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Abstract. The notions of subgraph centrality and communicability, based on the exponential of
the adjacency matrix of the underlying graph, have been effectively used in the analysis of undirected
networks. In this paper we propose an extension of these measures to directed networks, and we apply
them to the problem of ranking hubs and authorities. The extension is achieved by bipartization, i.e.,
the directed network is mapped onto a bipartite undirected network with twice as many nodes in order
to obtain a network with a symmetric adjacency matrix. We explicitly determine the exponential of
this adjacency matrix in terms of the adjacency matrix of the original, directed network, and we give
an interpretation of centrality and communicability in this new context, leading to a technique for
ranking hubs and authorities. The matrix exponential method for computing hubs and authorities is
compared to the well known HITS algorithm, both on small artificial examples and on more realistic
real-world networks. The paper also discusses the use of Gaussian quadrature rules for calculating
hub and authority scores.
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1. Introduction. In recent years, the study of networks has become central
to many disciplines [3, 5, 6, 9, 10, 26, 27, 28]. Networks can be used to describe
and analyze many different types of interactions, from those between people (social
networks), to the flow of goods across an area (transportation networks), to links
between websites (the WWW graph). In general, a network is a set of objects (nodes)
and the connections between them (edges). Often, research is focused on determining
and describing important characteristics of a network or of the interactions among its
components.

One common question in network analysis is to determine the most “important”
nodes (or edges) in the network, also called node or vertex (edge) centrality. The
interpretation of what is meant by “important” can change from application to appli-
cation. Due to this, many different measures of centrality have been developed. For
an overview, see [5].

One notion of node centrality was introduced by Estrada and Rodŕıguez-Velázquez
in [14]; see also the review article [13]. The methods described in [13] are only directly
applicable to undirected networks. However, many important real-world networks (the
World Wide Web, the Internet, citation networks, food webs, certain social networks,
etc.) are directed. One goal of this paper is to extend the notions of centrality and
communicability described in [11, 13] to directed networks, with an eye towards devel-
oping new ranking algorithms for, e.g., document collections, web pages, and so forth.
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We further compare our approach with some standard algorithms, such as HITS (see
[20]). Methods of quickly determining hub and authority rankings using Gauss-type
quadrature rules are also discussed.

2. Digraphs. Here we briefly review some basic graph-theoretic notions; we re-
fer to [8] for a comprehensive treatment. A graph G = (V, E) is formed by a set
of nodes (vertices) V and edges E formed by unordered pairs of vertices. Every
network is naturally associated with a graph G = (V, E) where |V | is the num-
ber of nodes in the network and E is the collection of edges between objects, E =
{(i, j) | there is an edge between node i and node j}. The degree di of a vertex i is the
number of edges incident to i.

A digraph G = (V, E) is formed by a set of vertices V and edges E formed by
ordered pairs of vertices. That is, (i, j) ∈ E 6⇒ (j, i) ∈ E. In the case of digraphs,
which model directed networks, there are two types of degree. The in-degree of node
i is given by the number of edges which point to i. The out-degree is given by the
number of edges pointing out from i.

Unless otherwise specified, every (di)graph in this paper is simple (unweighted
with no multiple edges or loops) and connected.

The adjacency matrix of a graph is a matrix A ∈ R
|V |×|V | defined in the following

way:

A = (aij); aij =

{

1, if (i, j) is an edge in G,
0, else.

Under the conditions imposed on G, A has zeros on the diagonal. If G is an
undirected graph, A will be a symmetric matrix and the eigenvalues will be real. In
the case of digraphs, A is not symmetric and may have complex (non-real) eigenvalues.

3. Eigenvector-based rankings. Here we give a brief description of eigenvector-
based ranking methods, mostly HITS and its variants. We don’t discuss PageRank
because it is very well known and also because it does not readily provide a way
to discriminate between hubs and authorities. See [22] for a good survey of HITS,
PageRank, SALSA, etc.

3.1. HITS algorithm. A highly popular method for ranking hubs and author-
ities was developed by Kleinberg in the late 1990s. The Hyperlink-Induced Topic
Search (HITS) algorithm is based on the idea that in the World Wide Web, and in
many directed networks, there are two types of important nodes: hubs and authorities
[20]. Hubs are nodes which point to many nodes of the type considered important.
Authorities are these important nodes. From this comes a circular definition: good
hubs are those which point to many good authorities and good authorities are those
pointed to by many good hubs.

Thus, the HITS ranking relies on an iterative method converging to a stationary
solution. Each node i in the network is assigned two non-negative weights, an authority
weight xi and a hub weight yi. To begin with, each xi and yi is given an arbitrary
nonzero value. Then, the weights are updated in the following ways:

x
(k)
i =

∑

j:(j,i)∈E

y
(k−1)
j and y

(k)
i =

∑

j:(i,j)∈E

x
(k)
j for k = 1, 2, 3... (3.1)

The weights are then normalized so that
∑

j(x
(k)
j )2 = 1 and

∑

j(y
(k)
j )2 = 1.
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The above iterations occur sequentially and it can be shown that, under mild
conditions, both sequences of vectors {x(k)} and {y(k)} converge as k → ∞. In
practice, the iterative process is continued until there is no significant change between
consecutive iterates.

This iteration sequence shows the natural dependence relationship between hubs
and authorities: if a node i points to many nodes with large x-values, it receives a
large y-value and, if it is pointed to by many nodes with large y-values, it receives a
large x-value.

In terms of matrices, the equation (3.1) becomes: x(k) = AT y(k−1) and y(k) =
Ax(k), followed by normalization in the 2-norm. This iterative process can be ex-
pressed as

x(k) = ckAT Ax(k−1) and y(k) = c′kAAT y(k−1), (3.2)

where ck and c′k are normalization factors. A typical choice for the inizialization
vectors x(0), y(0) would be the constant vector

x(0) = y(0) = [1/
√

n, 1/
√

n, . . . , 1/
√

n],

see [15]. Hence, HITS is just an iterative power method to compute the dominant
eigenvector for AT A and for AAT . The authority scores are determined by the entries
of the dominat eigenvector of the matrix AT A, which is called the authority matrix
and the hub scores are determined by the entries of the dominant eigenvector of
AAT , called the hub matrix. Recall that the eigenvalues of both AT A and AAT are
the squares of the singular values of A. Also, the eigenvectors of AT A are the right
singular vectors of A, and the eigenvectors of AAT are the left singular vectors of A.

3.2. HITS reformulation. In a digraph the adjacency matrix A is generally
nonsymmetric, however, the two matrices used in the HITS algorithm (AT A and
AAT ) are symmetric. Note that, setting

A =

(

0 A
AT 0

)

,

a symmetric matrix is obtained. Now,

A2 =

(

AAT 0
0 AT A

)

; A3 =

(

0 AAT A
AT AAT 0

)

.

