Projective algebraic sets

A point $P \in \mathbb{P}^{n}$ is a zero of a polynomial $f \in k[\pi_{1}, \dots, \pi_{n+1}]$ if $f(a_{1}, \dots, a_{n+1}) = 0$ for every choice $P = [a_{1} : a_{2} : \dots : a_{n+1}]$ of homogeneous coordinates for P.

$$E_{X}: f(x,y) = x - y + 1. \text{ Then if } P = [2:1] = [4:2],$$

$$f(2,1) = 0, \text{ bnt } f(4,2) \neq 0, \text{ so } P \text{ is } \underline{not} = a \text{ Zero}$$

of f.

Pf: F homogeneous of degree d. Let

$$P = [a_1; \dots; a_{n+1}] = [\lambda a_1; \dots; \lambda a_{n+1}].$$

Suppose $F(a_{1},...,a_{n+1}) = 0$. Then $F(\lambda a_{1},...,\lambda a_{n+1}) = \lambda^{d} F(a_{1},...,a_{n+1}) = 0$

Let
$$f \in k[x_{1,...,x_{n+1}}]$$
. Write $f = f_0 + ... + f_d$ where f_i is
homogeneous of degree i. Then $P \in \mathbb{P}^n$ is a zero of $f \iff P$ is a
zero of $f_i \forall i$. (on HW)

Def: Let
$$S \subseteq k[\pi_{1,\ldots}, \pi_{n+1}]$$
. $V(S) = \{P \in P^{m} | P is a zero of each\}$

V(S) is called a <u>projective</u> <u>algebraic</u> <u>set</u>.

Note:
1) If
$$T = the ideal generated by S, then $V(T) = V(S)$.
2) If $T = (f_1, \dots, f_r)$ and $f_i = \sum f_{ij}, then $V(T) - V(\{f_{ij}\}_{ij})$
form of day j
So $V(S)$ is the set of zeros of a finite $\#$ of forms.
Def: let $X \in \mathbb{P}^n$. The ideal of X is
 $T(X) = \{f \in k[x_1, \dots, x_{n+1}] \mid e^{vousp} p \in X \text{ is}\}$
An ideal $T \subseteq k[x_1, \dots, x_{n+1}]$ is homogeneous if $\forall f = \sum f_i \in T$
(fi form of deg i), fi $\in T$ as well.
Note: $T(X)$ is homogeneous.
 E_X : $(\pi + y^2)$ is not homogeneous.$$$

Prop: An ideal
$$I \subseteq k[x_1, ..., x_{n+1}]$$
 is homogeneous \iff it's generated by a (finite) set of forms.

$$\frac{Pf}{F}: \text{ let } I = (f_{i}, \dots, f_{r}) \text{ and } f_{i} = \sum_{i=1}^{r} \text{ and suppose } I \text{ is } f_{i} \text{ bomogeneous.}$$

Thus
$$f_{ij} \in I \quad \forall i, j \text{ and } I \subseteq (f_{ij})_{i, j} \implies I = (f_{ij})_{i, j}$$
.

Now suppose
$$I = (f_1, \dots, f_r)$$
, each fin form of deg di.
Suppose $g = g_m + g_{m+1} + \dots + g_s \in I$, g_j a form of deg j.

We show $g_i \in I$ by induction on m, where the base case is m = s, i.e. g_i is already homogeneous.

i.e. assume true when smallest deg of g >m.

$$g = \sum a_i f_i$$
. Since each f_i is a form, we can write
 $a_i f_i = (a_{i0} + a_{i1} + ...) f_i = a_{i0} f_i + a_{i1} f_i + ...$
form of deg d_i deg $d_i + i$...

so $g_m = a_{1,m-d_1} f_1 + \dots + a_{r,m-d_r} f_r \in \mathbb{T}$. Thus, $g - g_m \in \mathbb{T}$. Done by induction. D

<u>Remark</u>: Any projective algebraic set can be written V(I), where I is homogeneous, and for $X \subseteq \mathbb{P}^{n}$, I(X) is homogeneous, so we have

(not necessarily one-to-one!) satisfying analogous conditions as in the affine case.

Ex: Points in \mathbb{P}^2 let $\mathbb{P}=(a:b:c] \in \mathbb{P}^2$ WLOG, c=1, so $\mathbb{P}=[a:b:1]$. let $\mathbb{I}=(a \neq -\pi, b \neq -\gamma)$. $\mathbb{P}\in V(\mathbb{I})$, and if $Q=[\alpha:\beta:\gamma]\in V(\mathbb{I})$, then $Q=[a\delta:b\delta:\delta]$ so $\delta\neq 0 \implies Q=P$. i.e. $V(\mathbb{I})=\{P\}$.

Def: An algebraic set $V \subseteq IP^m$ is <u>irreducible</u> if it's not the union of two smaller algebraic sets. An irreducible algebraic set in IP^m is a <u>projective variety</u>.

Claim:
$$V \subseteq \mathbb{P}^{h}$$
 irreducible $\iff \mathbb{I}(v)$ is prime.

