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Abstract. This paper describes a nonlinear least squares framework to solve a separable non-
linear ill-posed inverse problems that arises in blind deconvolution. It is shown that with proper
constraints and well chosen regularization parameters, it is possible to obtain an objective function
that is fairly well behaved and the nonlinear minimization problem can be effectively solved by a
Gauss-Newton method. Although uncertainties in the data and inaccuracies of linear solvers make it
unlikely to obtain a smooth and convex objective function, it is shown that implicit filtering optimiza-
tion methods can be used to avoid becoming trapped in local minima. Computational considerations,
such as computing the Jacobian, are discussed, and numerical experiments are used to illustrate the
behavior of the algorithms. Although the focus of the paper is on blind deconvolution, the general
mathematical model addressed in this paper, and the approaches discussed to solve it, arise in many
other applications.
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1. Introduction. In many imaging situations, from astronomy to microscopy,
the observed image is degraded by blurring and noise [1, 15, 22]. Although the blur-
ring can be partially removed through the use of sophisticated, and expensive, imaging
devices, computational post processing techniques are also often used to further im-
prove the resolution of the image. This post processing is usually called deconvolution
when the true blurring operator is known, whereas blind deconvolution implies that
the blurring operator is not known.

Blind deconvolution can be modeled as an inverse problem of the form

b = A(y true)x true + η (1.1)

where b ∈ Rn is the measured, blurred and noisy image (η models the noise), and
x true ∈ Rn represents the unknown true image. The vector y true ∈ Rm is unknown,
and A(y) is a nonlinear operator, which models the blurring, that maps y into an
n × n matrix. The matrix A(y) is typically severely ill-conditioned, with singular
values that cluster at zero. We call equation (1.1) a separable inverse problem because
the measured data depends linearly on the unknown vector x, and nonlinearly on the
unknown vector y. In addition to blind deconvolution, separable inverse problems
arise in many applications, such as super-resolution (which is an example of image
data fusion) [7, 17], cryo-EM microscopy imaging [10, 11, 16, 23, 26, 29], and in seismic
imaging applications [14].

Given the data b and the mapping A(·), the aim is to compute approximations x
and y of, respectively, x true and y true. Generally this is done by defining an objective
function, f0(x,y), and then using an optimization algorithm to solve

min
x,y

f0(x,y) . (1.2)
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To solve the nonlinear problem (1.2) we use the variable projection method [12, 13,
18, 19, 25, 28, 30] to obtain a reduced cost functional,

f(y) = f0(x(y),y), (1.3)

that depends only on y. In general, computing a minimum of f is difficult because
it may not have a well defined global minimum, and there are many local minima
in which an iterative solver, such as a standard Gauss-Newton method [20, 24], can
become trapped. To address these challenges, we show that if we can compute phys-
ically realistic approximations of x true for a fixed y, then it is possible to obtain an
objective function f having less local minima and whose global minimum is nearer to
the exact solution.

Because the problem is ill-posed, usually the objective function f0 incorporates
regularization. Moreover, further knowledge about the application should be used to
include appropriate constraints on x and y. In this paper we consider problems where
x ≥ 0, and we use a least squares fit-to-data term with Tikhonov regularization on x.
That is, our optimization problem is

min
x,y

f0(x,y) = ‖A(y)x− b‖22 + λ2‖x‖22 subject to x ≥ 0. (1.4)

We remark that in many applications, especially in image processing, a nonnegativity
constraint on x is used to obtain physically meaningful solutions (i.e., when x contains
pixels intensity values, these should be nonnegative).

An aim of this paper is to show that nonnegativity constraints result in a better
behaved objective function, which results in computing a better solution of problem
(1.2) when using a standard optimization method such as Gauss-Newton. We propose
a new computationally convenient approximation of the Jacobian. In addition, we
show that with proper constraints and good regularization parameter choice methods,
the objective function f0(x,y) will have the form

f0(x,y) = fs(x,y) + fe(x,y),

where fs is a smooth function that captures the large scale features of the objective
function, and which has a well defined and easy to find global minimum, and the
perturbation function fe captures relatively small perturbations associated with un-
avoidable local minima. Implicit filtering [21] is then used to solve the optimization
problem.