In general,

A2k =

(

(AAT )k 0
0 (AT A)k

)

; A2k+1 =

(

0 A(AT A)k

(AT A)kAT 0

)

.

Applying HITS to this matrix A, AT = A so ATA = AAT = A2 and introducing

the vector u(k) =

(

y(k)

x(k)

)

for k = 1, 2, 3, . . ., equation (3.2) becomes

u(k) = A2u(k−1) =

(

AAT 0
0 AT A

)

u(k−1), (3.3)

followed by normalization of the two vector components of u(k) so that each has 2-
norm equal to 1. Now, if A is an n × n matrix, A is 2n × 2n and vector u(k) is
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in R
2n. The first n entries of u(k) correspond to the hub rankings of the nodes,

while the last n entries give the authority rankings. Under suitable assumptions (see
the discussion in [15]), as k → ∞ the sequence {u(k)} converges to the dominant
nonnegative eigenvector of A, which yields the desired hub and authority rankings.

Hence, in HITS only information obtained from the dominant eigenvector of A
is used. It is natural to expect that taking into account spectral information corre-
sponding to the remaining eigenvalues and eigenvectors of A may lead to improved
results.

3.3. HITS with exponentiated input. It is know that for certain networks,
the HITS algorithm does not converge to unique hub and authority vectors (see [15],
[22], [25] and references therein). If the dominant eigenvalue of AT A (and, conse-
quently of AAT ) is not simple, then the corresponding eigenspace is multidimensional.
This means that the choice of the initial vector affects the convergence of the algo-
rithm and different hub and authority vectors can be produced using different initial
vectors. This can occur when AT A is reducible, that is when the original network is
not strongly connected.

In [15], Farahat et. al. propose a modification to the HITS algorithm in order to
avoid this issue. Rather than running the HITS algorithm on the original adjacency
matrix, A, the matrix eA − I is used. Both the initial hub and authority vectors are
normalzied, positive vectors (e.g., constant vectors with all entries equal to 1/

√
n)).

The authors prove that, as long as the original network is weakly connected, the dom-
inant eigenvalue of (eA − I)T (eA − I) is simple. Thus, HITS with this exponentiated
input produces unique hub and authority rankings.

This can been seen in the following way: let G be the original network with n
nodes, t of which have an in-degree of 0. The network can be relabeled such that
nodes 1 through n− t have a positive in-degree and nodes n− t + 1 through n have
zero in-degree. Now, the adjacency matrix can be written as:

A =

(

Ã 0

B̃ 0

)

where Ã is (n− t)× (n− t) and B̃ is t× (n− t).
When running HITS with exponentiated input, the matrix used is eA− I and the

authority matrix becomes

(eA − I)T (eA − I) =

(

(eÃ − I)T (eÃ − I) 0
0 0

)

.

This has both the advantage of ensuring a unique output for the HITS algorithm
whenever the original network is weakly connected, and giving the t nodes with 0
in-degree an authority ranking of 0. However, the authority rankings are based on
the entries of the eigenvector corresponding to the dominant eigenvector of

(

(eÃ − I)T (eÃ − I) 0
0 0

)

.

Thus, the out-edges of the nodes which are not part of Ã are less important in the
calculation of authority scores than other edges. In networks where there are few
nodes with an in-degree of zero or where the edges from these nodes are somewhat
evenly distributed, this has little to no effect on the rankings produced using HITS.
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However, when there are many nodes with 0 in-degree or their edges point to only a
few other nodes, dropping these edges can greatly affect the rankings (see sections 5.4
and 5.5 for examples).

An obvious disadvantage of this algorithm is its cost, since it requires iterating
with a matrix exponential and its transpose. It can be implemented using only matrix-
vector products involving Ã and ÃT by means of techniques, like Krylov subspace
methods, for evaluating the action of a matrix function on a given vector; see, e.g.,
[18, Chapter 13]. This approach leads to a nested iteration scheme, with HITS as the
outer iteration and the Krylov method as the inner one.

4. Subgraph centralities and communicabilities. In [13], the authors re-
view several measures to rank the nodes in an undirected network A. The subgraph
centrality [14] of node i is given by [eA]ii and the communicability [11] between nodes
i and j (i 6= j) is given by [eA]ij . Nodes i corresponding to higher values of [eA]ii are
considered more important than nodes corresponding to lower values. Large values of
[eA]ij indicate that information flows more easily between nodes i and j than between
pairs of nodes corresponding to lower values of the same quantity. The Estrada index
of the graph is given by Tr (eA) =

∑n

i=1[e
A]ii. This index, which provides a global

characterization of a network, is analogous to the partition function in statistical me-
chanics and plays an important role in the study of networks at the macroscopic level:
quantities such as the natural connectivity, the total energy, the Helmholtz free energy
and the entropy of a network can all be expressed in terms of the Estrada index [12].
Also, normalization of the diagonal entries of eA by Tr (eA) yields a probability dis-
tribution on the nodes of the network, which can be regarded as an analogue of the
PageRank distribution.

Consider the power series expansion of eA,

eA = I + A +
A2

2!
+

A3

3!
+ · · ·+ Ak

k!
+ · · · (4.1)

From graph theory, it is well known that if A is the adjacency matrix of an undirected
graph, [Ak]ij = [Ak]ji counts the number of walks of length k between nodes i and
j. Thus, the subgraph centrality of node i, [eA]ii, counts the total number of closed
walks starting at node i, penalizing longer walks by scaling walks of length k by the
factor 1

k! . The communicability between nodes i and j, [eA]ij , counts the number of
walks between nodes i and j, again scaling walks of length k by a factor of 1

k! .

Although the matrix exponential is certainly well-defined for any matrix, whether
symmetric or not, extending the notions of subgraph centrality and communicability
to directed networks is not straightforward. Moreover, computational difficulties may
arise. While the computations involved do not pose a problem for small networks,
many real-world networks are large enough that directly computing the exponential
of the adjacency matrix is prohibitive. In [1], Benzi and Boito discuss techniques
for bounding and estimating individual entries of the matrix exponential using Gaus-
sian quadrature rules; see also [4] and section 8 below. The ability to find upper
and lower bounds for the entries requires that the matrix be symmetric, thus these
bounds cannot be directly computed using the adjacency matrix of a directed net-
work. Moreover, in the directed case it is not immediately clear how to interpret the
notions of subgraph centrality, communicability and Estrada index. These difficulties
can be circumvented using a bipartite graph model, as discussed next.
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5. Extension to digraphs. Although the techniques described in [1] cannot be
directly applied to non-symmetric matrices, setting

A =

(

0 A
AT 0

)

(5.1)

produces a symmetric matrix A and, thus, upper and lower bounds of individual en-
tries of eA can be computed. In Proposition 1 below we relate eA to the underlying
hub and authority structure of the original digraph. By B† we denote the Moore–
Penrose generalized inverse of matrix B.

