Math 421 Problem Set September 29, 2022

- 1. Let G be a finite group.
 - (a) If |G| = 3, show that G is cyclic.
 - (b) If |G| = 4, show that G is either cyclic, or isomorphic to $Z_2 \times Z_2$, the product of two cyclic groups of order 2.
 - (c) Show that if G has prime order, it must be cyclic.
 - (d) Show that G has even order if and only if it has an element of order 2. [Hint: Consider the set $\{x \in G \mid x \neq x^{-1}\}$. How many elements does it have? What is its complement?]
- 2. Let n be a positive integer greater than 1. For each $a \in \mathbb{Z}$, define the homomorphism $\sigma_a : Z_n \to Z_n$ by $\sigma_a(x) = x^a$.
 - (a) Show that σ_a is an automorphism (recall definition from Tuesday's homework) if and only if a and n are relatively prime.
 - (b) Show that $\sigma_a = \sigma_b$ if and only if $a \equiv b \pmod{n}$.
 - (c) Prove that every automorphism of Z_n is equal to σ_a for some integer a.
 - (d) Prove that $\sigma_a \circ \sigma_b = \sigma_{ab}$.
 - (e) Deduce that the map $\bar{a} \to \sigma_a$ is an isomorphism of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ onto the automorphism group of Z_n .