Math 421 Problem Set November 1, 2022

1. Let $H \leq G$, and fix $g \in G$.
(a) Show $g H^{-1} \leq G$.
(b) Show gHg^{-1} has the same order as H.
(c) Deduce that if n is a positive integer, and H is the unique subgroup of G of order n, then $H \unlhd G$.
2. Let p be a prime integer.
(a) Find the order of the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(b) Use Lagrange's Theorem to prove Fermat's Little Theorem: $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{Z}$. (Hint: Consider the residue class \bar{a} of a in $(\mathbb{Z} / p \mathbb{Z})^{\times}$. What is \bar{a}^{p-1} ?)