Proposition 1. Let A be as described in equation (5.1). Then,

eA =







cosh
(√

AAT

)

A
(√

AT A
)†

sinh
(√

AT A
)

sinh
(√

AT A
)(√

AT A
)†

AT cosh
(√

AT A
)






.

Proof. Let A = UΣV T be the SVD of the original (non-symmetric) adjacency

matrix A. Then, A can be decomposed asA =

(

U 0
0 V

) (

0 Σ
Σ 0

) (

UT 0
0 V T

)

.

Hence,

eA =

(

U 0
0 V

)

exp

(

0 Σ
Σ 0

) (

UT 0
0 V T

)

. (5.2)

Now,

exp

(

0 Σ
Σ 0

)

= cosh

(

0 Σ
Σ 0

)

+ sinh

(

0 Σ
Σ 0

)

=

(

cosh(Σ) 0
0 cosh(Σ)

)

+

(

0 sinh(Σ)
sinh(Σ) 0

)

.

Thus,

exp

(

0 Σ
Σ 0

)

=

(

cosh(Σ) sinh(Σ)
sinh(Σ) cosh(Σ)

)

. (5.3)

Putting together equations (5.2) and (5.3),

eA =

(

U 0
0 V

) (

cosh(Σ) sinh(Σ)
sinh(Σ) cosh(Σ)

) (

UT 0
0 V T

)

=







cosh
(√

AAT

)

A
(√

AT A
)†

sinh
(√

AT A
)

sinh
(√

AT A
)(√

AT A
)†

AT cosh
(√

AT A
)






.

The identities involving the off-diagonal blocks can be easily checked using the SVD
of A.
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5.1. Interpretation of diagonal entries. In the context of undirected net-
works, the interpretation of the entries of the matrix exponential in terms of subgraph
centralities and communicabilities is well-established, see e.g. [13]. In the case of di-
rected networks and eA, things are not as clear. The network behind A can be thought
of as follows: take the vertices from the original network A and make two copies of
them, V and V ′. Then, undirected edges exist between the two sets based on the
following rule: E′ = {(i, j′)| there is a directed edge from i to j in the original network}.
This creates a bipartite graph with 2n nodes: 1, 2, . . . , n, n + 1, n + 2, . . . , 2n. We
denote by V (A) this set of nodes.

In the undirected case, each node had only one role to play in the network: any
information that came into the node could leave by any edge. In the directed case,
there are two roles for each node: that of a hub and that of an authority. It is unlikely
that a high ranking hub will also be a high ranking authority, but each node can still
be seen as acting in both of these roles. In the network A, the two aspects of each
node are separated. Nodes 1, 2, . . . , n in V (A) represent the original nodes in their
role as hubs and nodes n + 1, n + 2, . . . , 2n in V (A) represent the original nodes in
their role as authorities.

Given a directed network, an alternating walk of length k, starting with an out-
edge, from node v1 to node vk+1 is a list of nodes v1, v2, ..., vk+1 such that there exists
edge (vi, vi+1) if i is odd and edge (vi+1, vi) if i is even:

v1 → v2 ← v3 → · · ·

An alternating walk of length k, starting with an in-edge, from node v1 to node vk+1

in a directed network is a list of nodes v1, v2, ..., vk+1 such that there exists edge
(vi+1, vi) if i is odd and edge (vi, vi+1) if i is even:

v1 ← v2 → v3 ← · · ·

From graph theory (see also [7]), it is known that [AAT A . . .]ij (where there are k
matrices being multiplied) counts the number of alternating walks of length k, starting
with an out-edge, from node i to node j, whereas [AT AAT . . .]ij (where there are k
matrices being multiplied) counts the number of alternating walks of length k, starting
with an in-edge, from node i to node j. That is, [(AAT )k]ij and [(AT A)k]ij count the
number of alternating walks of length 2k.

In the original network A, if node i is a good hub, it will point to many good
authorities, which will in turn be pointed at by many hubs. These hubs will also point
to many authorities, which will again be pointed at by many other hubs. Thus, if i
is a good hub, it will show up many times in the sets of hubs described above. That
is, there should be many even length alternating walks, starting with an out-edge,
from node i to itself. Giving a walk of length 2k a weight of 1

(2k)! , these walks can be

counted using the (i, i) entry of the matrix

I +
AAT

2!
+

AAT AAT

4!
+ · · ·+ (AAT )k

(2k)!
+ · · ·

Letting A = UΣV T be the SVD of A, this becomes:

U

(

I +
Σ2

2!
+

Σ4

4!
+ · · ·+ Σ2k

(2k)!
+ · · ·

)

UT

= U cosh(Σ)UT = cosh(
√

AAT ) .
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The hub centrality of node i (in the original network) is thus given by

[eA]ii = [cosh(
√

AAT )]ii.

This measures how well node i transmits information to the authoritative nodes in
the network.

Similarly, if node i is a good authority, there will be many even length alternating
walks, starting with an in-edge, from node i to itself. Giving a walk of length 2k a
weight of 1

(2k)! , these walks can be counted using the (i, i) entry of cosh(
√

AT A).

Hence, the authority centrality of node i is given by

[eA]n+i,n+i = [cosh(
√

AT A)]ii.

It measures how well node i receives information from the hubs in the network.
Note that the traces of the two diagonal blocks in eA are identical, so each accounts

for half of the Estrada index of the bipartite graph. Also note that denoting by
σ1, . . . , σn the singular values of A, we have

Tr (eA) = 2

n
∑

i=1

cosh (σi) =

n
∑

i=1

eσi +

n
∑

i=1

e−σi .

5.2. Interpretation of off-diagonal entries. In discussing the off-diagonal
entries of A, there are three blocks to consider. First, there are the off-diagonal
entries of the upper-left block, cosh(

√
AAT ), then there are the off-diagonal en-

tries of the lower-right block, cosh(
√

AT A). Finally, there is the off-diagonal block,

A
(√

AT A
)†

sinh
(√

AT A
)

(the fourth block in eA being its transpose).

From section 5.1, [eA]ij = [cosh(
√

AAT )]ij , 1 ≤ i, j ≤ n, counts the number
of even length alternating walks, starting with an out-edge, from node i to node j,
weighting walks of length 2k by a factor of 1

(2k)! . When i 6= j, these entries measure

how similar nodes i and j are as hubs. That is, if nodes i and j point to many of the
same nodes, there will be many short even length alternating walks between them.

The hub communicability between nodes i and j, 1 ≤ i, j ≤ n is given by

[eA]ij = [cosh(
√

AAT )]ij

This measures how similar nodes i and j are in their roles as hubs. That is, a larger
value of hub communicability between nodes i and j indicates that they point to many
of the same authorities. In other words, they point to nodes which are authorities on
the same subjects.

