
5. Vector Space Rn

5.1 Subspaces and Spanning

In Section 2.2 we introduced the set Rn of all n-tuples (called vectors), and began our investigation of the
matrix transformations Rn→ Rm given by matrix multiplication by an m×n matrix. Particular attention
was paid to the euclidean plane R2 where certain simple geometric transformations were seen to be ma-
trix transformations. Then in Section 2.6 we introduced linear transformations, showed that they are all
matrix transformations, and found the matrices of rotations and reflections in R2. We returned to this in
Section 4.4 where we showed that projections, reflections, and rotations of R2 and R3 were all linear, and
where we related areas and volumes to determinants.

In this chapter we investigate Rn in full generality, and introduce some of the most important concepts
and methods in linear algebra. The n-tuples in Rn will continue to be denoted x, y, and so on, and will be
written as rows or columns depending on the context.

Subspaces of Rn

Definition 5.1 Subspace of Rn

A set1U of vectors in Rn is called a subspace of Rn if it satisfies the following properties:

S1. The zero vector 0 ∈U .

S2. If x ∈U and y ∈U , then x+y ∈U .

S3. If x ∈U , then ax ∈U for every real number a.

We say that the subset U is closed under addition if S2 holds, and that U is closed under scalar multi-

plication if S3 holds.

Clearly Rn is a subspace of itself, and this chapter is about these subspaces and their properties. The
set U = {0}, consisting of only the zero vector, is also a subspace because 0+0 = 0 and a0 = 0 for each a

in R; it is called the zero subspace. Any subspace of Rn other than {0} or Rn is called a proper subspace.

1We use the language of sets. Informally, a set X is a collection of objects, called the elements of the set. The fact that x is
an element of X is denoted x ∈ X . Two sets X and Y are called equal (written X = Y ) if they have the same elements. If every
element of X is in the set Y , we say that X is a subset of Y , and write X ⊆ Y . Hence X ⊆ Y and Y ⊆ X both hold if and only if
X = Y .
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We saw in Section 4.2 that every plane M through the origin in R3

has equation ax+ by+ cz = 0 where a, b, and c are not all zero. Here

n =




a

b

c


 is a normal for the plane and

M = {v in R3 | n ·v = 0}

where v =




x

y

z


 and n · v denotes the dot product introduced in Sec-

tion 2.2 (see the diagram).2 Then M is a subspace of R3. Indeed we show
that M satisfies S1, S2, and S3 as follows:

S1. 0 ∈M because n ·0 = 0;

S2. If v ∈M and v1 ∈M , then n · (v+v1) = n ·v+n ·v1 = 0+0 = 0 , so v+v1 ∈M;

S3. If v ∈M , then n · (av) = a(n ·v) = a(0) = 0 , so av ∈M.

This proves the first part of

Example 5.1.1

y

z
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L

Planes and lines through the origin in R3 are all subspaces of R3.

Solution. We dealt with planes above. If L is a line through
the origin with direction vector d, then L = {td | t ∈ R} (see
the diagram). We leave it as an exercise to verify that L satisfies
S1, S2, and S3.

Example 5.1.1 shows that lines through the origin in R2 are subspaces; in fact, they are the only proper
subspaces of R2 (Exercise 5.1.24). Indeed, we shall see in Example 5.2.14 that lines and planes through
the origin in R3 are the only proper subspaces of R3. Thus the geometry of lines and planes through the
origin is captured by the subspace concept. (Note that every line or plane is just a translation of one of
these.)

Subspaces can also be used to describe important features of an m×n matrix A. The null space of A,
denoted null A, and the image space of A, denoted im A, are defined by

null A = {x ∈ Rn | Ax = 0} and im A = {Ax | x ∈ Rn}

In the language of Chapter 2, null A consists of all solutions x in Rn of the homogeneous system Ax = 0,
and im A is the set of all vectors y in Rm such that Ax = y has a solution x. Note that x is in null A if it

2We are using set notation here. In general {q | p} means the set of all objects q with property p.
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satisfies the condition Ax = 0, while im A consists of vectors of the form Ax for some x in Rn. These two
ways to describe subsets occur frequently.

Example 5.1.2

If A is an m×n matrix, then:

1. null A is a subspace of Rn.

2. im A is a subspace of Rm.

Solution.

1. The zero vector 0 ∈ Rn lies in null A because A0 = 0.3If x and x1 are in null A, then x+x1

and ax are in null A because they satisfy the required condition:

A(x+x1) = Ax+Ax1 = 0+0 = 0 and A(ax) = a(Ax) = a0 = 0

Hence null A satisfies S1, S2, and S3, and so is a subspace of Rn.

2. The zero vector 0 ∈ Rm lies in im A because 0 = A0. Suppose that y and y1 are in im A, say
y = Ax and y1 = Ax1 where x and x1 are in Rn. Then

y+y1 = Ax+Ax1 = A(x+x1) and ay = a(Ax) = A(ax)

show that y+y1 and ay are both in im A (they have the required form). Hence im A is a
subspace of Rm.