Pf: Essentially the same as the affine case.

Affine comes let
$$V \subseteq \mathbb{P}^n$$
 be an algebraic set.

Def: The affine cone over
$$\bigvee$$
 is
 $C(V) = \{(a_1, \dots, a_{n+1}) \in |A^{n+1}| [a_1 : \dots : a_{n+1}] \in V \} \cup \{o\}$

i.e. the union of the corresponding likes in affine space.

$$\underbrace{\mathsf{E}}_{\mathbf{X}}: \ \mathsf{L} \ \mathbf{V} = \left\{ \begin{bmatrix} \mathsf{L}: \mathsf{O} \end{bmatrix}, \begin{bmatrix} \mathsf{L}: \mathsf{I} \end{bmatrix}, \begin{bmatrix} \mathsf{O}: \mathsf{I} \end{bmatrix} \right\} \subseteq \mathbb{P}^{\mathsf{I}}$$

Remark: 1.) If
$$V \neq \varphi$$
 then $I_a(C(V)) = I_p(V)$
affine $Projective$

2.) If I is a homogeneous ideal in $k[x_1, ..., x_{n+1}]$ s.t. $V_p(I) \neq \emptyset$, then $C(V_p(I)) = V_a(I)$

Thm: (Projective Nullstellensatz) let I be a homogeneous ideal In $k[x_1, ..., x_{n+1}]$. Then

1.) $V_{p}(I) = \emptyset$ \iff there's an integer N s.t. I contains all

forms of degree
$$\geq N$$
.

2.) If
$$V_{\mathbf{p}}(\mathbf{T}) \neq \phi$$
, then $\mathbf{T}_{\mathbf{p}}(\mathbf{V}_{\mathbf{p}}(\mathbf{T})) = \sqrt{\mathbf{T}}$.

Pf: 1.) First we reduce to a question about affine varieties. If $V_{p}(I) \neq \phi$, then $V_{a}(I) = C(V_{p}(I)) \supseteq \{(0,0,...,0)\}$ $|f \vee_{p}(I) = \phi, \text{ then } \vee_{a}(I) \setminus \{o\} = \phi \implies \bigvee_{a}(I) \subseteq \{o\}.$ So we need to show $V_{a}(I) \subseteq \{0\} \iff (x_{1,\ldots}, x_{n+1})^{N} \subseteq I$, some $N \ge 1$. $(f (x_{1,...,x_{h+1}})^{N} \subseteq I \text{ then } V_{a}(I) \subseteq V_{a}((x_{1,...,x_{h+1}})^{N}) = \{(0,...,0)\}.$ $| f \vee_{\mathbf{x}} (\mathbf{I}) \subseteq \{ (0, ..., 0) \}, \text{ then } (x_{1, ..., x_{n+1}}) \subseteq \sqrt{\mathbf{I}} \implies \exists r > 0 \text{ s.t.}$ xiet Vi. let N=r(n+1). Then any monomial of deg N will be divisible by x_i^* for some $i \implies (x_1, \dots, x_{n+i})^N \subseteq I$.

2.) If
$$\bigvee_{p}(L) \neq \emptyset$$
, then $\bot_{p}(\bigvee_{p}(L)) = \bot_{a}(\bigcup_{v}(U)) = \sqrt{T}$. \Box
= $\mathbb{I}_{a}(\bigvee_{a}(I)) = \sqrt{T}$. \Box

The usual corollaries hold, except we need to be careful of the invelocant <u>ideal</u> $I_{irr} = (x_{1}, ..., x_{n+1}).$

Cor: let
$$S = k[x_{1}, ..., x_{n+1}]$$
. We have the following bijective
correspondences (exer)
 $\begin{cases} algebraic sets \\ in P^n \end{cases} \iff \begin{cases} homogeneous radical \\ ideals in S, other \\ them Iirr \end{cases}$
 $\begin{cases} irreducible \\ algebraic sets \\ in P^n \end{cases} \iff \begin{cases} homogeneous prime \\ ideals, other than Iirr \\ ideals, other than Iirr \\ \end{cases}$
 $\begin{cases} irreducible \\ hypersurfaces \\ in P^n \end{cases} \iff \begin{cases} irreducible nonconstant \\ forms, up to scaling \\ \end{cases}$

The hyperplanes $V(x_i)$, i=1,...,n+1 are the <u>coordinate hyperplanes</u> or the hyperplanes at w w.r.t. each U_i .

Ex: In
$$\mathbb{P}^2$$
, the $V(\pi_i)$ are the three coordinate axes.
 $V(\pi_i)$ $V(\pi_2)$ Each pair intersects in one point.
 $\int V(\pi_3)$ $C_{1:o:oj}$

Def: V = Pⁿ a projective algebraic set is <u>Zaviski</u> <u>closed</u>. [Pⁿ\V is <u>Zaviski</u> open. This gives the <u>Zaviski</u> <u>topology</u> on Pⁿ. (exer: check that The subspace topology on U_i is the <u>Zaviski</u> topology we gave to affine space.)