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Abstract

In this paper, we show that every p2n�1 � 1q-vertex induced subgraph of the n-

dimensional cube graph has maximum degree at least
?
n. This result is best possible,

and improves a logarithmic lower bound shown by Chung, Füredi, Graham and Sey-

mour in 1988. As a direct consequence, we prove that the sensitivity and degree of a

boolean function are polynomially related, solving an outstanding foundational prob-

lem in theoretical computer science, the Sensitivity Conjecture of Nisan and Szegedy.

1 Introduction

Let Qn be the n-dimensional hypercube graph, whose vertex set consists of vectors

in t0, 1un, and two vectors are adjacent if they differ in exactly one coordinate. For

an undirected graph G, we use the standard graph-theoretic notations ∆pGq for its

maximum degree, and λ1pGq for the largest eigenvalue of its adjacency matrix. In 1988,

Chung, Füredi, Graham, and Seymour [3] proved that if H is an induced subgraph of

more than 2n�1 vertices of Qn, then the maximum degree of H is at least p1{2 �
op1qq log2 n. Moreover, they constructed a p2n�1 � 1q-vertex induced subgraph whose

maximum degree is r
?
n s.

In this short paper, we prove the following result, establishing a sharp lower bound

that matches their construction. Note that the 2n�1 even vertices of Qn induce an

empty subgraph. This theorem shows that any subgraph with just one more vertex

would have its maximum degree suddenly jump to
?
n.

Theorem 1.1. For every integer n ¥ 1, let H be an arbitrary p2n�1�1q-vertex induced

subgraph of Qn, then

∆pHq ¥ ?
n.

Moreover this inequality is tight when n is a perfect square.
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The induced subgraph problem is closely related to one of the most important and

challenging open problems in theoretical computer science: the Sensitivity vs. Block

Sensitivity Problem. In his 1989 paper, Nisan [12] gave right bounds for computing the

value of a boolean function in the CREW-PRAM model. These bounds are expressed

in terms of two complexity measures of boolean functions. For x P t0, 1un and a subset

S of indices from rns � t1, � � � , nu, we denote by xS the binary vector obtained from

x by flipping all indices in S. For f : t0, 1un Ñ t0, 1u, the local sensitivity spf, xq
on the input x is defined as the number of indices i, such that fpxq � fpxtiuq, and

the sensitivity spfq of f is maxx spf, xq. The sensitivity measures the local changing

behavior of a boolean function with respect to the Hamming distance. It can be

viewed as a discrete analog of the smoothness of continuous functions (see [7] for more

in-depth discussions). The local block sensitivity bspf, xq is the maximum number of

disjoint blocks B1, � � � , Bk of rns, such that for each Bi, fpxq � fpxBiq. Similarly, the

block sensitivity bspfq of f is maxx bspf, xq. Obviously bspfq ¥ spfq. A major open

problem in complexity theory was posed by Nisan and Szegedy [13], asking whether

they are polynomially related.

Conjecture 1.2. (Sensitivity Conjecture) There exists an absolute constant C ¡ 0,

such that for every boolean function f ,

bspfq ¤ spfqC .

Although seemingly unnatural, the block sensitivity is known to be polynomially

related to many other important complexity measures of boolean functions, including

the decision tree complexity, the certificate complexity, the quantum and randomized

query complexity, and the degree of the boolean function (as real polynomials), and the

approximate degree [10]. It is noteworthy that some of these relationship is quite sub-

tle. For instance, although the degree and approximate degree both concern algebraic

properties of boolean functions, the only known proof of their polynomial relationship

goes through other more combinatorial notions.

The Sensitivity Conjecture, if true, would place the sensitivity in the same category

with the other complexity measures listed above. Computationally, it would imply that

“smooth” (low-sensitivity) functions are easy to compute in some of the simplest models

like the deterministic decision tree model. Algebraically, it asserts that such functions

have low degree as real polynomials. Combinatorially, as observed by Gotsman and

Linial [9], it is equivalent to the previous cube problem. We will discuss this connection

later.