There are other important subspaces associated with a matrix A that clarify basic properties of A. If A

is an n×n matrix and λ is any number, let

Eλ (A) = {x ∈ Rn | Ax = λx}
A vector x is in Eλ (A) if and only if (λ I−A)x = 0, so Example 5.1.2 gives:

Example 5.1.3

Eλ (A) = null (λ I−A) is a subspace of Rn for each n×n matrix A and number λ .

Eλ (A) is called the eigenspace of A corresponding to λ . The reason for the name is that, in the terminology
of Section 3.3, λ is an eigenvalue of A if Eλ (A) 6= {0}. In this case the nonzero vectors in Eλ (A) are called
the eigenvectors of A corresponding to λ .

The reader should not get the impression that every subset of Rn is a subspace. For example:

U1 =

{[
x

y

]∣∣∣∣x≥ 0

}
satisfies S1 and S2, but not S3;

3We are using 0 to represent the zero vector in both Rm and Rn. This abuse of notation is common and causes no confusion
once everybody knows what is going on.
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U2 =

{[
x

y

]∣∣∣∣x
2 = y2

}
satisfies S1 and S3, but not S2;

Hence neither U1 nor U2 is a subspace of R2. (However, see Exercise 5.1.20.)

Spanning Sets

Let v and w be two nonzero, nonparallel vectors in R3 with their tails at the origin. The plane M through
the origin containing these vectors is described in Section 4.2 by saying that n = v×w is a normal for M,
and that M consists of all vectors p such that n ·p = 0.4 While this is a very useful way to look at planes,
there is another approach that is at least as useful in R3 and, more importantly, works for all subspaces of
Rn for any n≥ 1.

0

v

av

w bw

p

M

The idea is as follows: Observe that, by the diagram, a vector p is in
M if and only if it has the form

p = av+bw

for certain real numbers a and b (we say that p is a linear combination of
v and w). Hence we can describe M as

M = {ax+bw | a, b ∈ R}.5

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that provides a way to
describe all subspaces of Rn.

As in Section 1.3, given vectors x1, x2, . . . , xk in Rn, a vector of the form

t1x1 + t2x2 + · · ·+ tkxk where the ti are scalars

is called a linear combination of the xi, and ti is called the coefficient of xi in the linear combination.

Definition 5.2 Linear Combinations and Span in Rn

The set of all such linear combinations is called the span of the xi and is denoted

span{x1, x2, . . . , xk}= {t1x1 + t2x2 + · · ·+ tkxk | ti in R}

If V = span{x1, x2, . . . , xk}, we say that V is spanned by the vectors x1, x2, . . . , xk, and that the
vectors x1, x2, . . . , xk span the space V .

Here are two examples:
span{x}= {tx | t ∈ R}

which we write as span{x}= Rx for simplicity.

span{x, y}= {rx+ sy | r, s ∈ R}
4The vector n = v×w is nonzero because v and w are not parallel.
5In particular, this implies that any vector p orthogonal to v×w must be a linear combination p = av+ bw of v and w for

some a and b. Can you prove this directly?
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In particular, the above discussion shows that, if v and w are two nonzero, nonparallel vectors in R3, then

M = span{v, w}
is the plane in R3 containing v and w. Moreover, if d is any nonzero vector in R3 (or R2), then

L = span{v}= {td | t ∈ R}= Rd

is the line with direction vector d. Hence lines and planes can both be described in terms of spanning sets.

Example 5.1.4

Let x = (2, −1, 2, 1) and y = (3, 4, −1, 1) in R4. Determine whether p = (0, −11, 8, 1) or
q = (2, 3, 1, 2) are in U = span{x, y}.

Solution. The vector p is in U if and only if p = sx+ ty for scalars s and t. Equating components
gives equations

2s+3t = 0, −s+4t =−11, 2s− t = 8, and s+ t = 1

This linear system has solution s = 3 and t =−2, so p is in U . On the other hand, asking that
q = sx+ ty leads to equations

2s+3t = 2, −s+4t = 3, 2s− t = 1, and s+ t = 2

and this system has no solution. So q does not lie in U .

Theorem 5.1.1: Span Theorem

Let U = span{x1, x2, . . . , xk} in Rn. Then:

1. U is a subspace of Rn containing each xi.

2. If W is a subspace of Rn and each xi ∈W , then U ⊆W .

Proof.

1. The zero vector 0 is in U because 0 = 0x1 + 0x2 + · · ·+ 0xk is a linear combination of the xi. If
x = t1x1 + t2x2 + · · ·+ tkxk and y = s1x1 + s2x2 + · · ·+ skxk are in U , then x+ y and ax are in U

because
x+y = (t1 + s1)x1 +(t2+ s2)x2 + · · ·+(tk + sk)xk, and

ax = (at1)x1 +(at2)x2 + · · ·+(atk)xk

Finally each xi is in U (for example, x2 = 0x1 +1x2 + · · ·+0xk) so S1, S2, and S3 are satisfied for
U , proving (1).