Similarly, [eA]n+i,n+j = [cosh(
√

AT A)]ij , 1 ≤ i, j ≤ n counts the number of even
length alternating walks, starting with an in-edge, from node i to node j, also weighing
walks of length 2k by a factor of 1

(2k)! . When i 6= j, these entries measure how similar

the two nodes are as authorities. If i and j are pointed at by many of the same hubs,
there will be many short even length alternating walks between them.

The authority communicability between nodes i and j, 1 ≤ i, j,≤ n is given by

[eA]i+n,j+n = [cosh(
√

AT A)]ij

This measures how similar nodes i and j are in their roles as authorities. That is, a
larger value of authority communicability between nodes i and j means that they are
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Fig. 5.1. The original directed network from Example 1, with adjacency matrix A (left) and
the bipartite network with adjacency matrix A (right).

pointed to by many of the same hubs and, as such, are likely to contain information
on the same subjects.

Let us now consider the off-diagonal blocks of A. Here, [sinh(
√

AT A)]ij counts
the number of odd length alternating walks, starting with an out-edge, from node i to
node j, weighing walks of length 2k+1 by 1

(2k+1)! . This measures the communicability

between node i as a hub and node j as an authority.
The hub-authority communicability between nodes i and j (that is, the communi-

cability between node i as a hub and node j as an authority) is given by:

[eA]i,n+j = [A
(√

AT A
)†

sinh
(√

AT A
)

]ij

= [sinh
(√

AT A
)(√

AT A
)†

AT ]ji = [eA]n+j,i.

A large hub-authority communicability between nodes i and j means that they are
likely in the same “part” of the directed network: node i tends to point to nodes that
contain information similar to that on which node j is an authority.

5.3. Small examples. In this section we illustrate the proposed method on
some simple networks of small size. We also compare our approach with HITS and,
when warranted, with its exponentiated input variant.

5.3.1. Example 1. Consider the small directed network in Fig. 5.1 (left panel).
The adjacency matrix is given by

A =









0 1 1 0
1 0 1 0
0 1 0 1
0 1 0 0









.

The corresponding bipartite graph is shown in Fig. 5.1 (right panel). If hubs and
authorities are determined simply using in-degree and out-degree counts, the result is
as follows:

node out-degree in-degree
1 2 1
2 2 3
3 2 2
4 1 1



10 M. Benzi, E. Estrada, and C. Klymko

Under this ranking, the hub ranking of the nodes is: {1, 2, 3 (tie); 4}. The au-
thority ranking of the nodes is: {2; 3; 1, 4 (tie)}. We obtain somewhat different results
using the HITS algorithm. The eigenvectors of AAT and AT A corresponding to the
largest eigenvalue λmax ≈ 3.9563, which is simple, yield the following rankings for
hubs and authorities:

node hub rank authority rank
1 .6555 .1685
2 .3351 .8058
3 .5422 .4980
4 .4051 .2726

Here, the ranking for hubs is: {1; 3; 4; 2}. The ranking for authorities is: {2; 3; 4; 1}.
Note that node 2, which was given a top hub score by looking just at the out-degrees,
is judged by HITS as the node with the lowest hub score.

Using eA as described above, the rankings for hub centralities and authority
centralities are:

node hub centrality = [eA]ii authority centrality = [eA]4+i,4+i

1 2.3319 1.5906
2 2.2289 3.0209
3 2.2812 2.2796
4 1.6414 1.5922

With this method, the hub ranking of the nodes is: {1; 3; 2; 4}. The authority
ranking is: {2; 3; 4; 1}. On this example, our method produces the same authority
ranking as HITS. The hub ranking, however, is slightly different: both methods iden-
tify node 1 as the one with the highest hub score, followed by node 3; however, our
method assigns the lowest hub score to node 4 rather than node 2. This is arguably
a more meaningful ranking.

5.3.2. Example 2. Consider the small directed network in Fig. 5.2 (left panel).
The adjacency matrix is given by

A =









0 0 1 0
1 0 0 1
0 1 0 0
0 1 0 0









.

The corresponding bipartite graph is shown in Fig. 5.2 (right panel). If hubs
and authorities are determined only using in-degrees and out-degrees, the result is as
follows:

node out-degree in-degree
1 1 1
2 2 2
3 1 1
4 1 1

Under this criterion, the hub ranking of the nodes is: {2; 1, 2, 3 (tie)} and the
authority ranking is: {2; 1, 2, 3 (tie)}. While it is intuitive that node 2 should be given
a high score (both as an authority and as a hub), just looking at the degrees does not
allow one to distinguish the remaining nodes.
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Fig. 5.2. The original directed network from Example 2, with adjacency matrix A (left) and
the bipartite network with adjacency matrix A (right).

Consider now the use of HITS. The largest eigenvalue of AAT (and AT A) is
λmax = 2 and it has multiplicity two. Thus, different starting vectors for the HITS al-
gorithm may produce different rankings, as discussed in [15]. Starting from a constant
authority vector x(0), as suggested in [20], produces the following scores:

node hub rank authority rank
1 .0002 .3332
2 .4999 .3332
3 .2499 .0003
4 .2499 .3332

The ranking for hubs is: {2; 3, 4 (tie); 1}. The ranking for authorities is the following:
{1, 2, 4 (tie); 3}. The fact that node 2 has a higher in-degree than any of the other
nodes does not affect its authority ranking under the HITS algorithm, which shows a
clear drawback of HITS.

If the ranking is determined using eA as described above, the resulting scores are:

node hub centrality = [eA]ii authority centrality = [eA]4+i,4+i

1 1.5431 1.5891
2 2.1782 2.1782
3 1.5891 1.5431
4 1.5891 1.5891

With this method, the hub ranking of the nodes is the same as in HITS: {2; 3, 4 (tie); 1}.
However, in the authority ranking, node 2 is the clear winner rather than being part
of a three-way tie for first place: {2; 1, 4 (tie); 3}. Identical rankings are obtained by
the exponentiated input HITS algorithm.

5.4. Example 3. Let G be the small directed network in Fig. 5.3. The adjacency
matrix is given by

A =

















0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 1 1 0

















.
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Fig. 5.3. The original directed network from Example 3, with adjacency matrix A (left) and
the bipartite network with adjacency matrix A (right).

If hubs and authorities are determined using only in-degrees and out-degrees, the
result is:

node out-degree in-degree
1 0 4
2 1 1
3 1 1
4 1 1
5 1 1
6 4 0

The hub ranking of the nodes using degrees is: {6; 2,3,4,5 (tie); 1}. The authority
ranking is {1; 2,3,4,5 (tie); 6}.

