Ringed spaces (see Har II.2, Shaf IV.3.1)

To each ring R, we now have associated a topological space $\text{Spec} R$ and a sheaf of rings \mathcal{O}. We want to show that this is functorial, so we first need a category in which $(\text{Spec} R, \mathcal{O})$ is an object.

Def: A **ringed space** is a pair (X, \mathcal{O}_X) consisting of a topological space X and a sheaf of rings \mathcal{O}_X on X.

Ex: $(\text{Spec} R, \mathcal{O})$ is a ringed space

Ex: A topological space X together w/ the sheaf of continuous R-valued functions is a ringed space. (i.e. not all ringed spaces look like $\text{Spec} R$).

Def: A **morphism of ringed spaces** from (X, \mathcal{O}_X) to (Y, \mathcal{O}_Y) is a pair $(f, f^\#)$ of a continuous map $f : X \to Y$ and a map $f^\# : \mathcal{O}_Y \to f_* \mathcal{O}_X$ of sheaves of rings. (i.e. over each open $U \subseteq Y$ a ring homomorphism $\mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}(U))$ that commutes with restriction maps.)
An important property of $(\text{Spec} R, \mathcal{O})$ is the fact that every stalk \mathcal{O}_p is a local ring, which is reflected in the following:

Def. A ringed space (X, \mathcal{O}_X) is a **locally ringed space** if for each $p \in X$, the stalk $\mathcal{O}_{X, p}$ is a local ring.

We want morphisms of loc. ringed spaces to respect the local ring structure on the stalks. That is:

Def. If A and B are local rings w/ max' $\text{ideal} m_A$ and m_B respectively, then a homomorphism $\varphi: A \to B$ is a **local homomorphism** if $\varphi^{-1}(m_B) = m_A$, or equivalently $\varphi(m_A) \subseteq m_B$.

We know that a morphism $(f, f^\#)$ of ringed spaces induces maps between the stalks of \mathcal{O}_Y and $f_*\mathcal{O}_X$, but we want maps $\mathcal{O}_{Y, f(p)} \to \mathcal{O}_{X, p}$.

Let $p \in X$. Then by definition we have

\[
\mathcal{O}_{Y, f(p)} \xrightarrow{f^\#} \varprojlim_{U \ni f(p)} \mathcal{O}_Y(U) \xrightarrow{\varpi f^{-1}} \lim_{V \ni f^{-1}(p)} \mathcal{O}_X(f^{-1}U) \xrightarrow{\varpi \mathcal{O}_X(V) = \mathcal{O}_{X, p}} \mathcal{O}_{X, p}
\]

Call this composition $f_p^\#$.

This is well-defined since the \(f^{-1}(U) \) s.t. \(U \ni f(p) \) are a subset of all the open sets containing \(p \). So if \((s, f^{-1}(U)) \sim (s', f^{-1}(U')) \) in the first direct limit then the will also be equivalent in the second.

Def: If \(X \) and \(Y \) are locally ringed spaces, then a morphism \((f, f^\#) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y) \) of ringed spaces is a morphism of locally ringed spaces if for each \(p \in X \), \(f^\#_p : \mathcal{O}_Y, f(p) \to \mathcal{O}_X, p \) is a local homomorphism. (It's an isomorphism if \(f \) and \(f^\# \) are.)

\((\text{Spec } R, \mathcal{O})\) is clearly a locally ringed space, but we need to show that ring homomorphisms induce morphisms of locally ringed spaces.

Theorem: If \(\varphi : R \to S \) is a morphism of rings, then \(\varphi \) induces a natural morphism of locally ringed spaces

\[(f, f^\#) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y), \]

where \(X = \text{Spec } S \), \(Y = \text{Spec } R \).

Pf: \(f : X \to Y \) is the map we've already defined:

\[f(p) = \varphi^{-1}(p). \]

We first define \(f^\# \) on distinguished open sets by
\[f^# : \mathcal{O}_Y(D(a)) \to f_* \mathcal{O}_X(D(a)) \]

\[\mathcal{O}_X(f^{-1}(D(a))) \]

\[\mathcal{O}_X(D(Y(a))) \]

Where \(\frac{r}{a} \to \frac{y(r)}{y(a)} \).

(Note that if \(y(a) = 0 \), then \(S_y(a) = 0 \) and this is the zero map.)

This uniquely extends to a morphism on each open \(U \subseteq Y \).

If \(P \in X = \text{Spec} Y \), then \(f(P) = y^{-1}(P) \in \text{Spec} X \), and the induced map on stalks is

\[R_{y^{-1}(P)} \to S_P, \]

which is local by construction. \(\square \)

Conversely, all morphisms \(\text{Spec} B \to \text{Spec} A \) arise uniquely in this way. That is:

Theorem: If \(R \) and \(S \) are rings, then any morphism of locally ringed spaces \(f : \text{Spec} S \to \text{Spec} R \) is induced (uniquely) by a homomorphism \(y : R \to S \).
Thus, there is a one-to-one correspondence between such morphisms.

Pf: There is only one possible candidate for φ (hence uniqueness): the induced map on global sections. So set φ to be

$$f^\# : \Gamma(\text{spec } R, \mathcal{O}_{\text{spec } R}) \to \Gamma(\text{spec } S, \mathcal{O}_{\text{spec } S})$$

Thus, we just need to check that $(f, f^\#)$ is the map induced by φ.

We know that φ is compatible with the map on stalks, so

$$\begin{array}{ccc}
R & \to & S \\
\downarrow & & \downarrow \\
R_{f(p)} & \overset{f^\#_p}{\to} & S_p
\end{array}$$

commutes. But $f^\#_p$ is local, which means that $(f^\#_p)^{-1}(P) = f(P)$. Commutativity of the diagram implies that $\varphi^{-1}(P) = f(P)$.

So the map f is the one induced by φ.

Now maps $f^\# : R_a \to S_{\varphi(a)}$ over $D(a)$.
are also compatible w/ Ψ, so they must be those induced by Ψ, so f^* is induced by Ψ, and we're done. \(\square \)

Remark: In general, if $\Psi: \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, and we know $\Psi(u)$ for each element u of a basis, then we can recover Ψ. (Use sheaf condition.)