2. Let x = t1x1+ t2x2+ · · ·+ tkxk where the ti are scalars and each xi ∈W . Then each tixi ∈W because
W satisfies S3. But then x ∈W because W satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 5.1.1 can be expressed by saying that span{x1, x2, . . . , xk} is the smallest

subspace of Rn that contains each xi. This is useful for showing that two subspaces U and W are equal,
since this amounts to showing that both U ⊆W and W ⊆U . Here is an example of how it is used.



268 Vector Space Rn

Example 5.1.5

If x and y are in Rn, show that span{x, y}= span{x+y, x−y}.

Solution. Since both x+y and x−y are in span{x, y}, Theorem 5.1.1 gives

span{x+y, x−y} ⊆ span{x, y}

But x = 1
2(x+y)+ 1

2(x−y) and y = 1
2(x+y)− 1

2(x−y) are both in span{x+y, x−y}, so

span{x, y} ⊆ span{x+y, x−y}

again by Theorem 5.1.1. Thus span{x, y}= span{x+y, x−y}, as desired.

It turns out that many important subspaces are best described by giving a spanning set. Here are three
examples, beginning with an important spanning set for Rn itself. Column j of the n×n identity matrix
In is denoted e j and called the jth coordinate vector in Rn, and the set {e1, e2, . . . , en} is called the

standard basis of Rn. If x =




x1

x2
...

xn


 is any vector in Rn, then x = x1e1 + x2e2 + · · ·+ xnen, as the reader

can verify. This proves:

Example 5.1.6

Rn = span{e1, e2, . . . , en} where e1, e2, . . . , en are the columns of In.

If A is an m×n matrix A, the next two examples show that it is a routine matter to find spanning sets
for null A and im A.

Example 5.1.7

Given an m×n matrix A, let x1, x2, . . . , xk denote the basic solutions to the system Ax = 0 given
by the gaussian algorithm. Then

null A = span{x1, x2, . . . , xk}

Solution. If x ∈ null A, then Ax = 0 so Theorem 1.3.2 shows that x is a linear combination of the
basic solutions; that is, null A⊆ span{x1, x2, . . . , xk}. On the other hand, if x is in
span{x1, x2, . . . , xk}, then x = t1x1 + t2x2 + · · ·+ tkxk for scalars ti, so

Ax = t1Ax1 + t2Ax2 + · · ·+ tkAxk = t10+ t20+ · · ·+ tk0 = 0

This shows that x ∈ null A, and hence that span{x1, x2, . . . , xk} ⊆ null A. Thus we have equality.
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Example 5.1.8

Let c1, c2, . . . , cn denote the columns of the m×n matrix A. Then

im A = span{c1, c2, . . . , cn}

Solution. If {e1, e2, . . . , en} is the standard basis of Rn, observe that

[
Ae1 Ae2 · · · Aen

]
= A

[
e1 e2 · · · en

]
= AIn = A =

[
c1 c2 · · ·cn

]
.

Hence ci = Aei is in im A for each i, so span{c1, c2, . . . , cn} ⊆ im A.

Conversely, let y be in im A, say y = Ax for some x in Rn. If x =




x1

x2
...

xn


, then Definition 2.5 gives

y = Ax = x1c1 + x2c2 + · · ·+ xncn is in span{c1, c2, . . . , cn}

This shows that im A⊆ span{c1, c2, . . . , cn}, and the result follows.

Exercises for 5.1

We often write vectors in Rn as rows.

Exercise 5.1.1 In each case determine whether U is a
subspace of R3. Support your answer.

a. U = {(1, s, t) | s and t in R}.

b. U = {(0, s, t) | s and t in R}.

c. U = {(r, s, t) | r, s, and t in R,
− r+3s+2t = 0}.

d. U = {(r, 3s, r−2) | r and s in R}.

e. U = {(r, 0, s) | r2 + s2 = 0, r and s in R}.

f. U = {(2r, −s2, t) | r, s, and t in R}.

Exercise 5.1.2 In each case determine if x lies in U =
span{y, z}. If x is in U , write it as a linear combination
of y and z; if x is not in U , show why not.

a. x = (2, −1, 0, 1), y = (1, 0, 0, 1), and
z = (0, 1, 0, 1).

b. x = (1, 2, 15, 11), y = (2, −1, 0, 2), and
z = (1, −1, −3, 1).

c. x = (8, 3, −13, 20), y = (2, 1, −3, 5), and
z = (−1, 0, 2, −3).

d. x = (2, 5, 8, 3), y = (2, −1, 0, 5), and
z = (−1, 2, 2, −3).

Exercise 5.1.3 In each case determine if the given vec-
tors span R4. Support your answer.

a. {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.

b. {(1, 3, −5, 0), (−2, 1, 0, 0), (0, 2, 1, −1),
(1, −4, 5, 0)}.
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Exercise 5.1.4 Is it possible that {(1, 2, 0), (2, 0, 3)}
can span the subspace U = {(r, s, 0) | r and s in R}? De-
fend your answer.

