let R be a ring an S an R-algebra.

Def: $s \in S$ is integral over R if it is the zero of some monic polynomial in $R[x]$. If every element of S is integral over R, then S is integral over R.

We'll soon show that the set of elements integral over R is a subalgebra of S, called the integral closure of R in S (or the normalization of R in S). If R is an integral domain, the integral closure (or normalization) of R (w/out reference to an R-algebra) is the integral closure in its field of fractions.

Geometrically, normalizing a ring corresponds to "improving" the singularities of a variety, e.g. the normalization of a curve is always smooth!

Def: S is finite over R (or module-finite) if it is a finitely generated R-module (finite \Rightarrow finitely generated as an R-algebra).

Ex: 1) $R[x]$ is a f.g. R-algebra, but is not finite or integral over R.

Integrality
2.) \(\frac{R[x]}{(x^2)} \) is finite and integral over \(R \).

3.) \(\mathbb{Q} \left[\sqrt{2}, \sqrt{3}, \sqrt{2}, \ldots \right] \) is integral over \(\mathbb{Q} \), but not finite.

Finiteness is a stronger condition than integrality:

Prop. \(S \) is finite over \(R \) iff \(S \) is generated as an \(R \)-algebra by finitely many integral elements. (i.e. \(S = R[\alpha_1, \ldots, \alpha_n], \alpha_n \in S \))

\[\text{image of } R \text{ generators integral over } R \]

Pf: Suppose \(S \) is finite over \(R \). If \(a \in S \), consider the map \(\varphi : S \rightarrow S \) defined \(s \mapsto as \). Then C-H says \(\varphi \) satisfies \(p(\varphi) = 0 \) for some monic polynomial \(p \). Thus \(p(a)S = 0 \) so \(p(a) = 0 \).

Conversely, suppose \(S = R[\alpha_1, \ldots, \alpha_n], \alpha_i \) integral over \(R \). Let \(S' = R[\alpha_1, \ldots, \alpha_{n-1}] \subseteq S \). By induction, we assume \(S' \) is finite over \(R \), generated by \(\{s_i\} \).

\(\alpha_n \) is integral over \(R \) and thus over \(S' \). Let \(p(x) \) be a monic polynomial over \(S' \) (or \(R \)) s.t. \(p(\alpha_n) = 0 \).

Then we have a map
\[
S'[x] \rightarrow S'[\alpha_n] = S
\]
\(x \mapsto \alpha_n \)
whose kernel contains \(p \).
So \(S'[x] \rightarrow S \cong S'[x]/I \)

where \(I \) is the whole kernel of \(S'[x] \rightarrow S \).

Thus, by the prop in the previous section, \(S \) is finite over \(S' \), generated by a finite set \(\{t_i\} \). Thus, \(S \) is generated as an \(R \)-module by \(\{s_it_j\} \). (Exercise!) \(\Box \)

Another application of C-H gives us a criterion for when an element is integral over a ring.

Prop: If \(S \) is an \(R \)-algebra and \(s \in S \), then \(s \) is integral over \(R \) iff \(\exists \) an \(S \)-module \(N \) and a f.g. \(R \)-submodule \(M \subseteq N \) not annihilated by any nonzero element of \(S \) s.t. \(sM \subseteq M \).

Cor: \(s \in S \) is integral over \(R \) \(\iff \) \(R[s] \) is finite over \(R \).

Pf of Cor: \((\Rightarrow) \) by previous prop.

\((\Leftarrow) \) Set \(M = N = R[s] \), and apply prop. \(\Box \)

Pf of prop: \((\Rightarrow) \) Assume \(s \) is integral over \(R \). Take \(N = S \). Then \(M = R[s] \subseteq S \). Thus, \(M \cong R[x]/I \), where \(I \) contains some monic polynomial \(s \) satisfies, so \(M \) is finite over \(R \).
(⇒) Given \(M \in N\) modules as described, let \(\Phi: M \to M\) be a finite \(S\)-module multiplication by \(s\). Then we can apply C-H w/ \(I = R\), and we get a monic polynomial \(p(x) \in R[x]\) s.t. \(p(s)M = 0\). But \(M\) is not annihilated by nonzero elts of \(S\), so \(p(s) = 0\). Thus, \(s\) is integral over \(R\). □

As mentioned earlier, integral elements over \(R\) in \(S\) form a subalgebra. In particular, if \(s_1, \ldots, s_n\) are integral over \(R\), so is \(R[s_1, \ldots, s_n]\):

Thus: Let \(S\) be an \(R\)-algebra. The set of elements of \(S\) integral over \(R\) is a subalgebra of \(S\).

Pf: Suppose \(a, b \in S\) are integral over \(R\). WTS \(a - b, ab\) are as well.

\(R[a, b]\) is finite over \(R\). Let \(S = ab\) or \(a - b\), \(N = S\), \(M = R[a, b]\). \(M\) is not annihilated by any element of \(S\), and \(sM \subseteq M\). Thus, \(s\) is integral over \(R\) (by prop). □

Field extensions + Nullstellensatz revisited

we need to apply all of this to fields in order to finally finish the proof of the Nullstellensatz. Remember we need the following:
Thm: If \(k \) is algebraically closed, the maximal ideals of \(k[x_1, \ldots, x_n] \) are all of the form \((x_1-a_1, \ldots, x_n-a_n)\), \(a_i \in k \).

Recall that we know all of these ideals are maximal. We just need to show these are exactly the maximal ideals. First we recall some field theory:

Suppose \(K \subseteq L \) are fields, \(v_1, \ldots, v_n \in L \). Then \(K(v_1, \ldots, v_n) \) is the smallest subfield of \(L \) containing \(K \) and each \(v_i \). Equivalently, it's the field of fractions of \(K[v_1, \ldots, v_n] \).

