Math 524 - Problem Set 1 Due Wednesday, Feb 2

1. Describe the map $f: \operatorname{Spec} \mathbb{C}[x] \rightarrow \operatorname{Spec} \mathbb{R}[x]$ induced by the inclusion $\mathbb{R}[x] \hookrightarrow \mathbb{C}[x]$.
2. For each ring A and point $q \in \operatorname{Spec} A$, calculate the dimension of the tangent space to $\operatorname{Spec} A$ at q.
(a) $A=\mathbb{C}[x, y, z] /\left(x^{2}-y^{3}\right), q=(x, y)$,
(b) $A=\mathbb{C}[x, y] /\left(x, y^{3}\right), q=(x, y)$,
(c) $A=\mathbb{Z}[x], q=(3)$.
3. Let R, S be rings.
(a) Check that the Zariski topology on $\operatorname{Spec} R$ is indeed a topology and that the distinguished open sets

$$
D(f):=\operatorname{Spec} R \backslash V(f)
$$

form a basis.
(b) If $\phi: R \rightarrow S$ is a homomorphism, verify that the induced map $\operatorname{Spec} S \rightarrow \operatorname{Spec} R$ is continuous.
4. Let R be a ring and $I \subset R$ an ideal. Show that the natural map $f: \operatorname{Spec}(R / I) \rightarrow$ $\operatorname{Spec}(R)$ is a homeomorphism onto its image $V(I) \square^{1}$
5. Let R be a ring. Show that a nonzero element $f \in R$ is a zerodivisor if and only if there are closed sets $X, Y \subseteq \operatorname{Spec} R$ with $Y \neq \operatorname{Spec} R$ such that $\operatorname{Spec} R=X \cup Y$ and f evaluated ${ }^{2}$ at x is zero for all $x \in X$.
6. (a) For each open set $U \subseteq \mathbb{R}$ (given the standard topology), define $\mathcal{F}(U)$ to be the group of continuous functions $f: U \rightarrow \mathbb{R}$ that are nondecreasing. That is, for $x, y \in U$ with $x<y$, we require $f(x) \leq f(y)$. Is \mathcal{F} a presheaf? Is it a sheaf?
(b) What if you replace the word "nondecreasing" with "even"? That is, if $x,-x \in U$, then $f(x)=f(-x)$. In this case is \mathcal{F} a (pre)sheaf?
7. Let X be a topological space and \mathcal{F} and \mathcal{G} presheaves on X. Let $\phi: \mathcal{F} \rightarrow \mathcal{G}$ be a morphism. Verify the following claim from class: there is an induced map on stalks $\phi_{P}: \mathcal{F}_{P} \rightarrow \mathcal{G}_{P}$ for each $P \in X$. Make sure you explicitly describe the map and check that it is well-defined.
8. Let X be a topological space. Let \mathcal{F} be the constant presheaf, defined $\mathcal{F}(U)=\mathbb{Z}$ for every nonempty $U \subseteq X$ open, where the restriction maps are the identity, and let \mathcal{F}^{\prime} be the sheaf of locally constant functions described in class.
(a) Check that \mathcal{F}^{\prime} is indeed a sheaf.
(b) Show that \mathcal{F}^{\prime} is the sheafification ${ }^{3}$ of \mathcal{F}.

[^0]
[^0]: ${ }^{1}$ The closed sets of $X \subseteq \operatorname{Spec}(R)$ are those of the form $V(J) \cap X$ for J an ideal in R.
 ${ }^{2}$ Via the natural evaluation map $A \rightarrow k(x)$ described in class.
 ${ }^{3}$ We will get to this in a couple weeks - see Prop-def 1.2 in Hartshorne for a definition.

