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Abstract

Cerebral focal ischemia is a local degeneration of brain tissue in-
duced by a reduction of blood supply. We introduce a mathemat-
ical model that includes the blood dynamics, represented by a flow
in a porous medium and ion dynamics (calcium and potassium), to-
gether with other variables (energy stores, tissue integrity, oxygen and
glucose) representing the biochemical events consequent to the vessel
occlusion. The accurate description of the coupling between fluid dy-
namics and Biochemics is one of the distinctive features of the present
work. We present both 2D and 3D simulations. Occurrence of peculiar
ion dynamics, called spreading depression waves, formerly pointed out
in the literature, is observed in 2D results. The role of some parameters
of the problem in suppressing these waves is discussed. We moreover
simulate in 3D the effects of a forced reperfusion of the occluded vessel
(fibrinolysis) and the consequent blood leakage (hemorrhagic infarct).

1 Introduction

Cerebral focal ischemia is a localized degeneration of brain tissue induced
by a reduction of blood and oxygen supply. Tissue damage can be partially
or totally recovered in the so called ischemic penumbra while the core of the
degeneration, where the damage is not reversible, is called ischemic umbra
(see [11]). Biochemical mechanisms of degeneration still need a deep inves-
tigation in view of the set up of appropriate therapies. The pharmacological
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elimination of blood supply reduction (typically a vascular occlusion), called
fibrinolysis is quite often unfeasible since it can induce a dramatic hemor-
rhage. Mathematical and numerical models can provide a paradigm for a
deep comprehension of these phenomena (see [33, 29, 32, 15, 31, 13]). The
main difficulties in this context rely on:

(i) intrinsic complexity of the phenomena at hand, involving interacting
fluid and biochemical dynamics; this typically reflects into complexities
of the associated mathematical models, given by systems partial and
ordinary differential and sometimes algebraic equations;

(ii) complexity of the geometries at hand that can play a relevant role (see
[14));

(iii) parameters identification and evaluation (see [13, 35]).

These difficulties affect the set up of reliable numerical models. Numer-
ical simulations in the literature in this field are so far limited to 2D geome-
tries, involving different biochemical dynamics. In particular, in [29, 33, §]
the role of the spreading depression (SD) in the penumbra tissue degenera-
tion is emphasized, while a global overview of different possible mechanisms
involved, including the effects of glutamate, is discussed in [13]. In [12] a
detailed description of the calcium dynamics is reported, while the possible
role of geometry in the SD waves is analyzed in [14]. In all these works,
the role of the hemodynamics is lumped into an average parameter describ-
ing the Cerebral Blood Flow (CBF) for the district at hand in terms of an
ordinary differential (see [33]) or an algebraic (see [13]) equation.

The aim of the present work is twofold. On one hand, following the
guidelines of the models proposed in [33, 35, 9] including dynamics for intra
and extra cellular potassium and calcium ions and of some heuristic indexes
for the tissue integrity and the metabolic stores, we devise a rigorous model
for the ions dynamics and include a precise description of the fluid dynamics.
More precisely, by means of “average volume” techniques (see [37, 25, 28]),
we present a model accounting for local dynamics in an average way, giv-
ing a mesoscale picture of the physiopathology in brain circulation, basically
referring to cortical spreading depression models. Cortical spreading depres-
sion was firstly studied by Ledo [26] in 1944. It as a localized depression of
neural activity that spreads through the tissue. It has been correlated with
migraine aura and with ischemia. In [18] cortical spreading depression phe-
nomenon was detected in injured human brain. The hypothesis that SD can
be generated by ischemic events was investigated by means of mathematical
models in [33, 29]. Here we essentially move from these works, and we set
up a model with a strong physical motivation. Moreover, we include a space
dependent description of the blood dynamics assuming that the vascular
tissue can be regarded as a porous medium. To this aim, we replace the
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ordinary differential equation of the flow in the original model of [33] with
the Darcy law for porous media. Our basic idea is that the permeability is a
function of the integrity of the tissue. The more precise formulation of the
hemodynamics will eventually allow to simulate of the action of fibrinolytic
therapies and their possible failures.

The second goal is to extend numerical simulations of the phenomena at
hand in 3D computationss, with an ad hoc finite element code. Numerical
results presented here show at a qualitative level dynamics that can be
induced by the combination of biochemical events following the stroke and
the reperfusion of the occluded vessels. The quantitative validation of the
model used here requires and adequate collection of experimental data. This
represents an important development of the present work.

The outline of the paper is as follows. Section 2 is devoted to the pre-
sentation of the mathematical model. By means of volume averaging tech-
nique, models for the biochemical and the blood dynamics are introduced
separately. The coupled model is presented at the end of the section.

Sect. 3 is devoted to the numerical discretization. Space discretization is
carried out by means of the finite element method and time discretization is
obtained by classical finite difference schemes. The linearization of the model
is obtained by an appropriate explicit-in-time treatment of the nonlinear
terms. The development of the code for this problem has been carried out
within the framework of the C++ Object Oriented LifeV library (see [2]).
In Section 4 we present and comment numerical simulations. Conclusions
and perspectives are drawn in Sect. 5.

1.1 Basic Notations

Let Q be a bounded domain in R? (d = 2,3). With usual notation, we denote
by L?(Q) the space of real functions whose square is integrable in Q and by
(-,+) and || - || the associated inner product and norm, respectively. The
corresponding vector space (L?(Q))? will be denoted by L?(Q). Similarly,
we introduce the space H'(Q2) = {v € L*(Q)|Vv € L*(Q)} whose norm
is denoted || - ||;. Correspondingly, we set H'(Q) = (H*(Q))? and we still
denote its norm by || - [|;.

1.1.1 Volume average

In order to describe how microscale dynamics affect mesoscale phenomena
we carry out volume averaging (see [6] and [37] for more details). For a given
(scalar, vector, tensor) function 1, the volume average will be denoted by:

<9 > (xp) = P(x) d2 (1)

190 o)
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where for a region 2 with centre of mass in xp, Q¢(xp) C € represents
the domain of 1. || denotes the measure of {2(x), that is assumed to be
constant for each xpg.

