Math 523 - Problem Set 6 Due Wednesday, April 27

1. Let R be a ring and M an R-module. Let \mathcal{J} be the filtration

$$
M=M_{0} \supset M_{1} \supset \cdots
$$

(a) Give an example to show that the function in : $M \rightarrow \operatorname{gr}_{\mathcal{J}} M$ sending m to $\operatorname{in}(m)$ is not necessarily a group homomorphism.
(b) Let $f, g \in M$. Suppose for each i, f is in M_{i} if and only if $g \in M_{i}$. Show that either $\operatorname{in}(\operatorname{in}(f)+\operatorname{in}(g))=\operatorname{in}(f+g)$ or $\operatorname{in}(f)+\operatorname{in}(g)=0$.
(c) Suppose $M=R$ and that \mathcal{J} is multiplicative, in the sense that $M_{i} M_{j} \subset M_{i+j}$. Show that either in $(f) \operatorname{in}(g)=\operatorname{in}(f g)$ or $\operatorname{in}(f) \operatorname{in}(g)=0$.
2. Let R be a Noetherian ring and $I \subset R$ an ideal. Let M be a finitely generated R-module.
(a) Show there is a largest submodule $N \subset M$ such that N is annihilated by an element of the form $1-r$ with $r \in I$.
(b) Show that $\bigcap_{j=1}^{\infty} I^{j} M=N$.
3. Characterize the p-adic expansions in \mathbb{Z}_{p} which are images of integers.
4. Let $R=k\left[x_{1}, \ldots, x_{n}\right] / I, I$ some ideal. Let $m=\left(x_{1}, \ldots, x_{n}\right)$. Show that $\hat{R}_{m}=$ $k\left[\left[x_{1}, \ldots, x_{n}\right]\right] / \operatorname{Ik}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$
5. Let $R=\mathbb{R}[x, y] /\left(y^{2}-x^{2}-x^{3}\right)$. Let $m=(x, y)$.
(a) Verify that R is an integral domain.
(b) Show that \hat{R}_{m} is not an integral domain \square^{1}
(c) Draw a picture of the curve in \mathbb{R}^{2} cut out by $y^{2}-x^{2}-x^{3}=0$.
(d) There is a sense in which Spec \hat{R}_{m} can be considered a very small neighborhood around $m \in \operatorname{Spec} R$. How is this reflected in your picture?

[^0]
[^0]: ${ }^{1}$ Hint: Can you find a square root of $1+x$?

