈ ΓT (f−1(u)), match w to a vertex in Z ′p,u and update M ;2.4

Procedure restore-invariants
R← ∅ ;3.1

D ←
{
x ∈ U : degG

(
x,W \ Z

)
< αD0/2

}
;3.2

Z ′ ← ∅ ;3.3

repeat3.4

(C′,S ′)← find-critical-vertices (Z, C, D) ;3.5

// consolidate critical vertices
C ← C ∪ C′, S ← S ∪ S ′, Z ← Z ∪

⋃
S∈S′ S ;3.6

// promotion to ultra-critical

U ′ ←
{
w ∈ C \ U : |Sw \D| < |Sw|/2 = α2−1−rCD1

}
;3.7

U ← U ∪ U ′ ;3.8

if |U| > εN1/(D0D1) then3.9

abort Algorithm 1 ;3.10

find sets S′w ⊆ Sw with |S′w| = |Sw|/4, for w ∈ U ′, and a (not necessarily disjoint) family of3.11

α2−rUD0-sets {Yw,u ⊆ ΓG(u) \ Z}w∈U ′,u∈S′w ; if not possible, abort Algorithm 1 ;
Z ′ ← Z ′ ∪

⋃
w∈U ′,u∈S′w Yw,u ;3.12

R← R ∪ U ′3.13

D ← {x ∈ U : degG(x,W \ (Z ∪ Z ′)) < αD0/2}3.14

until U ′ = ∅ ;3.15

find sets S′′w ⊆ S′w with |S′′w| = ∆1, for w ∈ R, and a disjoint family of ∆0-sets3.16

{Zw,u ⊆ Yw,u}w∈R,u∈S′′w ; if not possible, abort Algorithm 1 ;
D ← D, Z ← Z ∪ Z ′ ∪D ;3.17

SU ← SU ∪ {S′′w}w∈R ;3.18

W ←W ∪ {Zw,u}w∈R,u∈S′′w ;3.19

Theorem 15. Let n0, n1,∆0,∆1 be given. Suppose that G′ = (U,W ;E) is a graph satisfy-
ing Property (‡) for some ε > 0, N0 = Cn0, N1 = Cn1 (with C sufficiently large) and p =
max{∆0/n1,∆1/n0} < ε/8. Let W ′ ⊂W be determined by Property (‡), D0 = pN1 and D1 = pN0.

There exists an absolute constant c > 0 such that the following holds. Let α = c
√
ε and G ⊆

G′[U,W ′] be such that dG(u) ≥ αD0 for all u ∈ U ∩V (G) and dG(w) ≥ αD1 for all w ∈W ′∩V (G).
Then, Algorithm 1 embeds any (n0,∆0, n1,∆1)-tree T into G.
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Procedure find-critical-vertices(Z, C, D)

Input : Z – set of used/reserved/dangerous vertices;
C – current collection of critical vertices;
D – set of vertices that will be marked dangerous.

Output: C′ – the set of critical vertices found;
{Sw ⊆ ΓG(w) \ Z}w∈C′ – a disjoint family of α2−rCD1-sets.

C′ ← ∅4.1

X ← ∅4.2

while there exists v ∈W \ (C ∪ C′) with degG(v, U \ (Z ∪X ∪D)) < αD1/2 do4.3

C′ ← C′ + v4.4

if |C′|+ |C| > εN0/(4D1) then4.5

abort Algorithm 1 ;4.6

find disjoint family of α2−rCD1-sets {Sw ⊆ ΓG(w) \ Z}w∈C′ covering X; if not possible,4.7

abort Algorithm 1 ;
X ←

⋃
w∈C′ Sw ;4.8

return (C′, {Sw}w∈C′)4.9

Proof. We shall abuse the notation and set U ← U ∩ V (G) and W ← W ′ ∩ V (G). Hence G has
classes U and W . Moreover, we shall assume that W = {1, 2, . . . , |W |}. The proof is divided into
two parts:

• The Invariants I-V hold at the beginning of every iteration;
• Algorithm 1 does not abort when the input consists of an (n0,∆0, n1,∆1)-tree T (with

arbitrary root r ∈ V1(T )) and G as above.
For the base case, we have Z = {1} = Z ∩W = fM (T ) and there are no critical or dangerous

vertices. It is then easy to check that all the invariants hold.
Next, observe that when p ∈ U , the sets Z, C, U , S, W remain unchanged. Also, the ele-

ments S′′p ⊆ S′p ∈ SU are used for the children of p and the elements of {Zp,u}u∈S′′p ⊆ W are used
for the grandchildren of p. Hence, in this case, the invariants are maintained and the algorithm
does not abort.

Suppose that all the invariants hold at the beginning of some iteration and that p /∈ U . Let us
prove that all the invariants hold at the beginning of the next iteration (if the algorithm does not
abort).

Proof of Invariant I. Examining the steps where Z is updated (see lines 1.9, 1.22, 3.17), it is clear
that, by the end of the iteration, Z ∩ U consists of vertices used by the embedding (fM (T ) ∩ U),
dangerous vertices (namely, D) and reserved vertices (∪w∈CSw) which account for |C|(α2−rCD1)
vertices. It is also clear that Z ∩W contains vertices used in the embedding (fM (T )∩W ) and the
vertices added to Z ′ by line 3.12, which are upper bounded by

∑
w∈U |Sw|α2−rUD0. The invariant

follows. �

Proof of Invariant II. Let us analyze the Procedure restore-invariants. By construction (see
line 4.3), immediately after Procedure find-critical-vertices returns (line 3.5) and the critical
vertices are consolidated (in particular, Z now contains the newly reserved neighborhoods), no
vertex w ∈W \ C satisfies degG(w,U \ (Z ∪D)) ≤ αD1/2.

If U ′ is empty on the beginning of some iteration of the inner loop, the loop will be complete
at that iteration without changing D or Z any further. In particular, the degree condition for
non-critical vertices (W \C) is ensured at the end of the iteration and this part of Invariant II holds
at the next iteration.
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The case of u ∈ U \ D is simpler: any vertex that does not satisfy the degree condition by the
end of the iteration is either already dangerous or becomes dangerous (see lines 3.2 and 3.14). �

Proof of Invariant III. The degree part of Invariant III follows immediately from the updates made
to D (lines 3.2 and 3.14) and the fact that Z never loses any element. The fact that D ⊂ Z easily
follows from line 3.17.

It remains to upper bound the number of dangerous vertices. Observe that Z ∩W only contains
reserved neighbors and embedded vertices and its cardinality is determined by Invariant I (which
is already proven to hold at the next iteration). Also note that a dangerous vertex v must have, by
the end of the iteration, degG(v, Z ∩W ) ≥ αD0/2. We now use Property(‡).(v), to derive a bound
on D. We have

|Z ∩W | ≤ n1 + 2
εN1

D0D1
α22−rC−rUD0D1 ≤ εN1.

On the other hand,

eG′(D, Z ∩W ) ≥ |D|(αD0/2) = p |D|
(α

2
N1

)
.

Hence, if |D| ≥ ε3N0 then Z ∩W should have at least αN1/4 > εN1 vertices, a contradiction. �

Proof of Invariant IV. There is only one place in the algorithm where the set of critical vertices
grows—just after a call to Procedure find-critical-vertices (l. 3.5) these critical vertices are
consolidated. A subtle, but very important detail of find-critical-vertices consists in requiring
that the family obtained in line 4.7 covers the set X (which is the union of the reserved sets of the
previous iteration). Hence, a vertex that had a small number of free neighbors could only have less
free neighbors in following iterations.

We also note that once an element is added to D, it remains in D (and is subsequently added
to D). It is immediate that the number of edges a critical vertex sends into Z cannot become
smaller than αD1/2.