Exercise 5.1.5 Give a spanning set for the zero subspace
{0} of Rn.

Exercise 5.1.6 Is R2 a subspace of R3? Defend your
answer.

Exercise 5.1.7 If U = span{x, y, z} in Rn, show that
U = span{x+ tz, y, z} for every t in R.

Exercise 5.1.8 If U = span{x, y, z} in Rn, show that
U = span{x+y, y+ z, z+x}.
Exercise 5.1.9 If a 6= 0 is a scalar, show that
span{ax}= span{x} for every vector x in Rn.

Exercise 5.1.10 If a1, a2, . . . , ak are nonzero
scalars, show that span{a1x1, a2x2, . . . , akxk} =
span{x1, x2, . . . , xk} for any vectors xi in Rn.

Exercise 5.1.11 If x 6= 0 in Rn, determine all subspaces
of span{x}.
Exercise 5.1.12 Suppose that U = span{x1, x2, . . . , xk}
where each xi is in Rn. If A is an m×n matrix and Axi = 0

for each i, show that Ay = 0 for every vector y in U .

Exercise 5.1.13 If A is an m× n matrix, show that, for
each invertible m×m matrix U , null (A) = null (UA).

Exercise 5.1.14 If A is an m× n matrix, show that, for
each invertible n×n matrix V , im (A) = im (AV ).

Exercise 5.1.15 Let U be a subspace of Rn, and let x be
a vector in Rn.

a. If ax is in U where a 6= 0 is a number, show that x

is in U .

b. If y and x+ y are in U where y is a vector in Rn,
show that x is in U .

Exercise 5.1.16 In each case either show that the state-
ment is true or give an example showing that it is false.

a. If U 6= Rn is a subspace of Rn and x+ y is in U ,
then x and y are both in U .

b. If U is a subspace of Rn and rx is in U for all r in
R, then x is in U .

c. If U is a subspace of Rn and x is in U , then −x is
also in U .

d. If x is in U and U = span {y, z}, then U =
span {x, y, z}.

e. The empty set of vectors in Rn is a subspace of
Rn.

f.

[
0
1

]
is in span

{[
1
0

]
,

[
2
0

]}
.

Exercise 5.1.17

a. If A and B are m×n matrices, show that
U = {x in Rn | Ax = Bx} is a subspace of Rn.

b. What if A is m×n, B is k×n, and m 6= k?

Exercise 5.1.18 Suppose that x1, x2, . . . , xk are vectors
in Rn. If y= a1x1+a2x2+ · · ·+akxk where a1 6= 0, show
that span{x1 x2, . . . , xk}= span{y1, x2, . . . , xk}.
Exercise 5.1.19 If U 6= {0} is a subspace of R, show
that U = R.

Exercise 5.1.20 Let U be a nonempty subset of Rn.
Show that U is a subspace if and only if S2 and S3 hold.

Exercise 5.1.21 If S and T are nonempty sets of vectors
in Rn, and if S⊆ T , show that span{S} ⊆ span{T}.
Exercise 5.1.22 Let U and W be subspaces of Rn. De-
fine their intersection U ∩W and their sum U +W as
follows:

U ∩W = {x ∈Rn | x belongs to both U and W}.
U +W = {x ∈ Rn | x is a sum of a vector in U

and a vector in W}.

a. Show that U ∩W is a subspace of Rn.

b. Show that U +W is a subspace of Rn.

Exercise 5.1.23 Let P denote an invertible n×n matrix.
If λ is a number, show that

Eλ (PAP−1) = {Px | x is in Eλ (A)}

for each n×n matrix A.

Exercise 5.1.24 Show that every proper subspace U of
R2 is a line through the origin. [Hint: If d is a nonzero
vector in U , let L = Rd = {rd | r in R} denote the line
with direction vector d. If u is in U but not in L, argue
geometrically that every vector v in R2 is a linear combi-
nation of u and d.]
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5.2 Independence and Dimension

Some spanning sets are better than others. If U = span{x1, x2, . . . , xk} is a subspace of Rn, then every
vector in U can be written as a linear combination of the xi in at least one way. Our interest here is in
spanning sets where each vector in U has a exactly one representation as a linear combination of these
vectors.

Linear Independence

Given x1, x2, . . . , xk in Rn, suppose that two linear combinations are equal:

r1x1 + r2x2 + · · ·+ rkxk = s1x1 + s2x2 + · · ·+ skxk

We are looking for a condition on the set {x1, x2, . . . , xk} of vectors that guarantees that this representation
is unique; that is, ri = si for each i. Taking all terms to the left side gives

(r1− s1)x1 +(r2− s2)x2 + · · ·+(rk− sk)xk = 0

so the required condition is that this equation forces all the coefficients ri− si to be zero.

Definition 5.3 Linear Independence in Rn

With this in mind, we call a set {x1, x2, . . . , xk} of vectors linearly independent (or simply
independent) if it satisfies the following condition:

If t1x1 + t2x2 + · · ·+ tkxk = 0 then t1 = t2 = · · ·= tk = 0

We record the result of the above discussion for reference.