This paper is organized as follows. In Section 2 we describe the variable projection
method that can be used to obtain a reduced cost functional that depends only on
y, and which can then be solved using the Gauss-Newton method. In Section 3 we
discuss computation of the Jacobian of the reduced cost functional, in the context of
nonnegativity constraints on x. In Section 4 we describe a model problem in blind
deconvolution. In Section 5 we present some numerical experiments; in particular,
we investigate how incorporating physically realistic constraints on x and using well
chosen regularization parameters can have a significant effect on the behavior of the
objective function. Concluding remarks are given in Section 6.

2. Variable Projection. The variable projection method [12, 13, 18, 19, 25,
28, 30] can be applied to the objective function given in equation (1.4), so that the
linear variable x can be implicitly eliminated, resulting in a nonlinear reduced cost
functional depending only on y (1.3).
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In our case, x(y) is the nonnegative linear least squares solution of:

x(y) = min
x≥0
‖A(y)x− b‖22 + λ‖x‖22. (2.1)

Like in any nonnegatively constrained optimization problem, for any x ≥ 0 we can
define:

• the active set by A(x) = {i |xi = 0};
• and a diagonal matrix D(x) by

D(x)ii =

{
1 if i /∈ A(x)

0 if i ∈ A(x)
.

In the following we will use the notation D = D(x(y)), where x(y) is defined by (2.1).
Therefore the solution of (2.1) can be written by a closed formula as in [4]:

x(y) =
(
A(y)D

)†
λ

[
b
0

]
(2.2)

where
(
A(y)D

)†
λ

is the pseudoinverse of the 2n× n matrix

[
A(y)D
λI

]
.

By using (2.2), we obtain the following minimization problem:

min
y
f(y) =

∥∥∥A(y)
(
A(y)D

)†
λ

[
b
0

]
− b
∥∥∥2

2
(2.3)

which can be solved with a classical nonlinear least squares method, such as the Gauss-
Newton algorithm [24]. The computation of the Jacobian J of f(y) is discussed in
the next section.

Gauss-Newton Algorithm to solve: min
y
f(y)

choose initial y0

for l = 0, 1, 2, . . .

choose λl

xl = arg min
x

∥∥∥∥[ b
0

]
−
[

A(yl)D
λlI

]
x

∥∥∥∥
2

rl = b−A(yl)xl

dl = arg min
d
‖Jld− rl‖2, where Jl is the Jacobian of f

determine step length τl

yl+1 = yl + τldl

end

In [8] the authors apply the variable projection method to problem without the
nonnegative constraints. In [30] the authors deal with a nonnegative least squares
problem, but it is a small size and well-posed problem that does not require any
regularization. In the next section we discuss the important step of computing the
Jacobian matrix.
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3. Computing the Jacobian. The Gauss-Newton method requires the com-
putation of J(f(y)), the Jacobian matrix of f(y). Recall that f(y) can be expressed
as

f(y) =
∥∥∥A(y)(A(y)D)†λ

[
b
0

]
− b
∥∥∥2

2
(3.1)

and that the k-th column of J(f(y)) is vec
(
Jkf

)
, where

Jkf =
∂

∂yk

(
A(y)(A(y)D)†λ

[
b
0

])
. (3.2)

To reduce the computational complexity of (3.1), a pseudo Jacobian can be computed,
for example with one of the following formulations.

