Math 523 - Problem Set 4 Due Wednesday, March 23

1. Let $R \subset S \subset T$ be rings.
(a) If S is module-finite over R and T is module-finite over S, prove that T is modulefinite over R.
(b) If S is integral over R and T is integral over S, prove that T is integral over R.
2. Let \mathbb{F}_{2} be the field with two elements, and \mathbb{F}_{2}^{X} the ring of \mathbb{F}_{2}-valued functions on an infinite set X. Prove that \mathbb{F}_{2}^{X} is integral over \mathbb{F}_{2} and compute its dimension.
3. For each $n \in \mathbb{Z}$, find the integral closure R of $\mathbb{Z}[\sqrt{n}]$ as follows:
(a) Show that you can reduce to the case where n is square-free.
(b) Show that R is the integral closure of \mathbb{Z} in the field $\mathbb{Q}[\sqrt{n}]$, and the minimal polynomial of $\alpha=a+b \sqrt{n}$ (with $a, b \in \mathbb{Q}$) is

$$
m(x)=x^{2}-(2 a) x+\left(a^{2}-b^{2} n\right) .
$$

Conclude $\alpha \in R$ if and only if the coefficients of m are integers.
(c) Show that if $\alpha \in R$, then $a \in \frac{1}{2} \mathbb{Z}$. If $a=0$, show $\alpha \in R$ if and only if $b \in \mathbb{Z}$. If $a=1 / 2$ and $\alpha \in R$, show that $b \in \frac{1}{2} \mathbb{Z}$. Thus, subtracting a multiple of \sqrt{n}, we can assume $b=0$ or $1 / 2$.
(d) Conclude that $R=\mathbb{Z}[1 / 2+1 / 2 \sqrt{n}]$ if $n \equiv 1(\bmod 4)$, and $\mathbb{Z}[\sqrt{n}]$ otherwise.
4. Let $R \subseteq S$ be integral domains. Assume there exists a map $S \rightarrow R$ which is the identity on R.
(a) Show that if S is norma then R is normal.
(b) Let k be a field and $R=k\left[x^{2}, x y, y^{2}\right] \subseteq k[x, y]$. Show that R is normal, but not a $U F D$.
5. Let k be a field and $R=k[x(1-x), y, x y] \subseteq k[x, y]=S$.
(a) Show that this is an integral extension of integral domains. ${ }^{2}$
(b) Show that $Q=(1-x, y) \in \operatorname{Spec} S$ contracts to $P=(x(1-x), y, x y)$, which is maximal in R.
(c) Show that $(x) \in \operatorname{Spec} S$ contracts to $P_{0}=(x(1-x), x y)$.
(d) Show that no prime Q_{0} contained in Q contracts to P_{0}. Why doesn't this contradict the Going Down Theorem?
6. Let $R=\mathbb{C}[x, y] /\left(y^{2}-x^{2}(x+1)\right)$, which corresponds to the nodal curve we saw in class. Set $t=y / x$.

[^0](a) Show that $R[t]=\mathbb{C}[t]$. Conclude that $R[t]$ is the normalization of R.
(b) Consider the corresponding normalization map $\phi: \operatorname{Spec}(\mathbb{C}[t]) \rightarrow \operatorname{Spec}(R)$. Show that the point $(x, y) \in \operatorname{Spec}(R)$ (corresponding to the node at the origin) has exactly two points in its fiber. (In fact, it's an isomorphism away from that point!)

[^0]: ${ }^{1}$ Remember that an integral domain is normal if it is its own integral closure in its field of fractions
 ${ }^{2}$ Hint: Let $f(t)=t^{2}-t+x(1-x)$.