Theorem 5.2.1

If {x1, x2, . . . , xk} is an independent set of vectors in Rn, then every vector in
span{x1, x2, . . . , xk} has a unique representation as a linear combination of the xi.

It is useful to state the definition of independence in different language. Let us say that a linear
combination vanishes if it equals the zero vector, and call a linear combination trivial if every coefficient
is zero. Then the definition of independence can be compactly stated as follows:

A set of vectors is independent if and only if the only linear combination that vanishes is the
trivial one.

Hence we have a procedure for checking that a set of vectors is independent:
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Independence Test

To verify that a set {x1, x2, . . . , xk} of vectors in Rn is independent, proceed as follows:

1. Set a linear combination equal to zero: t1x1 + t2x2 + · · ·+ tkxk = 0.

2. Show that ti = 0 for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.

Example 5.2.1

Determine whether {(1, 0, −2, 5), (2, 1, 0, −1), (1, 1, 2, 1)} is independent in R4.

Solution. Suppose a linear combination vanishes:

r(1, 0, −2, 5)+ s(2, 1, 0, −1)+ t(1, 1, 2, 1) = (0, 0, 0, 0)

Equating corresponding entries gives a system of four equations:

r+2s+ t = 0, s+ t = 0, −2r+2t = 0, and 5r− s+ t = 0

The only solution is the trivial one r = s = t = 0 (verify), so these vectors are independent by the
independence test.

Example 5.2.2

Show that the standard basis {e1, e2, . . . , en} of Rn is independent.

Solution. The components of t1e1 + t2e2 + · · ·+ tnen are t1, t2, . . . , tn (see the discussion preceding
Example 5.1.6) So the linear combination vanishes if and only if each ti = 0. Hence the
independence test applies.

Example 5.2.3

If {x, y} is independent, show that {2x+3y, x−5y} is also independent.

Solution. If s(2x+3y)+ t(x−5y) = 0, collect terms to get (2s+ t)x+(3s−5t)y = 0. Since
{x, y} is independent this combination must be trivial; that is, 2s+ t = 0 and 3s−5t = 0. These
equations have only the trivial solution s = t = 0, as required.
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Example 5.2.4

Show that the zero vector in Rn does not belong to any independent set.

Solution. No set {0, x1, x2, . . . , xk} of vectors is independent because we have a vanishing,
nontrivial linear combination 1 ·0+0x1 +0x2 + · · ·+0xk = 0.

Example 5.2.5

Given x in Rn, show that {x} is independent if and only if x 6= 0.

Solution. A vanishing linear combination from {x} takes the form tx = 0, t in R. This implies that
t = 0 because x 6= 0.

The next example will be needed later.

Example 5.2.6

Show that the nonzero rows of a row-echelon matrix R are independent.

Solution. We illustrate the case with 3 leading 1s; the general case is analogous. Suppose R has the

form R =




0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 0


 where ∗ indicates a nonspecified number. Let R1, R2, and R3

denote the nonzero rows of R. If t1R1 + t2R2 + t3R3 = 0 we show that t1 = 0, then t2 = 0, and
finally t3 = 0. The condition t1R1 + t2R2 + t3R3 = 0 becomes

(0, t1, ∗, ∗, ∗, ∗)+(0, 0, 0, t2, ∗, ∗)+(0, 0, 0, 0, t3, ∗) = (0, 0, 0, 0, 0, 0)

Equating second entries show that t1 = 0, so the condition becomes t2R2 + t3R3 = 0. Now the same
argument shows that t2 = 0. Finally, this gives t3R3 = 0 and we obtain t3 = 0.

A set of vectors in Rn is called linearly dependent (or simply dependent) if it is not linearly indepen-
dent, equivalently if some nontrivial linear combination vanishes.

Example 5.2.7

If v and w are nonzero vectors in R3, show that {v, w} is dependent if and only if v and w are
parallel.

Solution. If v and w are parallel, then one is a scalar multiple of the other (Theorem 4.1.4), say
v = aw for some scalar a. Then the nontrivial linear combination v−aw = 0 vanishes, so {v, w}
is dependent.
Conversely, if {v, w} is dependent, let sv+ tw = 0 be nontrivial, say s 6= 0. Then v =− t

s
w so v

and w are parallel (by Theorem 4.1.4). A similar argument works if t 6= 0.
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With this we can give a geometric description of what it means for a set {u, v, w} in R3 to be in-
dependent. Note that this requirement means that {v, w} is also independent (av+ bw = 0 means that
0u+av+bw = 0), so M = span{v, w} is the plane containing v, w, and 0 (see the discussion preceding
Example 5.1.4). So we assume that {v, w} is independent in the following example.

Example 5.2.8

u

v

w

M

{u, v, w} independent

u
v

w

M

{u, v, w} not independent

Let u, v, and w be nonzero vectors in R3 where {v, w}
independent. Show that {u, v, w} is independent if and only
if u is not in the plane M = span{v, w}. This is illustrated in
the diagrams.