The mesoscale region €2 where we carry out the space average is called
REV (Reference Element of Volume). Porosity is defined as:

_ 19

We call homogeneous a medium with constant porosity. We also denote the
intrinsic volume average by < 1 >p= % < 1 >. The following result

(valid for homogeneous media) will be extensively used in the sequel (see
[6]):
< divy >p=div <¢>f—i-L 1 - nd2 (3)
2] J 4,
where A; is the boundary of 1y inner to € and n is the normal unit vector
outward to Aj.

In particular, in our model a generic domain 2 features two main subre-
gions, the Blood Domain and the Tissue Space separated by the Blood Brain
Barrier (BBB). The latter is in turn split into two subdomains, namely the
Intracellular Space (ICS) and the Extracellular Space (ECS). We refer to the
Blood Domain, the Tissue Space, the ICS and the ECS with the subscripts
b, t, i and e, so that

Q=0 U =0 U0 UQ..

Volume average in the respective regions will be denoted by < - >y, < - >
, < - >, < - >, and the associated porosity by ny, n¢, ng, ne.

2 The mathematical model

Focal ischemia and cerebral infarct are the consequence of dynamics involv-
ing mainly (1) blood in arteries, capillaries and veins; (2) ions in the cells
and the extra-cellular space. These dynamics drive the evolution of energy
stores and other tissue properties. In this Section we provide a mesoscale
representation of these dynamics, by performing volume average on a vol-
ume with small vessels, extra-cellular and intra-cellular space, such that at
the end they will be not distinguished anymore in the final model (see Fig.
1). Largest vessels of the brain will be considered external to the domain
of interest. We retain a space dependence accurate enough to account local
phenomena such as the blood leakage associated to the cerebral infarct.

For the sake of clarity, we address the hemodynamics and the ion dy-
namics seprately.



Mathematical and Numerical Modeling of Focal Cerebral Ischemia 5

Glial Cell

ICS

@R

Neuron

=

Figure 1: Extracellular space, intracellular space and capillary

2.1 Cerebral hemodynamics

As previously pointed out, in our domain we assume the brain be composed
by three subdomains, capillaries, extracellular space and intracellular space.
Cells membranes and capillaries walls will be assumed to be rigid for the
sake of simplicity. Large vessels act as appropriate boundary condition for
the problem. Compliance of walls and membranes and auto-regulation of
the cerebral circulation are neglected, even if their appropriate modeling
represents a development of the present work. We will also neglect rheo-
logical effects of blood, so that blood will be assumed to be a Newtonian
fluid.

The basic idea is to consider at the mesoscale the brain as a porous
medium for the blood. Macroscopic dynamics of a fluid in a filled porous
medium can be described by means of the well known Darcy Law (see [6],
37)):

a=—K V¢, (4)

where q =< v > is the average velocity of blood, ¢p =< ¢ >; the blood
average pressure and K is the hydraulic conducibility tensor. Here we as-
sume that the brain is an isotropic homogeneous material, so that K = ul
where I is the identity tensor and we can write q = —uVey. Since the walls
are assumed to be rigid and the fluid is incompressible, divq = 0, so that a
possible model for hemodynamics reads

—div (u V) =0 in Qr =(0,7) x Q
oy = p(x,1) on¥Xp=1[0,T] xTp (5)
—u Vop -n=n(x,t) onXy=1[0,T] xT'n

where Q(C R3) is the space domain and I'p UT y = 99, ¢(x,t) and n(x,t)
are given functions.

Here q is an average blood velocity including both venous and arterial
blood. Several work address how to properly describe the different type of
blood depending on the vessel type (artery, capillary, vein). More precisely,
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hierarchical porous media theory ([24, 36, 10]) allows to associate a suitable
conductivity tensor with each vessel type solving a system of Darcy like
equations. In this paper, for the sake of simplicity we do not distinguish the
different vessels in (5). However it is possible to get an approximate estimate
of blood velocity in arterial, capillaries and venules, once computed ¢, with
(5), by the simple approximation

Ao ~ —faVPb, Qe ™~ —fcVPp,  qQu = =y V.

where [, tte and p, are the conductivities of the three subdomains respec-
tively. This estimate is derived under the rough assumption that arterioles
and venules blood velocities have the same direction, that yields conductiv-
ities be proportional to the average vessel lengths and pg + pe + o = p-

Remark 2.1 [t is possible to introduce vessel compliance by means of a time
derivative term in the first equation of system (5), see [6]. We get rid this
term here since blood transitories are fast compared to ischemia dynamics.

2.2 Biochemical dynamics

Tons dynamics in ECS and ICS are driven by thermal diffusion and elec-
trical field. Since the potential differences are relevant only across the cell
membranes (see [9]), we get rid of the latter term. A complete description
of diffusion in brain tissue can be found in [28].

To fix the ideas, let us refer to the extracellular space. We denote with
X both the ion and its concentration. By applying the volume average (1)
to mass conservation of ion X, featuring diffusion coefficient Dx and unit
flux Jx, we get

< 0x >e=— < divdxy >e= —div < Jx >, — L/ Jx -ndo, (6)
ot |Qe| M

where M is the interface between ECS and ICS and between ECS and blood.
Since the ionic exchanges between the ECS and the blood are small and
slow (see [35]), we get rid of the interface ECS-blood. Following [25], we will
assume that the Fick law in the porous medium can be written as:

<Jx>=-DxT V<X >, (7)

where T is a symmetric positive definite tensor. More precisely in isotropic
media, T = A~2I where the tortuosity parameter \ is in general > 1 and
represents the resistance to the diffusion of the ion at hand in a free space
versus the one in a porous media. In the cerebral extracellular space, we have
Ae € [1.5,1.8]. It is worth observing that although (7) holds only for fluxes
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Jx that have a linear dependence on ionic concentrations, nevertheless the
Fick law is often assumed to be realistic with general fluxes (]28]).
Let us denote by Jx = —Jx -n the ionic flux outgoing from ICS to ECS.
From (6) and (7) we get:
0<X>  Dx

