Math 421 Problem Set October 27, 2022

1. Let $G=Z_{4} \times Z_{4}$, which has the following presentation:

$$
G=\left\langle x, y \mid x^{4}=y^{4}=1, x y=y x\right\rangle .^{1}
$$

Let $\bar{G}=G /\left\langle x^{2} y^{2}\right\rangle$ (note that every subgroup of an abelian group is normal). For $g \in G$, denote the coset $g\left\langle x^{2} y^{2}\right\rangle$ by \bar{g}.
(a) Show by Lagrange's Theorem that $|\bar{G}|=8$.
(b) Write each element of \bar{G} in the form $\bar{x}^{a} \bar{y}^{b}$ for some integers a and b.
(c) Find the order of each of the elements of \bar{G}.
(d) Show that $\bar{G} \cong Z_{4} \times Z_{2}$.
2. Let G be a group. We showed in class that $Z(G) \unlhd G$.
(a) Show that if $G / Z(G)$ is cyclic, then G is abelian. [Hint: Let $x Z(G)$ be a generator. Then every element of G can be written in the form $x^{a} z$ for some $a \in \mathbb{Z}$ and $z \in Z(G)$.]
(b) Show that if $|G|=p q$ for some primes p and q (not necessarily distinct), then either G is abelian or $Z(G)=1$.

[^0]
[^0]: ${ }^{1}$ Note that instead of writing the generators as $(x, 1)$ and $(1, y)$, we are just writing x and y to make notation easier.

