Math 421 Problem Set November 3, 2022

- 1. Let H and K be subgroups of finite index in the group G, with |G:H| = m and |G:K| = n.
 - (a) Let k be the least common multiple of m and n. Show that

$$k \le |G: H \cap K| \le mn.$$

- (b) Deduce that if m and n are relatively prime, then $|G: H \cap K| = mn$.
- (c) If $H \leq K \leq G$, show that |G:H| = |G:K||K:H|.
- 2. Let M and N be normal subgroups of G such that G = MN.
 - (a) Show that for any elements $m \in M$ and $n \in N$, there are elements $m' \in M$ and $n' \in N$ such that mn' = nm'.
 - (b) Prove that

$$G/(M \cap N) \cong (G/M) \times (G/N).$$

[Hint: Come up with a map $G \to (G/M) \times (G/N)$ and show it's surjective. What is its kernel?]