M
ot :A2A<X>e+||9||Jx. (8)

Similarly, for the ICS we have:

| M|
|€2]

0<X> _ Dx

ot A2A<X>i_

Jx 9)

In the latter equations, the thickness of the membrane M has been neglected.
For the sake of notation, in the sequel we set a, = % ew; = %

2.2.1 The ionic model

Following the Tuckwell and Miura model ([35]) for the Cortical Spread De-
pression, we consider the simplified model involving potassium and calcium
ions. The former features high concentration and high impact on the cy-
toplasmic membrane potential, thanks to its high permeability. The latter
influences the potassium permeability and has an important role in the is-
chemic pathology. In the sequel we denote by K, (resp. K;) and Ca, (resp.
Ca;) the ECS (resp. ICS) potassium and calcium concentrations. Equations
(8, 9) read (for the easiness of notation we drop the average symbol <>)

0K D
8te = TgAKe + Qe JK
OK; Dy
=S AK -«
ot A2 @i /i
oC D (10)
Qe Ca
= A e e a
o /\z Cae + ae Jo
8Cai DCa
= ACa; — a; Jeq
5 2 Ca; — oy Jo

(3

Tonic fluxes result from the balance of dynamics induced by ionic gradients
(passive flux J%.) and the action of active pumps (J&), so that

Ik =Jg +Jo,  Joa = Jéa + JE,. (11)
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Following [35] we have:
Jp=—f k(1 - exer(Kg_Ke)) —JY,

‘]g‘a = fCa(l - exprcu(Ca?—Cai)) - ng

Ji = —prgo(1 + tanh(py(V + Vy))(V = Vo )(V = Vi), (12)
4, = go(1 + tanh(pg(V + Vy)))(V — Veu),

K.+ K, Ca,
V=Valn s Vie=Valn g Voo =Valn gt

where V| Vi, Vo, are the membrane potential, the potassium and calcium
Nernst potentials respectively and Vi, = % is the thermal voltage, being
R the Boltzman constant (8.314 [J mol~! K~1]), F the Faraday constant
(96.485 [C mol~!]) and T the absolute temperature.

In [35], ions diffusion in ICS is neglected (\; = o0). However, presence
of possible neurons junctions allowing ions diffusion in ICS is described in

[34]. For a recent analysis of these approaches, see [27].

2.2.2 Brain tissue metabolism

Active pumps Jg, J&, depend on brain tissue metabolism and hemody-
namics. Most of cell energy is stored in ATP molecule. ATP is mostly
synthesized through oxidative phosphorylation in normoxic conditions and
by anaerobic glycolysis during hypoxia ([16]). The ATP moles per unit vol-
ume in the tissue, representing the energy store, are denoted hereafter by
E. If P4yrp denotes the ATP synthesized per unit time and Qarp the ATP
consumption per unit time, we have

ok
—- = Parp — Qarp. (13)
ot
In the brain, about 40% — 60% of ATP production is used to maintain ion
gradients [16], consequently, we model ATP consumption as

E

= Ja —_— .
Qarp = carp o J + E+ B,

The first term on the right hand side represents the consumption related to

active fluxes through the cell membrane, while ¢ is the (constant) basal

consumption of the tissue. When F = E,, the basal consumption is halved.
The total ATP demand Rarp can be defined as

E°'—F
Rarp = Qarp + FE-E)
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where E° is the physiological resting value of the energy store E, and 7 is
a time constant. The rightmost term acts to limiting fluctuations in energy
stores.

Accurate description of ATP production requires appropriate models for
Oxygen partial pressure and glucose concentration. In normoxic conditions
1 mole of glucose and 6 moles of oxygen yields 36-38 moles of ATP, while
anaerobic glycolysis yields only 2 moles of ATP by a mole of glucose [16].
ATP production [mM min~—!] (where [M] = [mol dm™?]) is given therefore
by:

Parp = 2Q¢" +6Qo,

where QF' and Qo are the anaerobic consumption of glucose and oxygen
respectively. Referring to Roos and Sperber in [32] and [31], we assume
Oxygen consumption to be described by Hill dynamics, depending on oxy-
gen partial pressure in tissue (P;) and glucose concentration in tissue (Gy),

namely
1 P, Gy

:—R s
Qo =gRarr p 1 G T Ko

being Ko and K¢ the dissociation constants for oxygen and glucose. In

physiological conditions Gy >> K¢, then Qo is almost independent on

small variation in G¢. To maintain the basal energy supply, even in hypoxic
condition[32], anaerobic consumption of glucose reads

Py Gy

P+ KO) Gy + Kg

1
QY = S Rarp (1

When glucose concentration is high enough (i.e. Qg >> Kg), the ATP
production P4rp is almost equal to the ATP demand Ra7p. Total glucose
consumption Q¢ is given by

Qe = Q¢ + %~
since in aerobic synthesis of ATP, one molecule of glucose reacts with 6
molecules of oxygen.
In blood a small fraction of oxygen is dissolved in plasma, being the remain-
ing part bound to Hemoglobin molecules. We denote by O, and Oy the
concentrations of the two fractions of oxygen respectively. At equilibrium
the saturation rate of Hemoglobin fgy is a function of dissolved Oxygen O,
that can be approximated by the Hill equation [5]:

Oh
fup(0p) = —F—;
or+0,

being h the so called Hill exponent that we assume h = 3, and in the
Oxygen corresponding to frp = % Since each molecule of Hemoglobin
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binds 4 oxygen molecules, given the concentration of Hemoglobin Hb, we
have that:
Omy = 4Hb frp(Op). (14)

We consider the former identity to hold even in the non stationary case
since the characteristic time of the reaction is only 7. ~ 5s. Since only the
dissolved oxygen can pass through the blood brain barrier, oxygen concen-
tration in blood will obey the Advection-Reaction-Diffusion equation:

