Math 421 Problem Set November 1, 2022

- 1. Let $H \leq G$, and fix $g \in G$.
 - (a) Show $gHg^{-1} \leq G$.
 - (b) Show gHg^{-1} has the same order as H.
 - (c) Deduce that if n is a positive integer, and H is the unique subgroup of G of order n, then $H \trianglelefteq G$.
- 2. Let p be a prime integer.
 - (a) Find the order of the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$.
 - (b) Use Lagrange's Theorem to prove Fermat's Little Theorem: $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$. (Hint: Consider the residue class \bar{a} of a in $(\mathbb{Z}/p\mathbb{Z})^{\times}$. What is \bar{a}^{p-1} ?)