Math 523 - Problem Set 6 Due Wednesday, April 27

1. Let R be a ring and M an R-module. Let \mathcal{J} be the filtration

$$M = M_0 \supset M_1 \supset \cdots$$
.

- (a) Give an example to show that the function in : $M \to \operatorname{gr}_{\mathcal{J}} M$ sending m to in(m) is not necessarily a group homomorphism.
- (b) Let $f, g \in M$. Suppose for each i, f is in M_i if and only if $g \in M_i$. Show that either $\operatorname{in}(\operatorname{in}(f) + \operatorname{in}(g)) = \operatorname{in}(f + g)$ or $\operatorname{in}(f) + \operatorname{in}(g) = 0$.
- (c) Suppose M = R and that \mathcal{J} is multiplicative, in the sense that $M_i M_j \subset M_{i+j}$. Show that either $\operatorname{in}(f) \operatorname{in}(g) = \operatorname{in}(fg)$ or $\operatorname{in}(f) \operatorname{in}(g) = 0$.
- 2. Let R be a Noetherian ring and $I \subset R$ an ideal. Let M be a finitely generated R-module.
 - (a) Show there is a largest submodule $N \subset M$ such that N is annihilated by an element of the form 1 r with $r \in I$.
 - (b) Show that $\bigcap_{j=1}^{\infty} I^j M = N$.
- 3. Characterize the *p*-adic expansions in \mathbb{Z}_p which are images of integers.
- 4. Let $R = k[x_1, ..., x_n]/I$, *I* some ideal. Let $m = (x_1, ..., x_n)$. Show that $\hat{R}_m = k[[x_1, ..., x_n]]/Ik[[x_1, ..., x_n]]$
- 5. Let $R = \mathbb{R}[x, y]/(y^2 x^2 x^3)$. Let m = (x, y).
 - (a) Verify that R is an integral domain.
 - (b) Show that \hat{R}_m is not an integral domain.¹
 - (c) Draw a picture of the curve in \mathbb{R}^2 cut out by $y^2 x^2 x^3 = 0$.
 - (d) There is a sense in which $\operatorname{Spec} \hat{R}_m$ can be considered a very small neighborhood around $m \in \operatorname{Spec} R$. How is this reflected in your picture?

¹Hint: Can you find a square root of 1 + x?