8(Op + OHb) _ &

1
ot AfA65+Jﬁq'VH%VFOH0+%%QﬂOp—(%):0’

being Do the constant effective diffusion of dissolved oxygen in the blood,
O; the oxygen in the tissue, (3, (see Table 1) a coefficient stemming from
usual average procedures. Constant co is defined as co = Dp/d, where d
is the membrane thickness. In defining cp we are assuming the Fick law to
hold in the Blood Brain Barrier (BBB). Diffusion of O, can be considered
negligible (see [19]).
Exploiting (14) we obtain:
00, Do

X(Op)
x@ﬂa-EA@+ %pqv%+&m@y%m=0

being x(0p) = 1+ 4Hb f};,(Op). When the chemical at hand is a gas, it
is more appropriate to write the equation in term of partial pressure of the
gas in the solution than in term of the concentration. The equation of the
partial pressure of the oxygen P, = %, being o3 the solubility of oxygen in
blood, reads

x(opPy) —~—5 AP, +

or, Do x(o05%)
ot A n

(oF
a- VP + Byco(Py — U—ZPt) =0, (15)

where P, = % and oy is the solubility of oxygen in tissue. Correspondingly,
the partial pressure of the oxygen in tissue fulfills the equation:

0P, _ Do

Oy 1
wr ¥ APy + Bico(Py — ;tpb) + ;tQO(Pt; Gi) = 0. (16)

Remark 2.2 Parameter co plays a magjor role (see [20]). With the assump-
tion of very high permeability of membrane (co — oo) we have o, Py ~ oy P,
and we can reduce (15) and (16) to

oR,

-+ Prxton)] Gt~ Do

By , B
JPRISY:

@) 4 VP + EQo(P G) =0,

)AB+
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After similar considerations, for the glucose concentrations in blood (Gy)
and in tissue (G;) we have

8Gb DG 1 < Gb Gt >

—— — —=AGy+ —q - V(Gy) + B — — — =0,
TS bt (Gp) + Beca G ike Gt To -
0G; Dg Gy

Gy
Tt FCaG, + L _
ot Azt @%<Q+Kc Gy + Kg

Unlike Oxygen, glucose cannot diffuse through the BBB and the cell mem-
brane. Transport of glucose through the membrane is performed by specific
carriers. Reactions term in previous equations has been proposed by Robin-
son and Rapoport [30]. Tortuosity A, is basically tortuosity of the ECS,
since glucose cannot diffuse through the cells.

) QP Gr) = 0.

2.2.3 Tissue impairment

Tissue integrity I is an empirical index measuring the tissue health intro-
duced in [29]. For I = 1 we have an intact tissue, while I = 0 corresponds
to necrosis. Dynamics of I are based on the following assumptions. [ is
reduced when the energy store E is below the critical threshold E.,. and
when the calcium concentration in the ICS is over a critical value Ca... We
have therefore:

or _ + +

i (cie(Ee — E)Y + ¢rca(Ca; — Caer)T) I (18)
where with (-)T we indicate the positive part of the argument; in particular,
(E. — E)7 is defined as:

0 if E>E
E.,—E)t = : -7
(Eer ) { E.,—F if E<E,
Note that I is never increasing, which implies that tissue impairment cannot

be recovered. Physiological ionic fluxes are described by (12). Extension to
this model including possible pathologies account of the following dynamics:

1. ionic pumps reduce their action when FE decrease and when the tissue
is impaired;
2. ionic fluxes across the cytoplasmic membrane are enhanced when [

decreases.

Consequently, generalization of (12) reads

FE _
Th= T gy g [0 - e RO g
cr
E e
Jta =1 g | feall = exproe©=Ce)) — g3, ]

Jh = —[1+4cjx (Ier — ) Tlprgo(1 + tanhpy(V + Vo)) (V = Vo) (V — Vi)
Jga =[1+4+cjo Iy — I)+]90(1 + tanh[pg(V + Vo)) (V = Vioa)
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Effect of tissue impairment on hemodynamics It has been found
[22, 21] that tissue impairment will increase BBB permeability. This clearly
affects the blood dynamics. As a matter of fact, at the mesoscale we gener-
alize model (5) by assuming that a blood flow external to the vessel could be
induced by the increased BBB permeability (). More precisely, we assume

My

—div (u V) = ’Y(I)W(¢t — o)
(19)
—div (i V) = V(I)j'\él]t(% — ¢1)

where My, is the surface area of the BBB in the REV and i the hydraulic
conductivity of the tissue space. When I = 1 we have y(I) = 0 and ¢; = 0.
When 7(I) increases (y(I) — o0), we have that ¢ ~ ¢; and we can reduce
equations (19) to
—div ((u+ 1) Vp) =0.

This argument illustrates that the effect of tissue impairment can be modeled
as an increment of the hydraulic conductivity for in (5). More precisely, we
assume

n= [1 + cnp (Icr - I)+],U'O (20)
where g is the physiological value of hydraulic conductivity and c¢,; is an
empirical coefficient.

2.3 The complete model

The complete model coupling hemodynamics and biochemical dynamics is
given therefore by (5) with (10), (13), (15), (16), (17) and (18). The equa-
tions are completed by suitable boundary and initial conditions.

The problem is well defined when the ionic variables (K., K;, Ca., Ca;)
are bounded and strictly positive and the other variables (F, I, Py, P;, Gy,
,Gy) are non-negative. Well-posedness analysis for this model is an open
problem. Main difficulties in proving existence stem when trying to find
bounds for the ionic concentrations. Nevertheless simulations show that the
variables seem to have the desired properties, at least with proper initial and
boundary conditions. From now on we will suppose the variable to have the
regularity and properties needed.

