Math 523 - Problem Set 5 Due Wednesday, April 13

1. Let R be a ring and M an R-modules. Show that the following three statements are equivalent.
i M is flat.
ii $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all R-modules N and all $i>0$.
iii $\operatorname{Tor}_{1}^{R}(M, N)=0$ for all R-modules N.
2. Let $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ be a short exact sequence of R-modules. If $\{i, j, k\}=$ $\{1,2,3\}$, for which values of i and j is the following statement true: If M_{i} and M_{j} are flat, then M_{k} is flat?
3. Calculate $\operatorname{Tor}_{i}^{R}(M, N)$ for all $i>0$ in the following cases.
(a) $R=\mathbb{C}[x, y], M=R /(x), N=R /(x y)$.
(b) $R=\mathbb{Z}, M=\mathbb{Z} /(m), N=\mathbb{Z} /(n)$.
(c) $R=\mathbb{C}[x, y, z], M=R /(x, y), N=R /(x, y, z)$.
4. Let M and N be R-modules, and S a flat R-algebra. Show that

$$
S \otimes \operatorname{Tor}_{i}^{R}(M, N) \cong \operatorname{Tor}_{i}^{S}(S \otimes M, S \otimes N)
$$

In particular, Tor commutes with localization.
5. Let R be a ring and $U \subset R$ multiplicatively closed. Define $S=U^{-1} R$.
(a) Show that for any prime $P \subset S$, the codimension of P in S is equal to the codimension of $P \cap R$ in R.
(b) If $Q \subset R$ is prime, how does the codimension of Q compare to the codimension of $Q S$ in S ?
6. Let R be an integral domain. Recall that R is normal if it is its own integral closure in its field of fractions. Show that the following are equivalent T^{1}
i. R is normal.
ii. R_{P} is normal for all $P \subseteq R$ prime.
iii. R_{m} is normal for all $m \subseteq R$ maximal.
7. Let R be Noetherian. Show that $\operatorname{dim} R\left[x, x^{-1}\right]=\operatorname{dim} R+1$.

[^0]
[^0]: ${ }^{1}$ Hint: We proved a proposition in the normalization section of the notes that will be helpful.

