Math 523 - Problem Set 5 Due Wednesday, April 13

- 1. Let R be a ring and M an R-modules. Show that the following three statements are equivalent.
 - i M is flat.
 - ii $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for all *R*-modules *N* and all i > 0.
 - iii $\operatorname{Tor}_{1}^{R}(M, N) = 0$ for all *R*-modules *N*.
- 2. Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be a short exact sequence of *R*-modules. If $\{i, j, k\} = \{1, 2, 3\}$, for which values of *i* and *j* is the following statement true: If M_i and M_j are flat, then M_k is flat?
- 3. Calculate $\operatorname{Tor}_{i}^{R}(M, N)$ for all i > 0 in the following cases.
 - (a) $R = \mathbb{C}[x, y], M = R/(x), N = R/(xy).$
 - (b) $R = \mathbb{Z}, M = \mathbb{Z}/(m), N = \mathbb{Z}/(n).$
 - (c) $R = \mathbb{C}[x, y, z], M = R/(x, y), N = R/(x, y, z).$
- 4. Let M and N be R-modules, and S a flat R-algebra. Show that

$$S \otimes \operatorname{Tor}_{i}^{R}(M, N) \cong \operatorname{Tor}_{i}^{S}(S \otimes M, S \otimes N).$$

In particular, Tor commutes with localization.

- 5. Let R be a ring and $U \subset R$ multiplicatively closed. Define $S = U^{-1}R$.
 - (a) Show that for any prime $P \subset S$, the codimension of P in S is equal to the codimension of $P \cap R$ in R.
 - (b) If $Q \subset R$ is prime, how does the codimension of Q compare to the codimension of QS in S?
- 6. Let R be an integral domain. Recall that R is **normal** if it is its own integral closure in its field of fractions. Show that the following are equivalent.¹
 - i. R is normal.
 - ii. R_P is normal for all $P \subseteq R$ prime.
 - iii. R_m is normal for all $m \subseteq R$ maximal.
- 7. Let R be Noetherian. Show that dim $R[x, x^{-1}] = \dim R + 1$.

¹Hint: We proved a proposition in the normalization section of the notes that will be helpful.