3 Numerical discretization

Let define u the vector of the biochemicals variables, i.e. u = [ K, K, Ca,,

Ca;, I, E, Py, P, Gy, G¢]. We rewrite the problem (eq. (5),(10), (13), (15),

(16), (17) and (18) ) in the following compact form:
{ —div pig(u)Ve =0

ou

; 21
Pz‘(ll)aitZ —div u;Vu; + bi(u, Vo) - Vu; = gi(u), i=1,...,10 1)
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We used different discretization for the 2D and the 3D problems. In the 2D
simulations we use a fine space and time steps in order to find an accurate
solution; in the 3D simulations, the goal is to get a reliable solution us-
ing larger time and space steps, avoiding the occurrence of oscillations and
negative values of the concentration variables.

Discretization for the 2D simulations We discretize the evolution
equations in time using a classical BDF2 scheme, while space discretiza-
tion is carried out with Lagrangian finite elements, so that if ® (U) denotes
the vector of nodal values of ¢ (u), the discrete problem reads

{ Sg+1q)n+1 =0

DU M a0y — S0P A g - S, - BT
(22)
where (M7)i = (pi(U™) @iy 1)y (B )iw = (bi(U™, V"1V, @1 ), (Si)ik =
(1iVers Vo), (S9)ik = (1q(U™)Ver, Vor ), and (gf')r = (9:(U™), ¢1). Notice
that as far as I > I, hemodynamics equation is not fully coupled with the
biochemical equations, and has not to be solved at each time step. To solve
this nonlinear algebraic system, we use the following fixed point iteration
algorithm

1
SM?H”“ (MRS VR [QUi" —~ QU;H] FALETER =110,
(23)
for k=0, 1, ... with
£700 = 2[gr — S;U — BrUP — [gf Tt —SUPTT - B TUM Y

(3

1,k 1,k 1,k 1,k 1,k
£ = gt g Ut BRI for k=1, 2, ..

We stop the iterations when ||[UnH1A+T — Un+LE|| < ¢ and we set Ut =
U LA+ We resort to classical mass lumping approximations, so that M;
is diagonal, so we do solve diagonal systems at each iteration step. Alterna-
tively, at each fixed point step we could resort to an implicit treatment of the
diffusive term, requiring the solution of a non-diagonal system. However,
since the diffusion coefficients are small compare to the reaction ones, this
does not improve the convergence of the fixed point iterative method, as we
verified in our numerical experiments.

Discretization for the 3D simulations In 3D simulations, the space
and time resolutions used in the previous 2D simulations are not affordable.
We still discretize in space using Lagrangian finite elements equations. In
order to handle the advection dominant problems for the oxygen partial
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pressure and the glucose concentration in the blood, we use the streamline-
diffusion stabilization. For the time discretization we resort to a first order
semi-implicit method. More precisely, we write the forcing term g; as g;(u) =
—r;(0)u; + g;(u), and we solve the following discrete problem,

Syttentl =0
! . (24)
(M} + At (S; + B + )] UM = MpUP + Atgy,
where (B});1 = (b?Vr, ¢ )—}—(dh% Vk, b;‘Vgpl) being b = b, (U™, VO")
and d" the diameter of the current finite element; (r?), = (7;(U"), ¢; ) and

&) = (7U"), ).
For the P, equation, we take

r=pyco and g=pfycols;
for the P; equation we take

oy Rarp Gy
6(Pt + Ko)(Gt + Kg)

r = Bico + and g = Byco P;

for the Gy equation we take

_ Brec Gy

B ca =
GtJrKG)7

r=———— and
Gy + Kg)

for the G; equation we take

_ Brieg Rarp (1 17 B > _ PregGy
T = — — — and 9—77.
Gi+Kg Gi+ Kg Gy + Kg

2 36 P, + Ko

The splitting of the forcing term in an implicit and explicit part is supposed
to improve the scheme positivity properties [7]. For the other equations, the
forcing term is treated in explicit (g; = ¢;).

4 Numerical implementation and results

In this section, we present numerical results on 2D axisymmetric and 3D
geometries. The main aim of these simulations is to provide a qualitative
insight of the possible sequence of biochemical events originated by a vascu-
lar occlusion and possibly by a perfusion therapy like fibrinolysis. Simula-
tions are carried out with the C++ library LifeV [2]. The 3D geometry is
generated and meshed with the code Gambit [1]. The visualization and post
processing of the solutions are carried out with Paraview [3] and Matlab®.
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Figure 2: Axisymmetric domain: the central hole represents a vessel, the
cylinder is the computational domain representing a portion of brain tissue.

4.1 Axisymmetric computation

Let us consider the geometry in figure 2 that is supposed to represent a
portion of brain around an artery. We set r1 = 0.2 ¢m, 79 = 1 cm, z, =
0.5 cm and Q is the rectangular domain having border 90Q =T'; UTy, UT'3U
I'y. Writing the problem in cylindrical coordinates, and imposing boundary
conditions that respect the symmetry, we can solve the problem in cylindrical
coordinates (denoted by r = /22 + y2 and z respectively).

Initial values We prescribe the following initial conditions.

a) Potassium and calcium concentrations, energy store E and the in-
tegrity I are set to their physiological values (see table 1). In particular
we set [ = 1.

b) Blood pressure ¢ = ¢ff —a(S—2)In(yr) on Q, where ¢ff =95 mmHyg,

a =50 mmHg em™", =1 cm and v = 5 em™!. In particular we

assume

17 _[ poa =2 ]
q= z | = T
¢ —po o In(y7)
where ¢" and ¢* are the radial and axial components of q. The ra-
dial component of q is related to the blood coming from the artery
coaxial with the cylinder and it is decreasing moving away from the
artery. The axial component is related to the blood coming from
other region which increases moving away from the artery. We choose
po = 5-107°% dm? min~! mmHg~!. In this way we impose a flow
of 0.96 dm? dm=3 min~! which is greater than physiological cerebral
blood flow in human beings, but still in the range of mammals’ one
(see [16]).
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¢) Initial values of oxygen partial pressure and glucose are the steady so-
lutions of the system of equations (15), (16) and (17) with the following
boundary conditions: P, = P on I's UT'y and satisfy homogeneous
Neumann condition on I'y UT'e; G, = G on I'sUI'y and satisfies homo-
geneous Neumann condition on ' UT'e; P; and Gy satisfy homogeneous
Neumann condition on 0Q.