Def: \(L \) is a **finitely generated field extension** of \(K \) if \(L = K(v_1, \ldots, v_n) \) for some \(v_1, \ldots, v_n \in L \). \(L \) is an **algebraic extension** if all elements of \(L \) are algebraic over \(K \), i.e., satisfy a polynomial over \(K \).

Ex: \(\mathbb{Q} [\sqrt{5}] = \mathbb{Q} (\sqrt{5}) \) since \(\sqrt{5} \left(\frac{\sqrt{5}}{5} \right) = 1 \). This is an algebraic extension of \(\mathbb{Q} \). It's also finite over \(\mathbb{Q} \) since it's generated by \(\sqrt{5} \).

Check: If \(K \subseteq L \) are fields, then the elements of \(L \) that are algebraic over \(K \) form a subfield.

Claim: \(k(x) \) is not a finitely generated \(k \)-algebra.
Suppose \(k(x) = k[v_1, \ldots, v_n] \).

Then \(\exists b \in k[x] \) s.t. \(bv_i \in k[x] \) for all \(v_i \), and choose \(c \in k[x] \) irreducible not dividing \(b \).

Write \(\frac{1}{c} \) as a \(k \)-linear combination of monomials in the \(v_i \)'s. \(\Rightarrow \exists N > 0 \) s.t. \(\frac{b^n}{c} \in k[x] \), a contradiction. \(\square \)

Claim: \(k[x] \) is its own integral closure in \(k(x) \).

Pf: Let \(z \in k(x) \) be integral over \(k[x] \). Then we have
\[
z^n + a_{n-1}z^{n-1} + \ldots + a_0 = 0, \quad a_i \in k[x].
\]

If \(z = \frac{f}{g} \), where \(f, g \in k[x] \) are relatively prime, then multiplying through by \(g^n \) we get:
\[
f^n + a_{n-1}f^{n-1}g + \ldots + a_0g^n = 0 \Rightarrow g \mid f^n \Rightarrow g \in k. \quad \square
\]

We need one more lemma before proving the Nullstellensatz.

Lemma: Let \(K \subseteq L \) be fields. If \(L \) is a f.g. \(K \) algebra, then \(L \) is finite (and thus algebraic) over \(K \).

Pf: Let \(L = K[v_1, \ldots, v_n] \). We'll prove by induction on \(n \).
If \(n=1 \), consider \(K[x] \to K[v_1] \)
\[
\begin{array}{ccc}
n & \mapsto & v_1 \\
\end{array}
\]

\(K[v_1] \) is a field, so \(K[v_1] \cong K[x]/(f) \), \(f \neq 0 \).

Thus, \(f(v_1) = 0 \Rightarrow v_1 \) is algebraic over \(K \Rightarrow K[v_1] \) is finite over \(K \).

Now assume the statement holds for extensions generated by \(n-1 \) elements. Then \(L = K(v_1)[v_2, \ldots, v_n] \) is finite \& algebraic over \(K(v_1) \).

Case 1: \(v_1 \) algebraic \(/K \). Then \(K(v_1) \) is algebraic \(/K \), so \(L \) is algebraic \(/K \) by transitivity of integrality (HW \#4).

So \(L \) is a \(K \)-algebra generated by finitely many integral elements, so it's finite over \(K \).

Case 2: \(v_1 \) not algebraic over \(K \). Then

\[
K[x] \to K[v_1]
\]

has 0 kernel, so \(K(x) \cong K(v_1) \).

Each \(v_i \) satisfies some \(v_i^n + a_1 v_i^{n-1} + \cdots + a_n = 0 \), \(a_j \in K(v_i) \).

Set \(a \in K[v_i] \) to be the product of the denominators of the \(a_j \). Multiplying by \(a^n \), we get
\[(a v_i)^n + a a_1 (a v_i)^{n-1} + \ldots + a^n a_n = 0,\]

where all the coefficients are now in \(K[v_i] \).

Thus, \(a v_i \) is integral over \(K[v_i] \).

Take \(z \in L \) and \(N \gg 0 \) s.t. \(a^N z \in K[v_i][a v_2, a v_3, \ldots, a v_n] \), and is thus integral over \(K[v_i] \).

Find \(c \in K[v_i] \) relatively prime to \(a \), and set
\[z = \frac{1}{c} \in K(v_i) \subseteq L. \]

Then for some \(N > 0 \), \(\frac{a^N}{c} \in K(v_i) \) is integral over \(K[v_i] \), so \(\frac{a^N}{c} \in K[v_i] \), which is a contradiction since \(a \) and \(c \) are rel. prime. \(\square \)

Now we finish the Nullstellensatz:

Theorem: If \(k = \bar{k} \), and \(m \subseteq k[x_1, \ldots, x_n] = R \) is maximal, then \(m = (x_i - a_i, \ldots, x_n - a_n) \), some \(a_i \in k \).

Pf: Let \(L = R/m \). \(L \) is a field and \(k \subseteq L \).

\(L \) is f.g. over \(k \), so it's algebraic over \(k \), i.e. if \(z \in L \), then \(f(z) = 0 \), some \(f \in k[x] \).
k is algebraically closed, so $z \in k$. Thus $L = k$.

Thus, for all x_i, there is some $a_i \in k$ s.t. $\overline{x_i} = \overline{a_i}$ in L, so

$\Rightarrow x_i - a_i \in m$.

$\Rightarrow (x_1 - a_1, \ldots, x_n - a_n) \subseteq m$, but is maximal, so they are equal. ∎