Math 523 - Problem Set 4 Due Wednesday, March 23

- 1. Let $R \subset S \subset T$ be rings.
 - (a) If S is module-finite over R and T is module-finite over S, prove that T is module-finite over R.
 - (b) If S is integral over R and T is integral over S, prove that T is integral over R.
- 2. Let \mathbb{F}_2 be the field with two elements, and \mathbb{F}_2^X the ring of \mathbb{F}_2 -valued functions on an infinite set X. Prove that \mathbb{F}_2^X is integral over \mathbb{F}_2 and compute its dimension.
- 3. For each $n \in \mathbb{Z}$, find the integral closure R of $\mathbb{Z}[\sqrt{n}]$ as follows:
 - (a) Show that you can reduce to the case where n is square-free.
 - (b) Show that R is the integral closure of Z in the field $\mathbb{Q}[\sqrt{n}]$, and the minimal polynomial of $\alpha = a + b\sqrt{n}$ (with $a, b \in \mathbb{Q}$) is

$$m(x) = x^{2} - (2a)x + (a^{2} - b^{2}n).$$

Conclude $\alpha \in R$ if and only if the coefficients of m are integers.

- (c) Show that if $\alpha \in R$, then $a \in \frac{1}{2}\mathbb{Z}$. If a = 0, show $\alpha \in R$ if and only if $b \in \mathbb{Z}$. If a = 1/2 and $\alpha \in R$, show that $b \in \frac{1}{2}\mathbb{Z}$. Thus, subtracting a multiple of \sqrt{n} , we can assume b = 0 or 1/2.
- (d) Conclude that $R = \mathbb{Z}[1/2 + 1/2\sqrt{n}]$ if $n \equiv 1 \pmod{4}$, and $\mathbb{Z}[\sqrt{n}]$ otherwise.
- 4. Let $R \subseteq S$ be integral domains. Assume there exists a map $S \to R$ which is the identity on R.
 - (a) Show that if S is normal¹, then R is normal.
 - (b) Let k be a field and $R = k[x^2, xy, y^2] \subseteq k[x, y]$. Show that R is normal, but not a UFD.
- 5. Let k be a field and $R = k[x(1-x), y, xy] \subseteq k[x, y] = S$.
 - (a) Show that this is an integral extension of integral domains.²
 - (b) Show that $Q = (1 x, y) \in \operatorname{Spec} S$ contracts to P = (x(1 x), y, xy), which is maximal in R.
 - (c) Show that $(x) \in \operatorname{Spec} S$ contracts to $P_0 = (x(1-x), xy)$.
 - (d) Show that no prime Q_0 contained in Q contracts to P_0 . Why doesn't this contradict the Going Down Theorem?
- 6. Let $R = \mathbb{C}[x, y]/(y^2 x^2(x+1))$, which corresponds to the nodal curve we saw in class. Set t = y/x.

¹Remember that an integral domain is *normal* if it is its own integral closure in its field of fractions ²Hint: Let $f(t) = t^2 - t + x(1 - x)$.

- (a) Show that $R[t] = \mathbb{C}[t]$. Conclude that R[t] is the normalization of R.
- (b) Consider the corresponding normalization map $\phi : \operatorname{Spec}(\mathbb{C}[t]) \to \operatorname{Spec}(R)$. Show that the point $(x, y) \in \operatorname{Spec}(R)$ (corresponding to the node at the origin) has exactly two points in its fiber. (In fact, it's an isomorphism away from that point!)