Solution. If {u, v, w} is independent, suppose u is in the plane
M = span{v, w}, say u = av+bw, where a and b are in R. Then
1u−av−bw = 0, contradicting the independence of {u, v, w}.
On the other hand, suppose that u is not in M; we must show
that {u, v, w} is independent. If ru+ sv+ tw = 0 where r, s,
and t are in R3, then r = 0 since otherwise u = − s

r
v+ −t

r
w is

in M. But then sv+ tw = 0, so s = t = 0 by our assumption.
This shows that {u, v, w} is independent, as required.

By the inverse theorem, the following conditions are equivalent for an n×n matrix A:

1. A is invertible.

2. If Ax = 0 where x is in Rn, then x = 0.

3. Ax = b has a solution x for every vector b in Rn.

While condition 1 makes no sense if A is not square, conditions 2 and 3 are meaningful for any matrix A

and, in fact, are related to independence and spanning. Indeed, if c1, c2, . . . , cn are the columns of A, and

if we write x =




x1

x2
...

xn


, then

Ax = x1c1 + x2c2 + · · ·+ xncn

by Definition 2.5. Hence the definitions of independence and spanning show, respectively, that condition
2 is equivalent to the independence of {c1, c2, . . . , cn} and condition 3 is equivalent to the requirement
that span{c1, c2, . . . , cn}= Rm. This discussion is summarized in the following theorem:

Theorem 5.2.2

If A is an m×n matrix, let {c1, c2, . . . , cn} denote the columns of A.

1. {c1, c2, . . . , cn} is independent in Rm if and only if Ax = 0, x in Rn, implies x = 0.

2. Rm = span{c1, c2, . . . , cn} if and only if Ax = b has a solution x for every vector b in Rm.
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For a square matrix A, Theorem 5.2.2 characterizes the invertibility of A in terms of the spanning and
independence of its columns (see the discussion preceding Theorem 5.2.2). It is important to be able to
discuss these notions for rows. If x1, x2, . . . , xk are 1× n rows, we define span{x1, x2, . . . , xk} to be
the set of all linear combinations of the xi (as matrices), and we say that {x1, x2, . . . , xk} is linearly
independent if the only vanishing linear combination is the trivial one (that is, if {xT

1 , xT
2 , . . . , xT

k } is
independent in Rn, as the reader can verify).6

Theorem 5.2.3

The following are equivalent for an n×n matrix A:

1. A is invertible.

2. The columns of A are linearly independent.

3. The columns of A span Rn.

4. The rows of A are linearly independent.

5. The rows of A span the set of all 1×n rows.

Proof. Let c1, c2, . . . , cn denote the columns of A.

(1)⇔ (2). By Theorem 2.4.5, A is invertible if and only if Ax = 0 implies x = 0; this holds if and only
if {c1, c2, . . . , cn} is independent by Theorem 5.2.2.

(1) ⇔ (3). Again by Theorem 2.4.5, A is invertible if and only if Ax = b has a solution for every
column B in Rn; this holds if and only if span{c1, c2, . . . , cn}= Rn by Theorem 5.2.2.

(1) ⇔ (4). The matrix A is invertible if and only if AT is invertible (by Corollary 2.4.1 to Theorem
2.4.4); this in turn holds if and only if AT has independent columns (by (1) ⇔ (2)); finally, this last
statement holds if and only if A has independent rows (because the rows of A are the transposes of the
columns of AT ).

(1)⇔ (5). The proof is similar to (1)⇔ (4).

Example 5.2.9

Show that S = {(2, −2, 5), (−3, 1, 1), (2, 7, −4)} is independent in R3.

Solution. Consider the matrix A =




2 −2 5
−3 1 1

2 7 −4


 with the vectors in S as its rows. A routine

computation shows that det A =−117 6= 0, so A is invertible. Hence S is independent by
Theorem 5.2.3. Note that Theorem 5.2.3 also shows that R3 = span S.

6It is best to view columns and rows as just two different notations for ordered n-tuples. This discussion will become
redundant in Chapter 6 where we define the general notion of a vector space.
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Dimension

It is common geometrical language to say that R3 is 3-dimensional, that planes are 2-dimensional and
that lines are 1-dimensional. The next theorem is a basic tool for clarifying this idea of “dimension”. Its
importance is difficult to exaggerate.

Theorem 5.2.4: Fundamental Theorem

Let U be a subspace of Rn. If U is spanned by m vectors, and if U contains k linearly independent
vectors, then k ≤ m.

This proof is given in Theorem 6.3.2 in much greater generality.

Definition 5.4 Basis of Rn

If U is a subspace of Rn, a set {x1, x2, . . . , xm} of vectors in U is called a basis of U if it satisfies
the following two conditions:

1. {x1, x2, . . . , xm} is linearly independent.

2. U = span{x1, x2, . . . , xm}.

The most remarkable result about bases7 is:

Theorem 5.2.5: Invariance Theorem

If {x1, x2, . . . , xm} and {y1, y2, . . . , yk} are bases of a subspace U of Rn, then m = k.