Despite numerous attempts for almost thirty years, the Sensitivity conjecture still

remains wide open, and the best upper bound of bspfq is exponential in terms of

spfq. For example, Kenyon and Kutin [11] showed that bspfq � Opespfq
a
spfqq. For

the lower bound, Rubinstein [14] first proposed a boolean function f with bspfq �
1
2spfq2, showing a quadratic separation between these two complexity measures. Virza

[16], and subsequently Ambainis and Sun [1] obtained better constructions which still

provides quadratic separations. For a comprehensive survey with more background and
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discussions, in particular the many problems equivalent to the Sensitivity Conjecture,

we refer the readers to the surveys of Buhrman and de Wolf [2], Hatami, Kulkarni and

Pankratov [10], and some recent works [4, 6, 8, 15].

Recall that Qn denotes the n-dimensional cube graph. For an induced graph H of

Qn, let Qn � H denote the subgraph of Qn induced on the vertex set V pQnqzV pHq.
Let ΓpHq � maxt∆pHq,∆pQn � Hqu. The degree of a boolean function f , denoted

by degpfq, is the degree of the unique multilinear real polynomial that represents

f . Gotsman and Linial [9] proved the following remarkable equivalence using Fourier

analysis.

Theorem 1.3. (Gotsman and Linial [9]) The following are equivalent for any mono-

tone function h : N Ñ R.

(a) For any induced subgraph H of Qn with |V pHq| � 2n�1, we have ΓpHq ¥ hpnq.
(b) For any boolean function f , we have spfq ¥ hpdegpfqq.

Note that Theorem 1.1 implies that hpnq can be taken as
?
n, since one of H and

Qn�H must contain at least 2n�1�1 vertices, and the maximum degree ∆ is monotone.

As a corollary, we have

Theorem 1.4. For every boolean function f ,

spfq ¥
a

degpfq.
This confirms a conjecture of Gotsman and Linial [9]. This inequality is also tight

for the AND-of-ORs boolean function [10, Example 5.2]. Recall that the degree and

the block sensitivity are polynomially related. Nisan and Szegedy [13] showed that

bspfq ¤ 2 degpfq2 and this bound was later improved by Tal [15] to bspfq ¤ degpfq2.
Combining these results we have confirmed the Sensitivity Conjecture.

Theorem 1.5. For every boolean function f ,

bspfq ¤ spfq4.

2 Proof of the main theorem

To establish Theorem 1.1, we prove a series of lemmas. Given a n � n matrix A, a

principal submatrix of A is obtained by deleting the same set of rows and columns from

A.

Lemma 2.1. (Cauchy’s Interlace Theorem) Let A be a symmetric n� n matrix, and

B be a m�m principal submatrix of A, for some m   n. If the eigenvalues of A are

λ1 ¥ λ2 ¥ � � � ¥ λn, and the eigenvalues of B are µ1 ¥ µ2 ¥ � � � ¥ µm, then for all

1 ¤ i ¤ m,

λi ¥ µi ¥ λi�n�m.

Cauchy’s Interlace Theorem is a direct consequence of the Courant-Fischer-Weyl

min-max principle. A direct proof can also be found in [5].
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Lemma 2.2. We define a sequence of symmetric square matrices iteratively as follows,

A1 �
�
0 1

1 0

�
, An �

�
An�1 I

I �An�1

�
.

Then An is a 2n� 2n matrix whose eigenvalues are
?
n of multiplicity 2n�1, and �?n

of multiplicity 2n�1.

Proof. We prove by induction that A2
n � nI. For n � 1, A2

1 � I. Suppose the

statement holds for n� 1, that is A2
n�1 � pn� 1qI, then

A2
n �

�
A2

n�1 � I 0

0 A2
n�1 � I

�
� nI.