If the HITS algorithm is used, the resulting rankings are similar, but not exactly
the same. Starting with a constant authority vector x(0), the results are:

node hub rank authority rank
1 .000 .200
2 .125 .200
3 .125 .200
4 .125 .200
5 .125 .200
6 .500 .000

The hub ranking of the nodes is: {6; 2, 3, 4, 5 (tie); 1}. The authority ranking is:
{1,2,3,4,5 (tie); 6}. Here, HITS is unable to differentiate between node 1 and nodes 2,
3, 4, and 5 in terms of the authority score, even though node 1 has by far the highest
in-degree. This appears as a failure of HITS, since it is intuitive that node 1 should
be regarded as very authoritative. If HITS with exponentiated input is used, node 1
does get a higher authority score than all the other nodes:

node Exp. input HITS hub rank Exp. input HITS authority rank
1 .0000 .4472
2 .1382 .1382
3 .1382 .1382
4 .1382 .1382
5 .1382 .1382
6 .4472 .0000
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Fig. 5.4. The original directed network from Example 4, with adjacency matrix A (left) and
the bipartite network with adjacency matrix A (right).

Under HITS with exponentiated input, the hub ranking is the same one obtained
by HITS, namely, {6; 2,3,4,5 (tie); 1}, while the authority ranking is: {1; 2,3,4,5 (tie);
6}.

For this network, using eA to calculate the hub and authority scores yields the
same rankings as HITS with exponentiated input:

node hub centrality = [eA]ii authority centrality = [eA]n+i,n+i

1 1.0000 3.7622
2 1.6905 1.6905
3 1.6905 1.6905
4 1.6905 1.6905
5 1.6905 1.6905
6 3.7622 1.0000

Note that, if desired, the value 1 can be subtracted from these scores since it does
not affect the relative ranking of the nodes. The hub ranking is {6; 2,3,4,5 (tie); 1},
and the authority ranking is: {1; 2,3,4,5 (tie); 6}.

One may ask under which conditions, if any, the exponentiated input HITS
method and the one based on eA result in different rankings. As we will see in
the next example, when there are many nodes with 0 in-degree, the rankings using
eA start to differ from those using HITS with exponentiated input.

5.5. Example 4. Let G be the 10-node directed network in Fig. 5.4. The adja-
cency matrix of G is given by:

A =

































0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

































.

Using just in-degree and out-degree, the hub and authority rankings of G are as
follows:
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node out-degree in-degree
1 0 4
2 1 1
3 1 1
4 1 1
5 1 5
6 4 0
7 1 0
8 1 0
9 1 0
10 1 0

The hub ranking is: {6; 2,3,4,5,7,8,9,10 (tie); 1}. The authority ranking is {5; 1;
2,3,4 (tie); 6,7,8,9,10 (tie)}. Using HITS, different rankings are produced. Starting
with a constant authority vector x(0), the rankings produced are:

node hub rank authority rank
1 .0000 .0008
2 .0003 .1665
3 .0003 .1665
4 .0003 .1665
5 .0003 .4996
6 .3330 .0000
7 .1665 .0000
8 .1665 .0000
9 .1665 .0000
10 .1665 .0000

The hub ranking is: {6; 7,8,9,10 (tie); 2,3,4,5 (tie); 1}. The authority ranking is:
{5; 2,3,4 (tie); 1; 6,7,8,9,10 (tie)}. Since nodes 2, 3, 4, and 5 are given such low hub
scores, node 1 is deemed an extremely low authority, even though it has an in-degree
of 4.

By comparison, when using HITS with exponentiated input, node 1 is considered
very authoritative:

node Exp. input HITS hub rank Exp. input HITS authority rank
1 .0000 .4196
2 .0849 .1095
3 .0849 .1095
4 .0849 .1095
5 .0849 .2519
6 .2871 .0000
7 .0934 .0000
8 .0934 .0000
9 .0934 .0000
10 .0934 .0000

The hub ranking is: {6; 7,8,9,10 (tie); 2,3,4,5 (tie); 1}, identical to HITS. The
authority ranking is: {1; 5; 2,3,4 (tie); 6,7,8,9,10 (tie)}. Here, even though node 5
has a higher in-degree than node 1, node 1 is given a higher authority rank.

On the other hand, using the rankings from eA, node 5 is considered a higher
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authority than node 1:

node hub centrality = [eA]ii authority centrality = [eA]n+i,n+i

1 1.0000 3.7622
2 1.6905 1.6974
3 1.6905 1.6974
4 1.6905 1.6974
5 1.6905 4.9203
6 4.0063 1.0000
7 1.7516 1.0000
8 1.7516 1.0000
9 1.7516 1.0000
10 1.7516 1.0000

The hub ranking is the same as with HITS and its exponentiated input variant.
The authority ranking is {5; 1; 2,3,4 (tie); 6,7,8,9,10 (tie)}. Nodes 1 and 5 swap
place in the authority ranking, with everything else staying the same. Whether this
ranking is “better” than the one provided by HITS with exponentiated input is open
to debate. What is clear is that both methods identify nodes 1 and 5 as the most
authoritative ones by a considerable margin, whereas HITS with uniform starting
vector completely fails in identifying node 1 as authoritative.

6. Application to web graphs. Similarly to HITS, and in analogy to sub-
graph centrality for undirected networks, the rankings produced by the values on the
diagonal of [eA]ii can be used to rank websites as hubs and authorities in web searches
(many other applications are of course also possible). The data sets tested here are
small web graphs consisting of web sites on various topics and can be found at [30]
along with the website associated with each node.1 Each dataset is named after the
corresponding topic. In this section, the hub and authority rankings obtained from eA

are compared with those from HITS, implemented using the Matlab code described
in [23]. All experiments are performed using Matlab Version 7.9.0 (R2009b) on a
MacBook Pro running OS X Version 10.6.8, a 2.4 GHZ Intel Core i5 processor and
4 GB of RAM. For the purpose of these tests we use the built-in Matlab function
expm to compute the matrix exponential. Other approximations of eA are discussed
in section 8.

6.1. Abortion dataset. The abortion dataset contains n = 2293 nodes and

m = 9644 directed edges. The expanded matrix A =

(

0 A
AT 0

)

has order N =

2n = 4586 and contains 2m = 19288 nonzeros. The maximum eigenvalue of A is
λN ≈ 31.91 and the second largest eigenvalue is λN−1 ≈ 26.04. In this matrix, the
largest eigenvalue is fairly well-separated from the second largest so that one would
expect the HITS rankings (which only use information from the dominant eigenpair
of A) to be reasonably close to the rankings from eA (which use information from all
of the eigenvalues and corresponding eigenvectors). A plot of the eigenvalues of the
expanded abortion dataset matrix can be found in Fig. 6.1. Note the high multiplicity
of the zero eigenvalue.

The top 10 hubs and authorities of the abortion dataset, as determined using eA,

1It should be noted, however, that in the node list for the adjacency matrix, the node labeling
begins with 1 and in the list of websites associated with the nodes found at [30], node labeling begins
at 0. Thus, node i in the adjacency matrix is associated with website i− 1.
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Fig. 6.1. Plot of the eigenvalues of the expanded abortion matrix A.