The computed initial values of blood pressure ¢ and velocity q are shown
in Figure 3. Figure 4 shows oxygen partial pressure in the vessel (P,) and
in tissue (F;), while Figure 5 shows glucose concentration in the vessel (Gy)
and in tissue (G¢). Energy store (E) has the same pattern of glucose and
assumes values in the range 2.2 - 2.7 mM. Ton concentrations assume values
that are a slightly perturbation (less than 1%) of the resting values.

Figure 3: Initial pressure ¢, [mmHg| and velocity q [dm/min].

R

Figure 4: Oxygen partial pressure [mmHg] in blood (left) and in tissue
(right).

Figure 5: Glucose concentration [mM] in blood (left) and in tissue (right).



Mathematical and Numerical Modeling of Focal Cerebral Ischemia 17

Artery occlusion We study the effect of the occlusion of the central
artery. To simulate this event we impose at time ¢ = 0 a null blood ve-
locity on T'y (homogeneous Neumann condition), a Dirichlet condition, i.e.
op(r1,2,t) = ¢p(r1,2,0) on T’y and on T's UT5 we impose the Neumann
condition —uVe¢y, - n = q(r, 2,0) - n. Tonic concentrations, E, I, P, and Gy
satisfy homogeneous Neumann boundary conditions on 0Q. P, and G}, sat-
isfy homogeneous boundary condition on I'y UT's and the following Dirichlet
condition on I's U T4.

Py(r,z,t) = P [1+ (1 —e ) (r*(3—2r) — 1)]
Gp(r,z,t) =Gy [1+ (1 —e7") (r*(3—2r) — 1)]

We assumed that, right after the occlusion, the concentrations of oxygen and
glucose in the artery and in the surrounding tissue fall down exponentially
with respect to time.

The blood velocities before and right after the artery occlusion are compared
in Figure 6. We notice that right after the occlusion we have only a collateral
compensatory flow coming from other regions of the brain. Cells very close
to the occluded artery do not receive enough blood to survive. After the
stroke, oxygen partial pressure, glucose concentration and consequently the
energy stores fall down. In Figure 7 we show their values at ¢ = 0.7. In
Figure 8 and 9 we detail in 1D the oxygen partial pressure and glucose
concentrations at different time instants after the occlusion. The sharp
variation in the energy store are due to the outflow of potassium from the
intracellular space. As the energy decreases, in fact, the ionic pumps stop
working (see first two equations in system (19) ), the potassium moves from
ICS to ECS and consequently the membrane potential increases. Changes
in membrane potential cause changes in the membrane permeability. At the
beginning we have a positive reaction and massive amount of potassium exits
the cells and starts spreading through the ECS. The active pumps consumes
a lot of energy trying to restore physiological potassium concentration. In
Figure 10 and 11 we show intra and extracellular concentration of potassium
and calcium. We can clearly distinguish two regions, one where energy is
very low and the other where we still have ionic equilibrium and the Energy
is almost physiologic. The first region is expanding and few minutes after the
occlusion it will be characterized by necrotic tissue. This zone will become
the “ischemic umbra”.
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Figure 6: Velocity q[dm/min] before (left) and right after (right) the oc-
clusion.
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Figure 7: From left to rigth: oxygen partial pressure in tissue [mmHg],
glucose concentration in tissue [mM|] and Energy [mM] at time ¢ = 0.7 min.

t=0 min t= 025 min t=1min

Figure 8: Oxygen partial pressures in [mmHg| in blood (solid line) and in
tissue (dashed line) at different time steps, along the axis z = 0.25¢m.

t=05min t=2 min

Figure 9: Glucose concentrations [mM] in blood (solid line) and in tissue

(dashed line) at time t = 0.7 min at different time steps, along the axis
z = 0.25cm.
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Figure 10: Potassium concentrations [mM] in ECS (left) and ICS (right) at
time ¢ = 0.7 man.
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Figure 11: Calcium concentrations [mM
time ¢ = 0.7 min.

in ECS (left) and ICS (right) at

Extracellular potassium spreads through the ECS triggering this positive
reaction even in healthy zones of tissue. In these regions ionic pumps can
work properly and after a while the potassium is absorbed. This mechanism
lead to the generation of SD waves, traveling waves of extracellular potas-
sium associated with a depression in electrical activity. We now detail the
“birth” of spreading depression waves. Figure 12 and 13 show the potassium
concentrations at different time steps in 3D and 1D. The 1D plots are taken
on the axis z = 0.25

.2'\ 0
163

s

Figure 12: Extracellular potassium concentrations [mM] at time t =
0.9 min, t = 1.5 min, and t = 3 min, from left to rigth. The white line
underline the axis z = 0.25¢m on which we plot the 1D solutions in Figure
13 and 14.
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Figure 13: Extracellular potassium concentrations [mM] along the radial
direction at different time steps, along the axis z = 0.25c¢m.

Transmembrane potential V', potassium Nernst potential V; and calcium
Nernst potential Vi, at time ¢ = 3 min are shown in Figure 14. Notice
that in the neighborhood of the occluded artery the solution is reaching an
equilibrium solution, where Vg, =V, E =0 and I = 0.

301

ot

-801

-60

-90r

120 . . . L L ! !

02 03 04 0.5 08 07 08 08 1

Figure 14: Radial profile of calcium Nernst potential Vi, transmembrane
potential V| potassium Nernst potentials Viin [mM] along the axis z =
0.25cm.