The reserved neighborhoods are defined to have α2−rCD1 elements each and, once a reserved
neighborhood is finally determined (after Procedure find-critical-vertices returns), it is con-
solidated by being merged into Z. Since the reserved neighborhoods are disjoint, and new reserved
neighborhoods must be chosen outside of Z, no other vertex can have its children embedded in a
reserved neighborhood.

Moreover, if a vertex w ∈ C fails equation (8) at the end of the iteration, the line 3.7, together
with the condition of the inner loop (that U ′ = ∅), ensures that w ∈ U will hold when the iteration
ends. �

Proof of Invariant V. If no new ultra-critical vertex was found at the iteration, the invariant is
preserved. Hence, let us assume that some ultra-critical vertex was found.

Following the construction of U ′ (see line 3.7), at the moment a vertex w becomes ultra-critical,
equation (9) holds. Since the set Z is monotonically increasing, this equation must continue to
hold subsequently.

The family of reserved sets of Invariant V is obtained at line 3.16. Those reserved vertices
will not be used to embed the children/grandchildren of any other vertex because the reserved
sets are merged into Z and no other vertex can reserve or use vertices in Z to embed their chil-
dren/grandchildren. �

In the following analysis we shall denote by Z̃ the set Z at the beginning of an iteration of the
Algorithm 1. We also let Ẑ denote the set Z just after line 1.22.

The algorithm does not abort at find-critical-vertices. Suppose that the algorithm aborts at
line 4.6. This means that there is a set C ∪C′ such that each vertex v ∈ C ∪C′ sends at least αD1/2
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edges into (Z ∪D) ∩ U , which has size bounded by

|fM (T ) ∩ U |+ |D|+ (|C|+ |C′|)α2−rCD1 ≤ n0 + ε3N0 +
εN0

4D1
α2−rCD1 <

αεN0

4
.

Since in G′ Property (‡).(ii) ensures that every subset of W having at most εN0/(4D1) elements
expands by at least (1−ε)D1, using Lemma 3, we must have |(Z∪D)∩U | ≥ (α/2−2ε)D1(εN0/D1) >
αεN0/4, a contradiction.

Now we show that the procedure does not abort at line 4.7. By the above argument, the set C′
has cardinality at most εN0/(4D1). Moreover, we have that (Ẑ \ Z̃) ∩ U contains at most ∆1

elements.
Observe that every call to find-critical-vertices is made with Z = Ẑ. Since vertices in C′

were not critical, Invariant II implies that every w ∈ C′ has degree at least αD1/2−∆1 on Ẑ.
Note that, although we consider the degree of vertices w ∈W \ C on the set Z ∪D ∪X in find-

critical-vertices to classify a vertex as critical, the reserved neighborhood of new critical vertex
may include recent dangerous vertices (those in D \Z). The reason is that vertices which were just
classified as dangerous still have reasonably large degree outside Z.

To prove that the desired disjoint family can be found, we invoke Lemma 3 to show that any
subset of C′ must have at least ∼O(ε) αD1/2 neighbors outside of Z (in G) and then apply Lemma 12
to obtain a family covering the previous set X. (We may set rC ≥ 2.) �

The algorithm does not abort at line 1.19. If p /∈ C, then |ΓG(p) \Z| ≥ αD1/2 because of Invariant
II. In the remaining case, p ∈ C \ U , because of Invariant IV we have that |Sp \ D| ≥ |Sp|/2 =
α2−1−rCD1. In both cases, p has at least α2−1−rCD1 neighbors u with |ΓG(u) \ Z| ≥ αD0/2.

If εN1 ≥ D0D1, apply Lemma 13 to S ← {p}, with α13 ← α2−1−rC , Ap ⊆ Sp \ D with |Ap| =
α13D1 and Bx ⊆ ΓG(x) \ Z with |Bx| = α13D0 for all x ∈ Ap. Refine the families obtained from
Lemma 13 in such a way that the corresponding cardinalities match the degrees in the tree. This
will produce the set S′p and the disjoint family {Zu}u∈S′p of line 1.19.