Table 6.1

Top 10 hubs of the abortion web graph, ranked using [eA]ii, HITS, and HITS with exponentiated
input.

[eA]ii nodes HITS nodes Exp. input HITS nodes
48 48 80

1021 1006 1431
1007 1007 1432
1006 1021 1426
1053 1053 1425
1020 1020 1415
987 960 1388
990 968 1389
985 969 1397
989 970 1387

HITS with constant initial vector and exponentiated input HITS, can be found in
tables 6.1 and 6.2. We observe that there is a good deal of agreement between the
eA rankings and the HITS ones: indeed, both methods identify the websites labeled
48, 1021, 1007, 1006, 1053, 1020 as the top 6 hubs, and both pick web site 48 as the
top one. Also, there are 7 web sites identified by both methods as being among the
top 10 authorities. The top authority identified by HITS is ranked third by eA, and
conversely the top authority identified by eA is third in the HITS ranking. In contrast,
the exponentiated input HITS algorithm returns completely different rankings. Node
80, which is deemed the best hub by the exponentiated input HITS, is ranked 1236
by HITS and 851 using eA. Exponentiated input HITS ranks node 1430 as the top
authority. This node is ranked 731 by HITS and 429 by eA. The odd behavior
of exponentiated input HITS is due to the fact that the web graph abortion dataset
contains many nodes with no in-links (at least, none that are included in the dataset).
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Table 6.2

Top 10 authorities of the abortion web graph, ranked using [eA]ii, HITS, and HITS with expo-
nentiated input.

[eA]ii nodes HITS nodes Exp. input HITS nodes
967 939 1430
958 958 1387
939 967 1425
962 961 1426
963 962 1409
964 963 1417
961 964 1429
965 965 1406
966 966 1396
587 1582 1405
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Fig. 6.2. Plot of the eigenvalues of the expanded computational complexity matrix A.

As seen in section 5.5, nodes with no in-links are given less value by this algorithm and
thus will not be reported as top hubs (nor will nodes pointed to by many nodes with
no in-links be reported as top authorities). Since exponentiated input HITS behaved
unreliably on the remaining two data sets as well, we do not show the corresponding
results.

6.2. Computational complexity dataset. The computational complexity data
set contains n = 884 nodes and m = 1616 directed edges. The expanded matrix A has
order N = 2n = 1768 and contains 2m = 2232 nonzeros. The maximum eigenvalue
of A is λN ≈ 10.93 and the second largest eigenvalue is λN−1 ≈ 9.86. Here, the
(relative) spectral gap between the first and the second eigenvalue is smaller than in
the previous example; consequently, we expect the rankings produced using eA and
HITS to be less similar than for the abortion dataset. A plot of the eigenvalues of the
expanded computational complexity dataset matrix can be found in Fig. 6.2.
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Table 6.3

Top 10 hubs of the computational complexity web graph, ranked using [eA]ii and HITS.

[eA]ii nodes [eA]ii score HITS nodes HITS score
57 2.6518e04 57 0.276589
17 7.2059e02 634 0.035592
644 6.6561e02 644 0.020557
643 6.1256e02 721 0.018340
634 5.5558e02 643 0.017880
106 4.7486e02 554 0.014191
119 4.2791e02 632 0.013106
529 3.8451e02 801 0.012383
86 3.6528e02 640 0.011566
162 3.5502e02 639 0.010893

Table 6.4

Top 10 authorities of the computational complexity web graph, ranked using [eA]ii and HITS.

[eA]ii nodes [eA]ii score HITS nodes HITS score
1 4.8958e03 719 0.012155

315 1.4747e03 717 0.011501
673 8.0015e02 727 0.009972
148 7.3093e02 723 0.009131
719 6.6746e02 808 0.008828
717 5.8437e02 735 0.008785
2 5.5637e02 737 0.008721
45 4.0969e02 1 0.008550
727 4.0315e02 722 0.008491
534 3.4473e02 770 0.008491

The top 10 hubs and authorities of the computational complexity dataset, de-
termined by both rankings, can be found in Tables 6.3 and 6.4. We also report the
actual scores obtained for these nodes. As expected, we see less agreement between
the two ranking methods. Concerning the hubs, both methods agree that the web site
labelled 57 is by far the most important hub on the topic of computational complexity.
However, the method based on eA identifies as the second most important hub the
web site corresponding to node 17, which is not even in the top 10 according to HITS.
The two methods agree on the next three hubs, but after that they return completely
different results. The difference is even more pronounced for the authority rankings.
The method based on eA clearly identifies web site 1 as the most authoritative one,
whereas HITS relegates this node to 8th place. The top authority acording to HITS,
web site 719, places 5th in the ranking obtained by eA. The two methods agree on
only two other web sites as being in the top 10 authorities (717 and 727).

6.3. Death penalty dataset. The death penalty dataset contains n = 1850 and
m = 7363 directed edges. The expanded matrix A has order N = 2n = 3700 and
contains m = 14726 nonzeros. The maximum eigenvalue of A is λN ≈ 28.02 and the
second largest eigenvalue λN−1 ≈ 17.68. In this case, the largest and second largest
eigenvalues are quite far apart, and the relative gap is larger than in the previous
examples. A plot of the eigenvalues of the expanded death penalty matrix can be
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Fig. 6.3. Plot of the eigenvalues of the expanded death penalty matrix A.

Table 6.5

Top 10 hubs of the death penalty web graph, ranked using [eA]ii and HITS.

[eA]ii nodes [eA]ii score HITS nodes HITS score
210 6.7731e10 210 0.017562
637 3.5805e10 637 0.012769
413 3.2347e10 413 0.012137
1586 1.9676e10 1586 0.009466
552 1.7611e10 552 0.008955
462 1.1998e10 462 0.007392
930 1.1772e10 930 0.007322
542 1.1713e10 542 0.007303
618 1.1163e10 618 0.007130
1275 1.0556e10 1275 0.006933

found in Fig. 6.3.
Due to the presence of a large spectral gap, much of the information used in

forming the rankings of eA is also used in the HITS ranking, and we expect the two
methods to produce similar results. Indeed, as shown in Table 6.5 (hubs) and Table
6.6 (authorities), in this case the top 10 rankings produced by the two methods are
actually identical.

7. Other functions. Besides the matrix exponential, another function that has
been successfully used to define centrality and communicability measures for an undi-
rected network is the matrix resolvent, which can be defined as

R(A; c) = (I − cA)−1 = I + cA + c2A2 + · · ·+ ckAk + · · · ,

with 0 < c < 1/λmax(A); see, e.g., [19, 13, 12]. Here A is the symmetric adjacency
matrix of the undirected network. The condition on the parameter c ensures that
R(A; c) is well defined (i.e., that I−cA is invertible and the geometric series converges
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Table 6.6

Top 10 authorities of the death penalty web graph, ranked using [eA]ii and HITS.