Proof. We have k≤m by the fundamental theorem because {x1, x2, . . . , xm} spans U , and {y1, y2, . . . , yk}
is independent. Similarly, by interchanging x’s and y’s we get m≤ k. Hence m = k.

The invariance theorem guarantees that there is no ambiguity in the following definition:

Definition 5.5 Dimension of a Subspace of Rn

If U is a subspace of Rn and {x1, x2, . . . , xm} is any basis of U , the number, m, of vectors in the
basis is called the dimension of U , denoted

dim U = m

The importance of the invariance theorem is that the dimension of U can be determined by counting the
number of vectors in any basis.8

7The plural of “basis” is “bases”.
8We will show in Theorem 5.2.6 that every subspace of Rn does indeed have a basis.
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Let {e1, e2, . . . , en} denote the standard basis of Rn, that is the set of columns of the identity matrix.
Then Rn = span{e1, e2, . . . , en} by Example 5.1.6, and {e1, e2, . . . , en} is independent by Example 5.2.2.
Hence it is indeed a basis of Rn in the present terminology, and we have

Example 5.2.10

dim (Rn) = n and {e1, e2, . . . , en} is a basis.

This agrees with our geometric sense that R2 is two-dimensional and R3 is three-dimensional. It also
says that R1 = R is one-dimensional, and {1} is a basis. Returning to subspaces of Rn, we define

dim{0}= 0

This amounts to saying {0} has a basis containing no vectors. This makes sense because 0 cannot belong
to any independent set (Example 5.2.4).

Example 5.2.11

Let U =








r

s

r


 | r, s in R



. Show that U is a subspace of R3, find a basis, and calculate dim U .

Solution. Clearly,




r

s

r


= ru+ sv where u =




1
0
1


 and v =




0
1
0


. It follows that

U = span{u, v}, and hence that U is a subspace of R3. Moreover, if ru+ sv = 0, then


r

s

r


=




0
0
0


 so r = s = 0. Hence {u, v} is independent, and so a basis of U . This means

dim U = 2.

Example 5.2.12

Let B = {x1, x2, . . . , xn} be a basis of Rn. If A is an invertible n×n matrix, then
D = {Ax1, Ax2, . . . , Axn} is also a basis of Rn.

Solution. Let x be a vector in Rn. Then A−1x is in Rn so, since B is a basis, we have
A−1x = t1x1 + t2x2 + · · ·+ tnxn for ti in R. Left multiplication by A gives
x = t1(Ax1)+ t2(Ax2)+ · · ·+ tn(Axn), and it follows that D spans Rn. To show independence, let
s1(Ax1)+ s2(Ax2)+ · · ·+ sn(Axn) = 0, where the si are in R. Then A(s1x1 + s2x2 + · · ·+ snxn) = 0

so left multiplication by A−1 gives s1x1 + s2x2 + · · ·+ snxn = 0. Now the independence of B shows
that each si = 0, and so proves the independence of D. Hence D is a basis of Rn.

While we have found bases in many subspaces of Rn, we have not yet shown that every subspace has

a basis. This is part of the next theorem, the proof of which is deferred to Section 6.4 (Theorem 6.4.1)
where it will be proved in more generality.
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Theorem 5.2.6

Let U 6= {0} be a subspace of Rn. Then:

1. U has a basis and dim U ≤ n.

2. Any independent set in U can be enlarged (by adding vectors from the standard basis) to a
basis of U .

3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U .

Example 5.2.13

Find a basis of R4 containing S = {u, v} where u = (0, 1, 2, 3) and v = (2, −1, 0, 1).

Solution. By Theorem 5.2.6 we can find such a basis by adding vectors from the standard basis of
R4 to S. If we try e1 = (1, 0, 0, 0), we find easily that {e1, u, v} is independent. Now add another
vector from the standard basis, say e2.
Again we find that B = {e1, e2, u, v} is independent. Since B has 4 = dim R4 vectors, then B

must span R4 by Theorem 5.2.7 below (or simply verify it directly). Hence B is a basis of R4.

Theorem 5.2.6 has a number of useful consequences. Here is the first.

Theorem 5.2.7

Let U be a subspace of Rn where dim U = m and let B = {x1, x2, . . . , xm} be a set of m vectors in
U . Then B is independent if and only if B spans U .

Proof. Suppose B is independent. If B does not span U then, by Theorem 5.2.6, B can be enlarged to a
basis of U containing more than m vectors. This contradicts the invariance theorem because dim U = m,
so B spans U . Conversely, if B spans U but is not independent, then B can be cut down to a basis of U

containing fewer than m vectors, again a contradiction. So B is independent, as required.

As we saw in Example 5.2.13, Theorem 5.2.7 is a “labour-saving” result. It asserts that, given a
subspace U of dimension m and a set B of exactly m vectors in U , to prove that B is a basis of U it suffices
to show either that B spans U or that B is independent. It is not necessary to verify both properties.

Theorem 5.2.8

Let U ⊆W be subspaces of Rn. Then:

1. dim U ≤ dim W .