1. The Jacobian of the function f(y) can be approximated, as proposed in [30],
with the Jacobian of

g(y) =
∥∥∥A(y)(A(y))†λ

[
b
0

]
− b
∥∥∥2

2
, (3.3)

where A(y)†λ is the pseudoinverse of the matrix

[
A(y)
λIn

]
. Approximating J(f)

with J(g) means neglecting the constraints on x in the Jacobian computation.
2. In [18, 19], Kaufman proposed a pseudo-Jacobian computation for the uncon-

strained objective function g(y). By denoting with ∇k(A) the n× n matrix
(corresponding to the k-th column of the Jacobian):

∇k(A) =
∂A(y)

∂yk

and with ∇k(Aλ) the 2n× n matrix

∇k(Aλ) =
∂Aλ(y)

∂yk
,

after some algebraic manipulation, we obtain [30]:

Jkg =
[
∇k(A)−A(AH

λ Aλ)−1
(
∇k(Aλ)HA + AH

λ ∇k(Aλ)
)]

A†λ

[
b
0

]
, (3.4)

where AH is used to denote the Hermitian (complex conjugate) transpose
of A. In [18, 19] the second term is ignored and the proposed Kaufman
simplified Jacobian is:

J̃kg =
(
∇k(A)−AA†λ∇k(A)

)
A†λ

[
b
0

]
= (I−AA†λ)∇k(A)A†λ

[
b
0

]
(3.5)

Before considering the nonnegative case, we remark that

• ∇k(AD) = ∇k(A)D, and
• Dx = x, if x is expressed as in (2.1)
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Now, considering the closed formula of the nonnegative least squares solution (2.2),
we can extend the approximation (3.5) to f(y) so that

Jkf = ∇k(A)(AD)†λ

[
b
0

]
+ A∇k(AD)†λ

[
b
0

]
(3.6)

= ∇k(A)x + A∇k
((

(AD)H(AD) + λ2I
)−1

(AD)H
)[b

0

]
= ∇k(A)x−A

(
(AD)H(AD) + λ2I

)−1[∇k(AD)H(AD)+

+ (AD)H∇k(AD)
](

(AD)H(AD) + λ2I
)−1

(AD)H
[
b
0

]
= ∇k(A)x−

[
A
(
(AD)H(AD) + λ2I

)−1∇k(AD)H(AD)+

+ A(AD)†λ∇k(AD)
]
(AD)†λ

[
b
0

]
By applying Kaufman’s simplification in (3.6) we obtain

J̃kf =∇k(A)x−A(AD)†λ∇k(AD)x = (3.7)

=∇k(A)x−A(AD)†λ∇k(A)Dx =
(
I−A(AD)†λ

)
∇k(A)x

Let us briefly comment on the computation of the pseudoinverse (AD)†λ. Without
loss of generality, we may suppose that the active set contains n−r elements and thus

D =

[
Ir 0
0 0

]
.

If we partition the first r and the remaining n−r columns of A, that is A = [A1 A2 ],

then AD = [A1 0 ]. Since (AD)† =

[
A†1
0

]
[4] , by denoting (A1)†λ to be the pseu-

doinverse of the (n+ r)× r matrix

[
A1

λIr

]
, it follows that we can define

(AD)†λ =

[
(A1)†λ 0

0 λ−1In−r

]
. (3.8)

The QR decomposition can be used to compute (A1)†λ. Note that (A1)†λ has smaller

dimension than A†λ, and so computing Kaufman’s simplified Jacobian with (3.7) is

more convenient than using (3.5). Moreover, in order to compute (AD)†λ through
(3.8) we need D = D(xtrue), which is unknown. But in [20] and [6] the authors
prove that the gradient and the Newton projection methods, respectively, identify the
binding constraint at xtrue in a finite number of iterations. That is, there exists a k
such that the active set A(xtrue) = A(xk) for each k > k. Since D is defined by the
active set, this ensures us that

D(xtrue) = D(xk) for each k > k.

In practice this means that, at each iteration of the Gauss-Newton algorithm, in order
to compute the Jacobian matrix Jl we can use D = D(xl).