[eA]ii nodes [eA]ii score HITS nodes HITS score
4 6.4460e10 4 0.023556
1 5.4816e10 1 0.021723
6 3.8451e10 6 0.018193
7 3.0091e10 7 0.016094
10 2.8139e10 10 0.015564
16 2.6059e10 16 0.014977
2 2.5742e10 2 0.014886
3 2.4149e10 3 0.014418
44 1.9763e10 44 0.013043
27 1.8591e10 27 0.012651

to its inverse) and nonnegative; indeed, I − cA will be a nonsingular M -matrix. It
is hardly necessary to mention the close relationship existing between the resolvent
and the exponential function, which can be expressed via the Laplace transform. For
the adjacency matrix A of a bipartite graph given by (5.1), the resolvent is easily
determined to be

R(A; c) =

(

I + c2A(I − c2AT A)−1AT cA(I − c2AT A)−1

c(I − c2AT A)−1AT (I − c2AT A)−1

)

. (7.1)

The condition on c can be expressed as 0 < c < 1/σ1, where σ1 = ‖A‖2 denotes
the largest singular value of A, the adjacency matrix of the undirected network. This
ensures that the matrix in (7.1) is well-defined and nonnegative, with positive diagonal
entries. The diagonal entries of I+c2A(I−c2AT A)−1AT provide the hub scores, those
of (I − c2AT A)−1 the authority scores. A drawback of this approach is the need to
select the parameter c, and the fact that different values of c may lead to different
rankings.

Other functions that have been used for the analysis of complex networks include
variants of the exponential, such as f(A) = eβA, where β can be interpreted as a
(negative) inverse “temperature”, as well as similar functions involving the graph
Laplacian L = D−A, where D is the degree matrix, D = diag (d1, . . . , dn). We refer
to [12] for a detailed study and justification of these matrix functions in the study
of undirected networks. A comparison of the various hub and authority rankings
obtained using these functions is beyond the scope of this paper, and will be the
subject of a separate study.

8. Approximating the matrix exponential. Several approaches are avail-
able for computing the matrix exponential [18]. A commonly used scheme is the
one based on Padé approximation combined with the scaling and squaring method
[17, 18], implemented in Matlab by the expm function. For an n × n matrix, this
method requires O(n2) storage and O(n3) arithmetic operations; any sparsity in A,
if present, is not exploited in currently available implementations. Evaluation of the
matrix exponential based on diagonalization also requires O(n2) storage and O(n3)
operations. Furthermore, these methods cannot be easily adapted to the case where
only selected entries (e.g., the diagonal ones) of the matrix exponential are of interest.

For the purpose of ranking hubs and authorities in a directed network, only the
main diagonal of eA is required. This can be done without having to compute all the
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entries in eA. If some of the off-diagonal entries (communicabilities) are desired, for
example those between the highest ranked hubs and/or authorities, it is also possible
to compute them without having to compute the whole matrix eA, which would be
prohibitive even for a moderately large network. We further emphasize that in most
applications one is not so much interested in computing an exact ranking of all the
nodes in a digraph, but only in identifying the top k ranked nodes, where the integer
k is small compared to n (for example, k = 10 or k = 20). It is highly desirable to
develop methods that are capable of quickly identifying the top k hubs/authorities
without having to compute accurate hub/authority scores for each node.

Efficient, accurate methods for estimating (or, in some cases, bounding) arbitrary
entries in a matrix function f(A) have been developed by Golub, Meurant and col-
laborators (see [16] and references therein) and first applied to problems of network
analysis by Benzi and Boito in [1]; see also [4]. Here we limit ourselves to a brief
description of these methods, referring the reader to [1] and [16] for further details.
Let A be a real, symmetric, n × n matrix and let f be a function defined on the
spectrum of A. Consider the eigendecompositions A = QΛQT and f(A) = Qf(Λ)QT ,
where Q = [φ1, . . . , φn]. For given vectors u and v we have

uT f(A)v = uT Qf(Λ)QT v = wT f(Λ)z =

n
∑

k=1

f(λk)wkzk, (8.1)

where w = QT u = (wk) and z = QT v = (zk). In particular, for f(A) = eA we obtain

uT eAv =

n
∑

k=1

eλkwkzk. (8.2)

Choosing u = v = ei (the vector with the ith entry equal to 1 and all the remaining
ones equal to 0) we obtain an expression for the subgraph centrality of node i:

SC(i) :=
n

∑

k=1

eλkφ2
k,i ,

where φk,i denotes the ith component of vector φk. Likewise, choosing u = ei and
v = ej we obtain the following expression for the communicability between node i
and node j:

C(i, j) :=

n
∑

k=1

eλkφk,iφk,j .

Analogous expressions hold for other matrix functions, such as the resolvent.
Hence, the problem is reduced to evaluating bilinear expressions of the form

uT f(A)v. Such bilinear forms can be thought of as Riemann- Stieltjes integrals with
respect to a (signed) spectral measure:

uT f(A)v =

∫ b

a

f(λ)dµ(λ), µ(λ) =







0, if λ < a = λ1,
∑i

k=1 wkzk, if λi ≤ λ < λi+1,
∑n

k=1 wkzk, if b = λn ≤ λ.

This integral can be approximated by means of a Gauss-type quadrature rule:

∫ b

a

f(λ)dµ(λ) =

p
∑

j=1

cjf(tj) +

q
∑

k=1

vkf(τk) + R[f ], (8.3)
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where R[f ] denotes the error. Here the nodes {tj}pj=1 and the weights {cj}pj=1 are
unknown, whereas the nodes {τk}qk=1 are prescribed. We have

• q = 0 for the Gauss rule,
• q = 1, τ1 = a or τ1 = b for the Gauss–Radau rule,
• q = 2, τ1 = a and τ2 = b for the Gauss–Lobatto rule.

For certain matrix functions, including the exponential and the resolvent, these
quadrature rules can be used to obtain lower and upper bounds on the quantities of
interest; prescribing additional quadrature nodes leads to tighter and tighter bounds,
which (in exact arithmetic) converge monotonically to the true values [16]. The eval-
uation of these quadrature rules is mathematically equivalent to the computation
of orthogonal polynomials via a three-term recurrence, or, equivalently, to the com-
putation of entries and spectral information of a certain tridiagonal matrix via the
Lanczos algorithm. Here we briefly recall how this can be done for the case of the
Gauss quadrature rule, when we wish to estimate the ith diagonal entry of f(A). It
follows from (8.3) that the quantity of interest has the form

∑p

j=1 cjf(tj). This can
be computed from the relation (Theorem 3.4 in [16]):

p
∑

j=1

cjf(tj) = eT
1 f(Jp)e1,

where
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is a tridiagonal matrix whose eigenvalues are the Gauss nodes, whereas the Gauss
weights are given by the squares of the first entries of the normalized eigenvectors of
Jp. The entries of Jp are computed using the Lanczos algorithm with starting vectors
x−1 = 0 and x0 = ei. Note that it is not required to compute all the components of
the eigenvectors of Jp if one uses the Golub–Welsch QR algorithm; see [16].