Suppose that εN1 < D0D1. We may require that every vertex in Sp has degree at most (1+ε)D0

by possibly deleting at most εD1 vertices from Sp (see Property (‡).(i)). Use Property (‡).(iv)
applied to Sp \ D ⊂ ΓG(p) to obtain disjoint sets T1, . . . , Tr ⊂ Sp \ D. We need to find S′p =
{u1, . . . , u`} ⊂ Sp and a disjoint family {Zi ⊆ Γ(ui) \ Z}`i=1.

Given an arbitrary set X such that |X| ≤ min{n1,∆0∆1}, we shall prove that the number of
vertices u ∈ Ti (i = 1, . . . , r) having |ΓG(u)\(Z∪X)| < αD0/4 is at most |Ti|/2. Indeed, since Ti ⊆
Sp \D, we have |ΓG(u)\Z| ≥ αD0/2 for all u ∈ Ti. Let T ′i = {u ∈ Ti : |ΓG(u)\ (Z∪X)| < αD0/4}.
Note that every vertex u ∈ T ′i must send

|ΓG(u) ∩X| ≥ |ΓG(u) \ Z| − |ΓG(u) \ (Z ∪X)| ≥ αD0/4

edges into X.
Since T ′i is an LE set (by Property (‡).(iv)), we can apply Lemma 3 to show that min{∆0∆1, n1} ≥

|X| ≥ αD0 |T ′i |/8. For C sufficiently large, it follows that

|T ′i | ≤
8

αD0
n1 =

8
αCD0

N1 ≤
εN1

8D0

and

|T ′i | ≤
8

αD0
∆0∆1 ≤

8
αC2

D1 ≤
εD1

16
,

thus |T ′1| ≤ 1
2 min{εD1/8, εN1/(4D0)} = 1

2 |Ti|.
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We now construct S′p and its corresponding disjoint family sequentially. Suppose that u1, . . . , uk

have been selected from
⋃r
i=1 Ti together with a disjoint family {Zi}ki=1. Set X =

⋃k
i=1 Zi (ini-

tially X = ∅) and note that |X| ≤ ∆0∆1 since k ≤ ∆1 and |Zi| ≤ ∆0 for all i. It is also clear
that |X| ≤ n1 since to each vertex in X corresponds a vertex in V1(T ).

By the above argument, at least half of the elements in
⋃r
i=1 Ti have large degree outside of Z\X.

Pick an arbitrary uk+1 (distinct from u1, . . . , uk) having degree at least αD0/4. Set Zk+1 to be
an arbitrary subset of ΓG(uk+1) \ (Z ∪X) having the same number of elements as the number of
children of uk (which is at most ∆0 < αD0/4). Since ` ≤ ∆1 <

1
8 |Sp| <

1
2

∣∣⋃r
i=1 Ti

∣∣, it is always
possible to extend the selection and the corresponding disjoint family. �

The algorithm does not abort at line 3.10. Suppose for the sake of a contradiction that the algo-
rithm aborts because U grew larger than εN1/(D0D1). Let us start with the case εN1 ≥ D0D1.
This means that we can find a set S of εN1/(D0D1) elements together with a disjoint family of
α2−1−rCD1-sets {Xw ⊆ ΓG(w)}w∈S where each u ∈ Xw sends at least αD0/2 edges into Z∩W . We
may also enforce that every vertex in Xw has degree at most (1 + ε)D0 in G′ by possibly deleting
at most εD1 < α2−2−rCD1 vertices from Xw (see Property (‡).(i)).

From Invariant I we know that

|Z ∩W | ≤ |fM (T ) ∩W |+ εN1

D0D1
(α22−rC−rUD0D1).