In any case, it should be observed that in large scale problems (such as blind
deconvolution), the computation of the pseudoinverse for a general matrix A is com-

putationally very expensive. A better alternative should be to compute (AD)†λv as
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the solution of problem (2.1) with data vector v. Moreover, in large scale problems
such as blind deconvolution, the matrix A is not explicitly constructed, but instead
is accessed implicitly through the parameter vector y. For this reason, in all the nu-
merical experiments presented in Section 5, we compute by finite difference methods
J(f(y)) (see (3.2)) or its approximation J(g(y)) (see (3.4)).

4. Blind Deconvolution Model Problem. To describe the blind deconvolu-
tion problem, we first need a mathematical model of the image formation process.
One simple and often used model is the convolution equation,

b(s, t) = p(s, t) ∗ x(s, t) + η(s, t) ,

where x(s, t) is a function representing the true image, which is convolved with a
point spread function (PSF), p(s, t), and after including η(s, t), to model additive
noise, we obtain the observed image, b(s, t). The convolution equation assumes that
the blur is spatially (i.e., shift) invariant, so it cannot be used to model more difficult
problems. In addition, it does not indicate that it is often the case that the PSF can
be represented in terms of only a few parameters. Although we could use a general
integral equation to model the image formation process, because data are given in
discrete form, we prefer to move directly to the discretized equation (1.1), where

• b is a vector representing the observed, blurred and noisy image.
• x is vector representing the unknown true image we wish to reconstruct.
• A(y) is an ill-conditioned matrix, representing the PSF, defined by a vector of

parameters, y. A may be sparse and/or structured. For example, if the blur
is spatially invariant and periodic boundary conditions are imposed, then A
has a circulant structure.

• y is a vector of parameters defining the (true) blurring operation. For exam-
ple, in the case of spatially invariant blurs, y could simply be the pixel (image
space) values of the PSF. Or y could be a small set of parameters that define
the PSF. For example, in the case of a simple Gaussian PSF, we have

p(s, t) =
1

2π
√
δ

exp

(
−1

2

[
s t

] [ σ2
1 ρ2

ρ2 σ2
2

]−1 [
s
t

])
(4.1)

where δ = σ2
1σ

2
2 − ρ4 > 0. In this case the parameter vector y contains only

three values, σ1, σ2 and ρ.
• η is a vector that represents unknown additive noise in the measured data.

Generally η is a combination of background and readout noise, where the
background noise is modeled as a Poisson random process with fixed Poisson
parameter, and the readout noise is modeled as a Gaussian random process
with zero mean and fixed variance [2, 5, 31, 32].

The aim of image deblurring algorithms is to reconstruct an approximation of the
image x true. Because the convolution model is often assumed for the image formation
process, the term deconvolution is typically used when y true (i.e., the true blurring
operator) is known, whereas blind deconvolution implies that y true is not known.

We are interested in the blind deconvolution problem, which is modeled as a sep-
arable nonlinear inverse problem. We remark that if a good estimate of the blurring
operator is known, then it may be appropriate to use a regularized total least squares
model [27]. However, these techniques are not applicable for general blind deconvo-
lution problems, and therefore we consider the nonlinear least squares formulation
described earlier in the paper.
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5. Numerical Examples. To motivate the constrained approach to solving
the blind deconvolution problem, we first present some results obtained with the
Gauss-Newton method described in section 2. We consider both unconstrained and
constrained solvers and we compare the results obtained in the two cases. Finally, to
explain the observed behavior, we consider a simple example in which it is possible
to investigate the objective function.

5.1. Nonnegative Constraint. We begin by illustrating how imposing non-
negative constraints on x provides better results for both the linear and nonlinear
variables. In particular we consider as a true object the satellite image, blurred by
the Gaussian PSF (4.1) defined by the parameter ytrue = (σ1, σ2, ρ) = (1.5, 2, 0.5) and
corrupted by 5% white Gaussian noise. The PSF and the true object x we use are
shown in Fig. 5.1. We solve the problem with the Gauss-Newton method described in
section 2 with the starting point y0 equal to (10, 12, 5) in all the presented experiments
of this section.