Therefore, the eigenvalues of An are either
?
n or �?n. Since TrrAns � 0, we know

that An has exactly half of the eigenvalues being
?
n and the rest being �?n.

Lemma 2.3. Suppose H is an m-vertex undirected graph, and A is a symmetric matrix

whose entries are in t�1, 0, 1u and whose rows and columns are indexed by V pHq, and

whenever u and v are non-adjacent in H, Au,v � 0. Then

∆pHq ¥ λ1 :� λ1pAq.

Proof. Suppose ~v is the eigenvector corresponding to λ1. Then λ1~v � A~v. Without

loss of generality, assume v1 is the coordinate of ~v that has the largest absolute value.

Then

|λ1v1| � |pA~vq1| �
�����
m̧

j�1

A1,jvj

����� �
�����
¸
j�1

A1,jvj

����� ¤
¸
j�1

|A1,j ||v1| ¤ ∆pHq|v1|.

Therefore |λ1| ¤ ∆pHq.

With the lemmas above, we are ready to prove the main theorem.

Proof of Theorem 1.1. Let An be the sequence of matrices defined in Lemma 2.2. Note

that the entries of An are in t�1, 0, 1u. By the iterative construction of An, it is

not hard to see that when changing every p�1q-entry of An to 1, we get exactly the

adjacency matrix of Qn, and thus An and Qn satisfy the conditions in Lemma 2.3.

For example, we may let the upper-left and lower-right blocks of An correspond to the

two pn � 1q-dimensional subcubes of Qn, and the two identity blocks correspond to

the perfect matching connecting these two subcubes. Therefore, a p2n�1 � 1q-vertex

induced subgraph H of Qn and the principal submatrix AH of An naturally induced

by H also satisfy the conditions of Lemma 2.3. As a result,

∆pHq ¥ λ1pAHq.
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On the other hand, from Lemma 2.2, the eigenvalues of An are known to be

?
n, � � � ,?n,�?n, � � � ,�?n.

Note that AH is a p2n�1 � 1q � p2n�1 � 1q submatrix of the 2n � 2n matrix An. By

Cauchy’s Interlace Theorem,

λ1pAHq ¥ λ2n�1pAnq �
?
n.

Combining the two inequalities we just obtained, we have ∆pHq ¥ ?
n, completing the

proof of our theorem.

Remark. From the proof, one actually has λ1pHq ¥ λ1pAHq ¥
?
n. Since ∆pHq ¥

λ1pHq, this result strengthens Theorem 1.1. More interestingly, the inequality λ1pHq ¥?
n is best possible for all n. This can be seen by taking all the even vertices and one

odd vertex of Qn, then the induced subgraph is a copy of the star K1,n, together with

many isolated vertices. The largest eigenvalue of this induced subgraph is exactly
?
n.

3 Concluding Remarks

In this paper we confirm the Sensitivity Conjecture by proving its combinatorial equiv-

alent formulation discovered by Gotsman and Linial. The following problems might be

interesting.

• Given a “nice” graph G with high symmetry, denote by αpGq its independence

number. Let fpGq be the minimum of the maximum degree of an induced sub-

graph of G on αpGq � 1 vertices. What can we say about fpGq? In particular,

for which graphs, the method used in proving Theorem 1.1 would provide a tight

bound?

• Back to the hypercube problem, let gpn, kq be the minimum t, such that every

t-vertex induced subgraph H of Qn has maximum degree at least k. In this paper,

we show that gpn,?nq � 2n�1 � 1. It would be interesting to determine gpn, kq
asymptotically for other values of k.

• Although we have shown a tight bound between the sensitivity and the degree, at

the time of writing this paper, the best separation between the block sensitivity

bspfq and the sensitivity spfq is bspfq � 2
3spfq2 � 1

3spfq shown in [1], which is

quadratic. Theorem 1.5 only shows a quartic upper bound. Perhaps one could

close this gap by directly applying the spectral method to boolean functions

instead of to the hypercubes.
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