Math 523 - Problem Set 2 Due Wednesday, Feb 16

- 1. Let $\phi : R \to S$ be a homomorphism of rings. Verify the claims made in class regarding the relationships between expansion and contraction of ideals:
 - (a) $(J \cap R)S \subseteq J$ for all ideals $J \subseteq S$.
 - (b) $I \subseteq (IS) \cap R$ for all ideals $I \subseteq R$.
 - (c) For each (a) and (b), give an example in which the inclusion is proper.
- 2. Let $U \subseteq R$ be a multiplicative set.
 - (a) Give an example to show that the natural map $R \to U^{-1}R$ is not always injective.
 - (b) Give necessary and sufficient conditions for R to be a subring of $U^{-1}R$ (via the natural map).
- 3. Show that localization at U is a indeed a functor from R-modules to $U^{-1}R$ -modules as follows:
 - (a) If $\phi: M \to N$ is an *R*-module homomorphism, describe the natural map

$$U^{-1}\Phi: U^{-1}M \to U^{-1}N$$

and check that it is a well-defined $U^{-1}R$ -module homomorphism.

- (b) If M is an R-module, show that $U^{-1}id_M = id_{U^{-1}M}$.
- (c) For *R*-module homomorphisms $\phi: M \to N$ and $\psi: N \to L$, show that

$$U^{-1}(\psi \circ \phi) = (U^{-1}\psi) \circ (U^{-1}\phi).$$

4. Show that the natural map

$$f: \operatorname{Spec}(U^{-1}R) \to \operatorname{Spec} R$$

is a homeomorphism onto its image $Y = \{P \mid U \cap P = \emptyset\}$.¹

- 5. If M is an R-module, use the universal property to verify that $R \otimes_R M \cong M$.
- 6. (a) Finish the proof from class of the claim that the tensor product is right exact.
 (b) Give an example to show that it is not necessarily left exact.²
- (a) If I and J are ideals of R, show that R/I ⊗_R R/J ≅ R/(I + J).³
 (b) Describe Z/(m) ⊗ Z/(n) for each pair m, n ∈ Z.
- 8. Let $\phi : \mathbb{C}[t] \to \mathbb{C}[x, y, t]/(xy-t)$ be the inclusion map. Describe as explicitly as possible the fibers of the induced map of Spec.

¹The closed sets of Y are those of the form $C \cap Y$, where C is closed in Spec R.

²Hint: Take M = R/I and consider a sequence $0 \to R \to R \to R/(f)$, where $f \in I$ is chosen appropriately.

³Hint: Use right-exactness of tensor product.