Math 524 - Problem Set 4 Due Wednesday, April 6

- 1. Let \mathcal{F} and \mathcal{G} be sheaves of abelian groups on a scheme X.
 - (a) For any open $U \subseteq X$, show that the set $\operatorname{Hom}(\mathcal{F}|_U, \mathcal{G}|_U)$ of morphisms of the restricted sheaves has the natural structure of an abelian group.
 - (b) Show that the presheaf $U \mapsto \operatorname{Hom}(\mathcal{F}|_U, \mathcal{G}|_U)$ is a sheaf. It's denoted $\mathscr{H}om(\mathcal{F}, \mathcal{G})$, and is called "sheaf hom."
- 2. Let X be a scheme and \mathcal{E} a locally free sheaf of finite rank n. Define the **dual** of \mathcal{E} , denoted $\check{\mathcal{E}}$, to be the sheaf $\mathscr{H}om(\mathcal{E}, \mathcal{O}_X)$
 - (a) Show that the stalk \mathcal{E}_x at each point $x \in X$ is a free \mathcal{O}_x -module of rank n.
 - (b) Describe the natural morphism $f : \mathcal{E} \to (\check{\mathcal{E}})$ by defining it on open sets. Make sure that your maps are compatible with restriction.
 - (c) Show that f is an isomorphism.
- 3. Let X be a Noetherian scheme and \mathcal{F} a coherent sheaf.
 - (a) Suppose the stalk \mathcal{F}_x is a free \mathcal{O}_x -module for some point $x \in X$. Show that there is a neighborhood U of x such that $\mathcal{F}|_U$ is free.
 - (b) Show that the converse of 2(a) holds. That is, \mathcal{F} is locally free if and only if \mathcal{F}_x is a free \mathcal{O}_x -module for every $x \in X$.
 - (c) If \mathcal{F} is invertible (locally free of rank one), show that $\mathcal{F} \otimes \check{\mathcal{F}} \cong \mathcal{O}_X$.¹
 - (d) Challenge/optional (requires additional knowledge about modules over local rings): Show that \mathcal{F} is invertible if and only if there is a coherent sheaf \mathcal{G} such that $\mathcal{F} \otimes \mathcal{G} \cong \mathcal{O}_X$.
- 4. Let $f: X \to Y$ be a morphism of schemes and \mathcal{F} a coherent sheaf on X. Recall that we gave an example in class showing that $f_*\mathcal{F}$ is not necessarily coherent, even if Xand Y are both affine. Show that if X and Y are Noetherian and f is finite, then $f_*\mathcal{F}$ is coherent.
- 5. Let X be a Noetherian scheme and \mathcal{F} a coherent sheaf on X. Recall that the residue field at a point $x \in X$ is $k(x) = \mathcal{O}_x/m_x$. Define a function

$$\varphi(x) = \dim_{k(x)}(\mathcal{F}_x \otimes_{\mathcal{O}_x} k(x)).$$

Use Nakayama's Lemma to prove the following results about φ .

¹Hint: Give a map on each open set, and show that the maps are compatible with restriction so that it defines a morphism. Then show that the morphism induces an isomorphism on stalks.

(a) φ is upper semi-continuous. That is, for any integer n, the set

$$\{x \in X \mid \varphi(x) \ge n\}$$

is closed.²

- (b) If \mathcal{F} is locally free and X connected, then φ is constant.
- (c) If X is reduced and φ is constant, then \mathcal{F} is locally free.

²Hint: Reduce to the affine case so that $\mathcal{F} \cong \tilde{M}$ and find a k(x)-basis at a point x. Show that there is some distinguished open D(f) such that the same basis (after lifting to M) generates the k(y)-vector space at each $y \in D(f)$.