(a) Gaussian PSF (b) True object, x true.

Fig. 5.1. Test data: Left is a Gaussian PSF as given in equation (4.1) with y true = [σ1, σ2, ρ]T ,
where σ1 = 1.5, σ2 = 2, and ρ = 0.5. Right is the true object, x true.

We begin by using Tikhonov regularization in the deconvolution problem for the
computation of x(y). That is, for each y we compute:

x(y) = arg min
x
‖b−A(y)x‖22 + λ2‖x‖22. (5.1)

The first consideration is to determine what to use for the regularization param-
eter λ. Since the “optimal” value for λ depends not only on the data b but also on
the matrix A(y), it makes sense to use different values for different y. It would be
difficult to specify these values a priori, and thus it is appropriate to attempt to use a
regularization parameter choice method, such as weighted generalized cross validation
(WGCV) [9].

Then we consider including a nonnegativity constraint in the deconvolution; that
is, we compute x(y) as:

x(y) = arg min
x≥0
‖b−A(y)x‖22 + λ2‖x‖22. (5.2)

To solve this constrained deconvolution problem we use a standard gradient projec-
tion method [20, 24]. Although methods have been developed to select regularization
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parameters for constrained problems directly from the data (see, e.g., [3]), they are
less developed than in the unconstrained case. In our tests, the regularization param-
eter has been selected as the value minimizing, at each step l of the Gauss-Newton
algorithm, the error:

‖y true − yl‖2
‖y true‖2

(5.3)

where yl is the estimated vector of parameters at step l. In fact, we have observed
that the value λl minimizing the relative error on the x vector:

‖x true − xl‖2
‖x true‖2

produces a larger error on the parameters y. We have also observed that the values of
λl selected by minimzing (5.3) are almost the same for all the Gauss Newton iterations;
hence, we used a constant λ.
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Fig. 5.2. Plots of the relative errors during the Gauss-Newton iterations. Left is the error of
the nonlinear parameter y; right is the error of the image x.

In Fig. 5.2 we compare the relative errors obtained by computing, in the blind
deconvolution process, x(y) as the solution of the unconstrained problem (5.1) (blue
triangles) and of the constrained problem (5.2), where the results using the true
Jacobian J(f) (black squares) is compared with results when J(f) is approximated
with the Jacobian for the unconstrained problem, J(g) (red dots). All the Jacobians
are computed by centered finite difference approximations.

From these results we see that imposing nonnegative constraints allows to better
eliminate the noise, especially in the black background; see Fig. 5.3, where we display
surface mesh plots of a portion of the reconstructed images, compared with the truth.
From the figures, it is evident that the constrained approach gives better approxi-
mations of both the x and y parameters. The left plot of Fig. 5.2 shows that the y
error curve of the Gauss-Newton method has a semiconvergent behaviour in all the
three cases, but it is flatter when imposing the nonnegative constraints. When a good
solution is computed, the objective function becomes flat, as shown in Fig. 5.4. To
make the method automatic, we propose stopping the Gauss-Newton iterations when

|f(xk+1)− f(xk)|
f(xk+1)

≤ γ

2
.

We used as a good value for γ the level of noise in the observed data.
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Fig. 5.3. Surfaces of the true object and the reconstructed images x: Top is the satellite image.
In the second row is the image solution of the unconstrained problem. Bottom is the image obtained
by imposing nonnegative constraints.

For what concerns the Jacobian computation, the approximation of J(f) with
J(g) slightly affects the best errors on x and y obtained at the fifth Gauss-Newton
iteration while saving computational time.

5.2. Objective function investigations. Our aim is now to explain why the
results obtained with a nonnegative model (5.2) are better than the results of the
unconstrained formulation (5.1). We consider a simpler example than before, where
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Fig. 5.4. Objective function behaviour

the parameters in (4.1) are σ1 = σ2 = 2, ρ = 0. In this case the objective function
depends on only one parameter. We compare the objective functions g(y) (3.3) and
f(y) (3.1). Recall that the only difference between g(y) and f(y) is the computation
of the solution x(y) of the deconvolve step. In all the tests we solve the deconvolution
problems (respectively (5.1) and (5.2)) as we did in the previous subsection.