Figure 15 shows oxygen partial pressure in the tissue, energy store and
integrity 3 min after the occlusion. We notice that in correspondence with
the presence of SD waves, F and mostly P; diminish because of the increased
ionic pump activity.

w27 mo
20 077
s | Joss
l0.7 0.32
0.0 lo 10

Figure 15: From left to right: Oxygen tissue partial pressure P, in mmHg,
Energy stores £ in mM, and Integrity. All the variables are a time t = 3 min
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SD suppression Numerical simulations pinpoint the relevance of Vj in
suppressing the SD phenomenon. This variable influences the ionic perme-
ability of the cellular membrane (see eq. (19)12). Taking V, = 45 mV,
instead of 51 mV the SD phenomenon does not occur as shown in Figure
16. Comparing these pattern of K., F, I with the ones in Figure 12 and 15,
we notice that the SD waves promote the expansion of the ischemic core.
The number of SD waves observed is correlated to the size of the ischemic
core (this correlation has already been observed by Ruppin et al.[33]).

.2.9
2.1

4

\ 0.7
AN A
Figure 16: From left: Extracellular potassium concentration in [mM], en-
ergy store [mM] and Integrity when SD is suppressed at time t = 3 min.
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Reopening of the vessel We investigate now, the effects of a new per-
fusion of the artery. Artery is reopen only two minutes and a half after the
occlusion occurred. Figure 17 show K., E and I about five minutes after the
occlusion, with or without reperfusion. When the tissue is reperfused the
energy slowly goes back to the physiological state and impaired region, after
a while, stops swelling. In the umbra region, even if the tissue is reperfused,
physiological values of ions cannot be restored.

Investigating the case in which the tissue is not impaired (i.e. we set I =1
and we disregard the ODE equations of integrity) we find the patterns illus-
trated in Figure 18, for the extracellular potassium concentrations. Here the
“wave” nature of the SD phenomenon comes out, as already experimented
in Tuckwell and Miura [35].
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Figure 17: From top-left: extracellular potassium concentration in [mM],
energy store in [mM] and integrity. In the bottom same variables in the
reperfusion case. Time t = 5.25 min.

\ |
Figure 18: From left: extracellular potassium concentratlon in [mM] at time
t = 3.8 min, 4.2 min, 4.65 min, 4.75 min when the integrity is uncoupled.

We now perfuse the brain 5 min after the occlusion. Now a large part
of tissue is impaired. In Figure 19 we compare the average blood velocity q
in the physiological state with the one after the perfusion. Higher velocities
point out the risk of blood leakage.

Figure 19: Velocity q[dm/min] at the initial state (left) and after (right)
the perfusion at time ¢t = 5 min.

4.2 3D Simulation

We consider the geometry in Figure 20, which represents a brain portions
surrounded by two arteries (in red on the left) and two veins (in blue on the
left). We prescribe the following initial conditions.
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a) Potassium and calcium concentrations, energy store E and the in-
tegrity I are set to their physiological values (see table 1). In particular
we set [ = 1.

b) Blood pressure ¢, is the solution of the system (5) with the following
boundary conditions: ¢, = ¢p on the artery surfaces, ¢, = 20mmHg
on the vein surfaces and homogeneous Neumann condition on the re-
maining part of the surface. The permeability p is taken equal to
po = 7-107° dm? min~! mmHg .

¢) Initial values of oxygen partial pressure and glucose are the steady so-
lutions of the system of equations (15), (16) and (17) with the following
boundary conditions: P, = P on the arteries surfaces and satisfies ho-
mogeneous Neumann condition on the rest of the boundary; G, = G}
on the arteries surfaces and satisfies homogeneous Neumann condition
on the rest of the boundary; P, and G; satisfy homogeneous Neumann
condition on the whole external surface.

In Figure 20 we report the initial pressure ¢ (left) and the initial velocity
q. We notice that there are zones in which the blood velocity is almost null.
This mainly depends on the particular geometry and permeability pg taken.
In this work we assumed pg to be scalar and uniform in space. Nevertheless,
the difficulties encountered in the design of a geometry which avoid hypo-
perfused regions put in evidence the limits of this assumption. In order to
get reliable results, po should be a space-dependent tensor. This leads to
the non-trivial identification of the tensor pg and goes beyond the purpose
of this paper.

Artery occlusion We study the effect of the occlusion of the artery on
the right. To simulate this event we impose at time ¢ = 0 a null blood
velocity on the surface of the right artery (homogeneous Neumann condition)
and the Dirichlet condition ¢p(x,t) = ¢(x,0) on the remaining part of
the external surface. Ionic concentrations, E, I, P, and G, still satisfy
homogeneous Neumann conditions on the boundary. On the right artery
surface, P, = P2 e and Gy = G e™!; on the central artery surface, P, =
Py and Gy = G; on the rest of the boundary, we set homogeneous Neumann
conditions.

The dynamics of the ischemia evolution in the simulations at hand are
similar to the ones shown in the 2D simulations. The major difference is
that here the phenomenon of Spreading Depression does not occur. This
can be a consequence of the geometry, that does not allow triggering of
the SD waves. Another possible explanation is the numerical diffusivity
induced by the streamline diffusion and the time advancing methods. This
point deserves further investigations, possibly resorting to a validation with
real geometries. Figure 21 shows the extracellular potassium concentration



Mathematical and Numerical Modeling of Focal Cerebral Ischemia 24

20.0 38.8 57.5 76.2 95.0 2.8e-03  6.5e-02 13e-01 1.9e-01 25e-01

Figure 20: Left: initial pressure ¢, [mmHg]. Right: initial velocity
q [dm/min]. On the top surfaces, velocity directions are shown.

K. [mM] (left) and the integrity I (right) after 15 min from the occlusion.
These plots put in evidence the ischemic core region, which comes with an
increase in the extracellular potassium concentration. The core region is
small and this is probably a consequence of the absence of SD waves, that
in general promote the expansion of the Ischemic region.

