Math 421 Problem Set October 27, 2022

1. Let $G = Z_4 \times Z_4$, which has the following presentation:

$$G = \langle x, y \mid x^4 = y^4 = 1, xy = yx \rangle.^1$$

Let $\overline{G} = G/\langle x^2 y^2 \rangle$ (note that every subgroup of an abelian group is normal). For $g \in G$, denote the coset $g \langle x^2 y^2 \rangle$ by \overline{g} .

- (a) Show by Lagrange's Theorem that $|\bar{G}| = 8$.
- (b) Write each element of \overline{G} in the form $\overline{x}^a \overline{y}^b$ for some integers a and b.
- (c) Find the order of each of the elements of \overline{G} .
- (d) Show that $\overline{G} \cong Z_4 \times Z_2$.
- 2. Let G be a group. We showed in class that $Z(G) \leq G$.
 - (a) Show that if G/Z(G) is cyclic, then G is abelian. [Hint: Let xZ(G) be a generator. Then every element of G can be written in the form $x^a z$ for some $a \in \mathbb{Z}$ and $z \in Z(G)$.]
 - (b) Show that if |G| = pq for some primes p and q (not necessarily distinct), then either G is abelian or Z(G) = 1.

¹Note that instead of writing the generators as (x, 1) and (1, y), we are just writing x and y to make notation easier.