We first evaluate g(y) for various values of y and we obtain the plot shown in
Fig. 5.5.

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

10
−4

Fig. 5.5. Plot of of the objective function g(y). The regularization parameter needed to compute
x(y) is chosen using a weighted generalized cross validation method. The red dot indicates f(y true).

For this example we see that the objective function does not have a minimum at
the desired solution y true = 2. We next investigate how the accuracy of computing
x(y) in our deconvolve step affects the behavior of the objective function. Recall that
to obtain the objective function shown in Fig. 5.5 we used Tikhonov regularization
to compute x(y), using a weighted GCV scheme to choose regularization parameters.
It is possible that an alternative parameter choice method will result in an objec-
tive function with a well defined global minimum. However, rather than testing the
plethora of other parameter choice methods, we instead find the “optimal” λ that
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results in an x(y) that minimizes the error,

‖x(y)− x true‖2
‖x true‖2

. (5.4)

Of course this is not possible in a realistic situation when the true object is not known,
but it does provide us with an idea of what is potentially possible. Using this approach
to find the “optimal” λ at each iteration, the objective function for various values of
y is shown in Fig. 5.6.

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

10
−4

Fig. 5.6. Plot of of the objective function g(y). The regularization parameter needed to compute
x(y) is chosen to minimize ‖x(y)− x true‖2/‖x true‖2. The red dot indicates g(y true).

In this case, the objective function has a global minimum. But unfortunately the
value of y at which the objective function reaches its global minimum is not the desired
value y true. Moreover, the objective function is very flat near the global minimum,
which can make it difficult to recognize.

We could go one step further and suppose we are lucky to have a deconvolve
method that always computed the exact solution, x(y) = x true. In this extremely
unrealistic case, we obtain the objective function shown in Fig. 5.7.

Although it is impossible to have a deconvolution solver that always computes
x(y) = x true, this, along with the case when we computed x(y) with an optimal
regularization parameter, does suggest that we can help the optimization method by
using a deconvolution solver that computes more physically realistic approximations
of x true. One simple example to do this is to include a nonnegativity constraint within
the deconvolution solver and compute the objective function f(y) instead of g(y).

To test the constrained solver, we begin by using the optimal regularization pa-
rameters for the unconstrained problem, and compare them with more appropriate
values for the constrained problem, found through experimentation1. The results are
shown in Fig. 5.8.

We observe that the nonnegativity constraint, along with well chosen regulariza-
tion parameters, is very effective in producing an objective function f(y) whose global

1We started with the λ values of the unconstrained problem, and reduced them systematically,
eventually by a factor of 200, until we observed values that produced an objective function whose
global minimum occurs near y true.
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Fig. 5.7. Plot of of the objective function g(y). Here we use x(y) = x true. The red dot
indicates f(y true).
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Fig. 5.8. Plot of of the objective function f(y), where x(y) is obtained by solving, to high
accuracy, the nonnegative constrained Tikhonov regularized deconvolution problem. The red dot
indicates f(y true). The plot of f(y) on the left was obtained by using λopt, the optimal λ’s for the
unconstrained problem (see Fig. 5.6), and the plot on the right was obtained using λopt/200.

minimum is near f(y true). However, we note that f(y) has several local minima, and
the optimization algorithms can easily become trapped in one of these, believing it
has reached a global optimal solution.

