Math 421 Problem Set November 3, 2022

1. Let H and K be subgroups of finite index in the group G, with $|G: H|=m$ and $|G: K|=n$.
(a) Let k be the least common multiple of m and n. Show that

$$
k \leq|G: H \cap K| \leq m n .
$$

(b) Deduce that if m and n are relatively prime, then $|G: H \cap K|=m n$.
(c) If $H \leq K \leq G$, show that $|G: H|=|G: K||K: H|$.
2. Let M and N be normal subgroups of G such that $G=M N$.
(a) Show that for any elements $m \in M$ and $n \in N$, there are elements $m^{\prime} \in M$ and $n^{\prime} \in N$ such that $m n^{\prime}=n m^{\prime}$.
(b) Prove that

$$
G /(M \cap N) \cong(G / M) \times(G / N) .
$$

[Hint: Come up with a map $G \rightarrow(G / M) \times(G / N)$ and show it's surjective. What is its kernel?]

