MATH 111 Calculus I \(\quad\;\;\) Instructor: Difeng Cai


3.3 Derivatives of Trigonometric Functions

Facts: \[\lim_{x\to 0} \frac{\sin x}{x}=1\] \[\lim_{x\to 0} \frac{\cos x-1}{x}=0\]

Example 1. Compute the limit \[\lim_{x\to 0}\frac{\sin(2x)}{x}.\]
Sol: \[\lim_{x\to 0}\frac{\sin(2x)}{x}=\lim_{x\to 0}\frac{\sin(2x)}{2x}\cdot 2=\left(\lim_{x\to 0}\frac{\sin(2x)}{2x}\right) \cdot 2=1\cdot 2 = 2\]

Ex. Find the limit \(\lim\limits_{x\to 0}\frac{\sin(3x)}{5x}\).
Answer: \(\frac{3}{5}\)

Fact: \[\lim\limits_{x\to 0}\frac{\sin(ax)}{bx}=\dfrac{a}{b}\quad (\text{here}\; b\neq 0)\]

Example 2. Find the derivative of \(f(x)=x^2\cos x\).
Sol: Product rule says that \[f'(x)=(x^2)'\cos x + x^2(\cos x)'=(2x)\cos x + x^2(-\sin x)=2x\cos x-x^2\sin x\]

Example 3. Use the fact that \(\frac{d}{dx}(\sin x)=\cos x\) to explain why \(\lim\limits_{x\to 0}\frac{\sin x}{x}=1.\)
Sol: Let \(f(x)=\sin x\). Then we know that \(f'(x)=\cos x\). Note that \(f(0)=\sin 0 = 0\) and thus \[\lim_{x\to 0}\frac{\sin x}{x}=\lim_{x\to 0}\frac{\sin x-\sin 0}{x-0}=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=f'(0)=\cos 0 = 1.\] The third limit above is the definition of the derivative \(f'(0)\).