Reperfusion We now perfuse the brain 15 min after the occlusion and
we compare in Figure 22 the blood velocity q in the physiological state and
after the reperfusion. As expected, higher velocities are present in the latter
case. This fact points out the risk of blood leakage when reperfusing an
ischemic region.
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Figure 21: Extracellular potassium concentration K, [mM] (left) and in-
tegrity index I (right) after 15 min from the occlusion.
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Figure 22: Velocity q[dm/min] at the initial state (left) and after (right)
the perfusion at time t = 15 min.
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5 Conclusion and Perspectives

The sequence of biochemical event induced by a reduction of blood supply in
the brain is far to be completely understood. The role of BBB as an interface
between hemodynamics and biochemical dynamics is currently investigated
under different pathological conditions (see e.g. the recent monograph [23]).
In this paper, we devised a semi-empirical mesoscale model based on ho-
mogenization of microscale dynamics, some constitutive laws for emprical
indexes of clinical significance and a space-dependent description of hemody-
namics. Numerical 3D results actually give interesting qualitative highlights,
such as the role of V in suppressing the SD waves. The model proposed here
is however far to be a final outcome and open many challenging problems
that need to be investigated more.

1. Validation: quantitative validation of the model is still to be pursued,
using in vivo data and real geometries. A more careful quantification
of the parameters involved in the model is actually mandatory for a
quantitative assessment of the reliability of the model.

2. Analysis: a complete well-posedness analysis of the model still needs
to be carried out. The presence of different dynamics and the intrin-
sic nonlinearities prevented so far to have a complete analysis under
realistic assumptions on the data.

3. Numerical methods: difficulties in the analysis reflect in challenging
numerical computations, in particular for the coupling of blood and
ions dynamics and the stabilization of the dominant reactive terms,
forcing us to adopt small time steps. More stable and effective methods
are required for an extensive validation of the model.

Along these research lines we will move our further investigations of focal
ischemia.
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KD 2 [mM] physiological extracellular potassium concentration, [35]
K? 140 [mM| physiological intracellular potassium concentration, [35]
Cal 0.05 [mM] physiological extracellular calcium concentration, [35]
Ca? 1 [mM] physiological intracellular calcium concentration, [35]
10 1 [adim)] integrity of health tissue
ED 3 [mM] ATP mM in health tissue, ( 2.3 — 3.1 [mM] in anaesthetized mammals, [16])
P2 100 [mmH g] partial oxygen concentration in arteries, [16]
Gy 6 [mM] glucose concentration in arteries, [31]
CBFY 0.6 [dm3 Kg~ ! min~! cerebral blood flow in man [16]
Ap 1.13 [adim)] tortuosity of blood space, [17]
Ae 1.6 [adim)] tortuosity of extracellular space, [9]
Ai 3.2 [adim] tortuosity of intracellular space, in [35] is put to co, here we take a finite value
of A to improve numerical solution regularity, without relevant loss of accuracy
At 1 [adim)] tortuosity of tissue space, since tissue covers 97% of the domain, A\; ~ 1
¥ 9.0 [mM] parameter, [35
0 40 [mM] parameter, [35
Dy 1.5-107° [dm? min~1 potassium diffusivity, [35]
Dca 7.5-107F [dm? min—1 calcium diffusivity, [35]
Do 1.5-107° [dm? min~1 oxygen diffusivity, [19]
Dg 5.4-1075 [dmZ min~T glucose diffusivity, [32]
fK 1.17-10~% [mM dm min~T parameter, about — fx /ae in[35]
fea 1.56 - 10~ [mM dm min~" parameter, equals — fc, /e in [35]
TK 10 [mM 1T parameter, [35
rCa 40 [mM 1T parameter, [35
DK 7.5 [adim)] parameter, about —p1/p2 in [35]
g0 2.25-10~7 [mM dm min~! mV ~2] | parameter, equals pago/ae in [35]
Dy 0.11 [mV —2] parameter, [35
Vy 51 [mV] parameter, [35
ng 0.03 [adim blood porosity, [28]
nt 0.97 [adim tissue porosity (1 — np)
Ne 0.2 [adim] ECS porosity, [28]
n; 0.77 [adim] ICS porosity, (n¢ — ne)
Qe 2-10% [dm 1] ratio between ICS membrane surface area and ECS volume, [9]
ot 4.12-10° [dm~ T ratio between ICS membrane surface area and tissue volume, (aene/nt)
o 5.19 - 10° [dm™! ratio between ICS membrane surface and ICS volume, (aene/n;)
8 1500 [dm~1] ratio between microvessel surface area and brain volume, (in [4] for sepia)
Bp 5-10% [dm™1] ratio between microvessel surface area and vessel volume, (8/ny)
Bt 1.55 - 10% [dm™1] ratio between microvessel surface area and tissue volume, (5/n¢)
Vin 26.7 [mV] RT/F, T = 310K
CIE, CICa | 4 [MM 1] parameters
ciK, cjc | 10 [adim] parameters
Ier 0.1 [adim.] value at which tissue integrity is so low that membranes are damaged and
permeability increases
Cacr 0.15 [mM dm*B] value at which intracellular calcium it’s so high that mechanisms that damage
membrane are activated
Eer 0.3 [mM] value at which tissue Energy is too low to allow normal functioning
of ionic pumps
H,, 8.62 [mM]| Hemoglobin concentration in blood [31]
h 3 [adim)] parameter, [31]
oy 1.3-1073 [mM/mmHg solubility of oxygen in blood, [20]
ot 1.3-1073 [mM/mmHg solubility of oxygen in the tissue, [20]
[9) 0.06 [mM] value of free oxygen concentration in blood at which half of hemoglobin is
saturated with oxygen, [31]
co 0.3 [dm min~1] permeability of BBB to oxygen, (0.0018 — 0.6 in [20])
ca 2.667 - 10~3 [dm min—1] “permeability” of BBB to glucose, set in order to match glucose values in [16]
Kg 0.04 [mM] parameter, [31]
Kg 7 [mM] parameter, [30]
Ko 2 [mmHg| parameter, [31]
cQ 5 [mM min~1] energy basal supply of tissue, choosen to be 30% of total consumption at rest
since 70% is used by ionic pumps, [16]
CATP 0.5 [adim] ATP moli used from ionic pump to transport across the membrane 1 mole of ions,
(we used the NaK pump stechiometry, 1 ATP for 2 Kt [16])
TE 1 [min] time constant

Table 1: Physical parameters
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