On the other hand, Property (‡).(iii) indicates that, if we take the set T =
⋃
w∈S Xw, then |T | =

α2−2−rCD1 |S| >
√
εD1 |S| and

d∗G′(T ) ≥ (1−O(
√
ε))D0 |S| · α2−2−rCD1 = (1−O(

√
ε))εα2−2−rCN1.

Since the degrees of the vertices of T (in G′) are upper bounded by (1 + ε)D0, |ΓG′(T )| ≤
(1 + ε)D0 |T |. Applying Lemma 3 over the graph G[T,Z ∩W ] ⊂ G′, we obtain

|Z ∩W | ≥ |T |αD0

2
+ 2{(1−O(

√
ε))D0 |T | − (1 + ε)D0 |T |}

=
(α

2
−O(

√
ε)
)
D0 |T |

≥ α22−3−rCN1,

a contradiction when rU ≥ 4 and C is sufficiently large.
For the case εN1 < D0D1, let w be the first ultra-critical vertex to be found. Apply Property

(‡).(iv) to Sw. Let T1, . . . , Tr ⊂ Sw be the disjoint sets obtained from the property. By assumption,
there is a set B ⊆ Sw with at least |Sw|/2 elements u ∈ Sw with degG(u, Z ∩ W ) ≥ αD0/2.
Since

∑r
i=1 |Ti| ≥

3
4 |Sw|, there exists some Ti with |Ti ∩ B| ≥ |Ti|/4. Because Ti ∩ B is an LE

set, from Lemma 3 we obtain |Z ∩W | ≥ αD0 |Ti|/16. This is a contradiction if we take C to be
sufficiently large since |Ti| = min{εD1/8, εN1/(4D0)} and, by Invariant I, |Z ∩W | ≤ n1. �

Claim 16. For any w ∈W , the number of vertices u ∈ ΓG(w) with degG′(u) ∼ε D0 and degG(u, (Ẑ\
Z̃) ∩W ) ≥ αD0/4 is at most

√
εD1.

Proof of Claim 16. Given any w ∈ W , let us bound the number Nw of vertices u ∈ ΓG(w) such
that degG(u, (Ẑ \ Z̃) ∩ W ) ≥ αD0/4. Since (Ẑ \ Z̃) ∩ W =

⋃l
i=1 Zi (see line 1.22), it is clear

that |(Ẑ \ Z̃) ∩ W | ≤ ∆0∆1. If Nw ≥
√
εD1, by Property (‡).(iii) and Lemma 3, we should

have |(Ẑ \ Z̃) ∩W | ≥ (α/4−O(
√
ε))
√
εD0D1, a contradiction. �

The algorithm does not abort at line 3.11. Note that Z ∩W = Ẑ ∩W throughout the inner loop.
Let w ∈ U ′. Since w was not ultra-critical before, by Invariant IV and equation (8), at least half
of the elements u ∈ Sw ∈ C are such that degG(u,W \ Z̃) ≥ αD0/2. (It is possible that a vertex
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becomes critical and is promoted to ultra-critical during the execution of restore-invariants;
the claim above is still true in that case since the reserved neighborhood for such a vertex would
only contain vertices outside D ⊆ Z̃.)

Since at most εD1 vertices u ∈ Sw fail to satisfy degG′(u) ∼ε D0, by the Claim 16, less
than 2

√
εD1 neighbors of w ∈ U ′ may have more than αD0/4 edges going into Ẑ \ Z̃. There-

fore, the number of u ∈ Sw such that

degG(u,W \ Z) = degG(u,W \ Z̃)− degG(u, Ẑ \ Z̃) ≥ αD0/4 > α2−rUD0

is greater than |Sw|/4. Since the family {Yw,u ⊆ Γ(u) \ Z}w∈U ′,u∈S′w does not need to be disjoint,
we are done. �

