Math 421 Problem Set October 4, 2022

- 1. A group G is *finitely generated* if there is a finite set A such that $G = \langle A \rangle$.
 - (a) Show that every finitely generated subgroup of \mathbb{Q} (under addition) is cyclic.
 - (b) Show that \mathbb{Q} is not finitely generated.
 - (c) Find a proper subgroup of \mathbb{Q} (i.e. $H \leq \mathbb{Q}$ such that $H \neq \mathbb{Q}$) that is not cyclic.
- 2. A subgroup M of a group G is a **maximal subgroup** if $M \neq G$ and the only subgroups of G that contain M are M and G.
 - (a) Show that if H is a proper subgroup of a finite group G, then there is a maximal subgroup of G containing H^{1} .
 - (b) Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.
 - (c) Show that if $G = \langle x \rangle$ is a cyclic group of order *n*, then a subgroup *H* is maximal if and only if $H = \langle x^p \rangle$ for some prime *p* dividing *n*.

¹This is actually true in any finitely generated group – the proof uses Zorn's Lemma.