For small p (i.e., for a small number of Lanczos steps), computing the (1, 1) entry
of f(Jp) is inexpensive. The main cost in estimating one entry of f(A) with this
approach is associated with the sparse matrix-vector multiplies in the Lanczos algo-
rithm applied to the adjacency matrix A. If only a small, fixed number of iterations
are performed for each diagonal element of f(A), as is usually the case, the compu-
tational cost (per node) is at most O(n) for a sparse graph, resulting in a total cost
of O(n2) for computing the subgraph centrality of every node in the network. If only
k < n subgraph centralities are wanted, with k independent of n, then the overall cost
of the computation will be O(n) provided that sparsity is carefully exploited in the
Lanczos algorithm and that only a small number p of iterations (independent of n) is
carried out. Note, however, that depending on the connectivity characteristics of the
network under consideration, the prefactor in the O(n) estimate could be large. The
algorithm can be implemented so that the storage requirements are O(n) for a sparse
network—that is, a network in which the total number of links grows linearly in the
number n of nodes.

As already mentioned, a nice feature of the approach based on Gauss quadrature
is that it yields monotonically converging lower and upper bounds. As shown in
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Table 8.1

The number of iterations necessary for the top 10 hubs or authorities to be determined (not
necessarily in the correct order).

Dataset hub (lower bound) hub (upper bound)
Abortion > 40 > 40

Comp. Complex. 3 3
Death Penalty 5 3

Dataset authority (lower bound) authority (upper bound)
Abortion 2 2

Comp. Complex. 4 5
Death Penalty 4 2

section 8.1 below, in a typical network this allows for the rapid identification of nodes
with high hub and authority scores, which often is all one needs. Indeed, as soon as
the lower bound for a node becomes larger than the upper bound for another node,
it is known that the former is ranked higher than the latter, and additional iterations
cannot alter that fact. This is especially useful when we want to compare pairs of
nodes in terms of their hub or authority rankings.

When applying the approach based on Gauss quadrature rules to the 2n × 2n
matrix A, only matrix-vector products with A and its transpose are required, just
like in the HITS algorithm. If only the hub scores are wanted, it is also possible
to apply the described techniques to the symmetric matrix AAT using the function
f(λ) = cosh(

√
λ); the same applies if only the authority scores are wanted, working

this time with the matrix AT A. The problem with this approach is that only estimates
(rather than increasingly accurate lower and upper bound) can be obtained, due to
the fact that the function f(λ) = cosh(

√
λ) is not strictly completely monotonic on

the positive real axis. We refer to [2] for details. In our experiments we always work
with the matrix A, since we are interested in computing both hub and authority
scores.

8.1. Test results. Accurate evaluation of all the diagonal entries of eA using
quadrature rules is too expensive for truly large-scale graphs. In most applications,
fortunately, it is not necessary to rank all the nodes in the network: only the top
few hubs and authorities are likely to be of interest. When using quadrature rules,
the number of quadrature nodes (Lanczos iterations) required to correctly rank the
nodes as hubs or authorities varies and depends on both the eigenvalues of eA and
how close the diagonal entries are in value. If the rankings of the nodes are very close,
it can take many iterations for the ordering to be exactly determined. However, since
estimates for diagonal entries are calculated individually, once the top 10 (say) nodes
have been identified, additional iterations can be performed only on these nodes in
order to determine their exact ranking.

The number of iterations necessary to identify the top 10 hubs and authorities,
using Gauss-Radau lower and upper bounds, for the three datasets from section 6
is given in Table 8.1. From this table it can be seen that, in most cases, only 2-5
iterations are needed. An exception is the determination of the top 10 hubs of the
abortion dataset, for which the number of iterations is large (> 40). This is due to
a cluster of nodes (nodes 960 and 968-990) that have nearly identical hub rankings.
These nodes’ scores agree to 15 significant digits. However, for most applications, if a
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Table 8.2

The number of iterations necessary for the top 10 hubs or authorities to be ranked in the top 30.

Dataset hub (lower bound) hub (upper bound)
Abortion 5 4

Comp. Complex. 2 2
Death Penalty 2 2

Dataset authority (lower bound) authority (upper bound)
Abortion 2 2

Comp. Complex. 4 2
Death Penalty 2 2

subset of nodes are so closely ranked, their exact ordering may not be so important.
Table 8.2 reports the number of Lanczos iterations neeeded for the top 10 hubs and
authorities to be ranked at least in the top 30. Here, the number of iterations needed
is always no more than 5. Using a simple implementation based on G. Meurant’s
Matlab code [24], which has not been optimized, the running times range from 0.58s
for the computational complexity data set to 6.41s for the abortion data set.

9. Conclusions and outlook. In this paper we have presented a new approach
to ranking hubs and authorities in directed networks using functions of matrices.
Bipartization is used to transform the original directed network into an undirected
one with twice the number of nodes. The adjacency matrix of the bipartite graph
is symmetric, and this allows the use of subgraph centrality (and communicability)
measures for undirected networks. We showed that the diagonal entries of the matrix
exponential provide hub and authority rankings, and we gave an interpretation for the
off-diagonal entries (communicabilities). Unlike HITS, the results are independent of
any starting vectors, and the proposed method appears to be superior to the variant
of HITS known as “exponentiated input HITS”, which is unreliable in the presence
of a large number of nodes with 0 in-degree (a common occurrence in many real-life
networks).

Numerous examples, both synthetic and corresponding to real datasets, have been
used to demonstrate the effectiveness of the proposed ranking algorithms relative to
HITS and its exponentiated input variant. In particular, our experiments indicate
that our method results in rankings that are different, and arguably better, than
those computed by HITS in the absence of large gaps between the dominant singular
value of the adjacency matrix of the digraph and the remaining ones. This is to be
expected, since our method uses information from all the singular spectrum of the
network, not just the dominant left and right singular pairs.

The price to pay from the more refined rankings obtained is a higher computa-
tional cost than HITS. We showed how Gaussian quadrature rules can be used to
quickly identify the top ranked hubs and authorities for networks involving thousands
of nodes.

Future work should include a comparison of the matrix exponential with other
possible matrix functions, and tests on large networks. It is likely that the proposed
approach based on Gaussian quadrature will prove to be too expensive for truly large-
scale networks with millions of nodes. We hope to explore techniques similar to
those presented in [4] and [29] in order to extend our methodology to truly large-
scale networks. Finally, we are currently investigating the rate of convergence of the
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Lanczos algorithm for estimating bilinear forms associated with adjacency matrices
of graphs of different types.
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