Math 421 Problem Set 22

November 17, 2022

1. Let G be a non-cyclic group of order 6 .
(a) Show that each nontrivial element of G has order 2 or 3 .
(b) Show that the nontrivial elements can't all have the same order, and thus G has an element x of order 2 and y of order 3 .
(c) Show that if $x y=y x$, then $G=\langle x y\rangle$. Conclude that $x y \neq y x$.
(d) Use part (c) to show that $\langle x\rangle$ is not normal.
(e) Consider the action by left multiplication of G on the set of left cosets A of $\langle x\rangle$. Let $\pi_{H}: G \rightarrow S_{A}$ be the associated permutation representation. Show that $\operatorname{ker} \pi_{H}=1$. (It might help to use a theorem from class.)
(f) Conclude that the only two groups of order 6 (up to isomorphism) are Z_{6} and S_{3}.