The algorithm does not abort at line 3.16. We shall apply Lemma 13 with S ← R, α13 ← α2−rU ,
Aw ⊂ S′w with |Aw| = α13D1 for all w ∈ S and Bx ⊂ Yw,x with |Bx| = α13D0 for all w ∈ S, x ∈ Aw.
The families obtained through Lemma 13 are precisely the ones required at line 3.16. �

We have covered all invariants and all places where the algorithm could have aborted. Notice
that the root of T is embedded and that, given any embedded vertex v ∈ V1(T ), the children and
grandchildren of v will be embedded at some point. This shows that the entire tree T can be
embedded into G. �

It is possible to apply Theorem 15 to every sufficiently dense subgraph of a graph satisfying
Property (‡) by pre-processing the graph in a simple way.

Theorem 17. Let n0, n1,∆0,∆1 be given. Suppose that G is a graph satisfying Property (‡) for
some ε > 0, N0 = Cn0, N1 = Cn1 (with C sufficiently large) and p = max{∆0/n1,∆1/n0} < ε/8.

There exists an absolute constant c > 0 such that any subgraph G′ ⊆ G with e(G′) ≥ c
√
ε e(G)

contains every (n0,∆0, n1,∆1)-tree.

Proof. Let D0 = pN1 and D1 = pN0. Notice that, by assumption, e(G) ∼ε2 pN0N1 = D0N0 =
D1N1.

Let W ′ ⊆W (G) be the set described by Property (‡) and let α = 8α15, where α15 is defined on
Theorem 15. Suppose that e(G′) ≥ 2α e(G). By (‡).(v), we may assume that G′ does not contain
any edge incident to W (G) \W ′ by removing edges from G′ while having e(G′) ≥ 3

2α e(G) (the
number of edges removed is upper bounded by (1 + ε2)pN0(2εN1) < 3ε e(G)).

While there exists a vertex in U(G′) having degree less than αD0/8 or a vertex in W (G′) ⊆W ′
having degree less than αD1/8, remove this vertex from G′ together with all the edges incident
to the removed vertex. The number of edges incident to removed vertices is upper bounded
by N0(αD0/8) + N1(αD1/8) ≤ 1

2α e(G). Hence, the remaining G′ is non-empty and we may
apply Theorem 15. �

From Theorem 17 we may prove Beck’s conjecture.

Corollary 18 (Beck’s Conjecture). The size-Ramsey of a tree T is Θ(β(T )).

Proof. Given the constant c of Theorem 17, let ε > 0 be such that c
√
ε < 1/2. Without loss of

generality, assume that ε = 2−a for some a > 0. Let n0,∆0, n1,∆1 be the parameters of T . By
possibly enlarging those values, we may assume that each of them is a power of 2. Since for every
integer a there is an n such that 2n ≤ a < 2n+1, in the worst case, we may have to double each
parameter. We may also assume that n0∆0 = n1∆1 by possibly increasing some ∆i. These changes
may only affect n0∆0 +n1∆1 by a multiplicative constant. The embedding algorithm is not affected
since the parameters are only used as upper bounds on the cardinalities of the classes and their
respective degrees.
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Let p = ∆1/n0 = ∆0/n1. If p ≥ ε/8 then we use the complete bipartite graph as our Ramsey
graph (see Lemma 7).

If p < ε/8, we let C = C(ε) be a sufficiently large constant and use Theorem 6 to obtain a
graph G satisfying Property (‡) for ε, N0 = Cn0, N1 = Cn1 and p. By our choice of ε, from
Theorem 17 we get that any subgraph G′ ⊆ G with at least 1

2e(G) edges contains T .
Since in any two-coloring of the edges of G there will be one color containing at least half of its

edges, the graph induced by the most frequent color contains T . Moreover, we have

e(G) ≤ 2pN0N1 = 2C2pn0n1 = C2(pn1)n0 + C2(pn0)n1 = C2(∆0n0 + ∆1n1).

This shows that r̂(T ) = O(β(T )). Together with the lower bound proved by Beck, the conjecture
is proved. �
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