5.3. IMFILT: An Optimization Method to Avoid Local Minima. As
observed in the previous subsection, even if we are able to solve the deconvolution
problem well, there is still the issue of the optimization algorithm becoming trapped
in local minima. However, if the objective function is fairly well behaved, such as in
the case of the right plot in Fig. 5.8, then the implicit filtering optimization methods
developed by Kelley [21] can be effective. The implicit filtering methods were designed
specifically for objective functions that have the form

f(y) = fs(y) + fe(y) (5.5)

where fs is a smooth function, and fe is a perturbation function that models the small
oscillations that could cause f to have many local minima.
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The basic idea of implicit filtering is based on using finite difference approxima-
tions to compute derivatives. For example, a forward difference approximation of the
gradient has the form

[∇h f(y)]i =
f(y + hei)− f(y)

h
,

where ei is the ith unit vector, and h is a, usually small, scalar. In the case of
nonlinear least squares, a similar approach can be used to approximate the Jacobian.
These approximations for the derivatives can then be used in optimization methods,
such as gradient descent or Gauss-Newton, in place of the analytic derivative. Implicit
filtering methods exploit the fact that the value for h can have an effect on convergence.
In particular, implicit filtering introduces another level of iteration that repeatedly
reduces h, e.g., hl = 2−(l+s) where l is the outer iteration index, and s ≥ 0 can be
used to indicate a starting scale. At each outer iteration, the optimization method
is used to solve the minimization problem with the finite difference approximations
corresponding to the current value of hl.

To illustrate its potential for the blind deconvolution problem, we obtained the
recent version of Kelley’s MATLAB software [21], and applied it to the situation
shown in the right plot of Fig. 5.8. We first solved the problem using a standard
damped Gauss-Newton method. Using the the initial guess y0 = 1.5 the damped
Gauss-Newton iteration gets trapped in a local minimum at y = 1.489508423766336.
Moreover, using the different initial guess y0 = 1.75, the damped Gauss-Newton
iteration gets trapped in a different local minimum, y = 1.745316540312289.

However, using the default options in Kelley’s implicit filtering method, the iter-
ation converges to a very good approximation of y true = 2 for both initial guesses.
Specifically, with the initial guess y0 = 1.5 the implicit filtering iteration converges to
y = 2.010364508143452, and with y0 = 1.75 it converges to y = 1.997891906915320.

6. Concluding Remarks. In this paper we have illustrated that a substan-
tial amount of uncertainty arises when solving blind deconvolution problems, and
more generally when solving separable ill-posed inverse problems. This uncertainty is
caused not only by noise and measurement errors, but also by imprecise regulariza-
tion parameters and linear solvers, and it suggests that it is perhaps too ambitious to
hope that one can design an objective function that is convex with a unique global
minimum. Moreover, typical optimization algorithms converge to local minima; hence
they can compute undesired solutions when the objective function is not convex (as
in Fig. 5.5) or it is flat near the global minimum (as in Fig. 5.6). In this paper
we showed that imposing constraints on some parameters, i.e. solving the ill-posed
problem with greater accuracy, produces an objective function more suitable for the
common optimization algorithms, such as Gauss-Newton.

Moreover we argue that, for an efficient solution of separable ill-posed problems,
the goal should be to design tools that achieve an objective of the form given by
equation (5.5), so that a robust implicit filtering scheme can be used to solve the
optimization problem. Specifically, to effectively solve a separable ill-posed inverse
problem, one should:

• Use robust and efficient methods to solve the linear inverse problems, with
the goal to compute physically accurate approximations of x true for a current
set of parameters yl at each nonlinear iteration. Because these methods need
to be used within a nonlinear solver, it is essential that they automatically
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adapt to the information available at the current iteration, and that they
require little or no input from the user.
• Although a substantial amount of work has been done to develop methods to

automatically choose regularization parameters for unconstrained deconvo-
lution problems, relatively little has been done for the constrained problem.
Research on this topic could make a significant impact for separable nonlinear
inverse problems.

We have illustrated, using an example from blind deconvolution, if one can achieve
these goals, then implicit filtering methods [21], which have been developed to solve
optimization problems with objective functions of the form given by equation (5.5),
can be effective for ill-posed inverse problems.
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