2. If dim U = dim W , then U =W .
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Proof. Write dim W = k, and let B be a basis of U .

1. If dim U > k, then B is an independent set in W containing more than k vectors, contradicting the
fundamental theorem. So dim U ≤ k = dim W .

2. If dim U = k, then B is an independent set in W containing k = dim W vectors, so B spans W by
Theorem 5.2.7. Hence W = span B =U , proving (2).

It follows from Theorem 5.2.8 that if U is a subspace of Rn, then dim U is one of the integers 0, 1, 2, . . . , n,
and that:

dim U = 0 if and only if U = {0},
dim U = n if and only if U = Rn

The other subspaces of Rn are called proper. The following example uses Theorem 5.2.8 to show that the
proper subspaces of R2 are the lines through the origin, while the proper subspaces of R3 are the lines and
planes through the origin.

Example 5.2.14

1. If U is a subspace of R2 or R3, then dim U = 1 if and only if U is a line through the origin.

2. If U is a subspace of R3, then dim U = 2 if and only if U is a plane through the origin.

Proof.

1. Since dim U = 1, let {u} be a basis of U . Then U = span{u} = {tu | t in R}, so U is the line
through the origin with direction vector u. Conversely each line L with direction vector d 6= 0 has
the form L = {td | t in R}. Hence {d} is a basis of U , so U has dimension 1.

2. If U ⊆ R3 has dimension 2, let {v, w} be a basis of U . Then v and w are not parallel (by Exam-
ple 5.2.7) so n = v×w 6= 0. Let P = {x in R3 | n · x = 0} denote the plane through the origin with
normal n. Then P is a subspace of R3 (Example 5.1.1) and both v and w lie in P (they are orthogonal
to n), so U = span{v, w} ⊆ P by Theorem 5.1.1. Hence

U ⊆ P⊆ R3

Since dim U = 2 and dim (R3) = 3, it follows from Theorem 5.2.8 that dim P = 2 or 3, whence
P =U or R3. But P 6= R3 (for example, n is not in P) and so U = P is a plane through the origin.

Conversely, if U is a plane through the origin, then dim U = 0, 1, 2, or 3 by Theorem 5.2.8. But
dim U 6= 0 or 3 because U 6= {0} and U 6= R3, and dim U 6= 1 by (1). So dim U = 2.

Note that this proof shows that if v and w are nonzero, nonparallel vectors in R3, then span{v, w} is the
plane with normal n = v×w. We gave a geometrical verification of this fact in Section 5.1.
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Exercises for 5.2

In Exercises 5.2.1-5.2.6 we write vectors Rn as
rows.

Exercise 5.2.1 Which of the following subsets are inde-
pendent? Support your answer.

a. {(1, −1, 0), (3, 2, −1), (3, 5, −2)} in R3

b. {(1, 1, 1), (1, −1, 1), (0, 0, 1)} in R3

c. {(1, −1, 1, −1), (2, 0, 1, 0), (0, −2, 1, −2)} in
R4

d. {(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1),
(0, 1, 0, 1)} in R4

Exercise 5.2.2 Let {x, y, z, w} be an independent set in
Rn. Which of the following sets is independent? Support
your answer.

a. {x−y, y− z, z−x}

b. {x+y, y+ z, z+x}

c. {x−y, y− z, z−w, w−x}

d. {x+y, y+ z, z+w, w+x}

Exercise 5.2.3 Find a basis and calculate the dimension
of the following subspaces of R4.

a. span{(1, −1, 2, 0), (2, 3, 0, 3), (1, 9, −6, 6)}

b. span{(2, 1, 0, −1), (−1, 1, 1, 1), (2, 7, 4, 1)}

c. span{(−1, 2, 1, 0), (2, 0, 3, −1), (4, 4, 11, −3),
(3, −2, 2, −1)}

d. span{(−2, 0, 3, 1), (1, 2, −1, 0), (−2, 8, 5, 3),
(−1, 2, 2, 1)}

Exercise 5.2.4 Find a basis and calculate the dimension
of the following subspaces of R4.

a. U =








a

a+b

a−b

b




∣∣∣∣∣∣∣∣
a and b in R





b. U =








a+b

a−b

b

a




∣∣∣∣∣∣∣∣
a and b in R





c. U =








a

b

c+a

c




∣∣∣∣∣∣∣∣
a, b, and c in R





d. U =








a−b

b+ c

a

b+ c




∣∣∣∣∣∣∣∣
a, b, and c in R





e. U =








a

b

c

d




∣∣∣∣∣∣∣∣
a+b− c+d = 0 in R





f. U =








a

b

c

d




∣∣∣∣∣∣∣∣
a+b = c+d in R





Exercise 5.2.5 Suppose that {x, y, z, w} is a basis of
R4. Show that:

a. {x + aw, y, z, w} is also a basis of R4 for any
choice of the scalar a.

b. {x+w, y+w, z+w, w} is also a basis of R4.

c. {x, x+y, x+y+ z, x+y+ z+w} is also a basis
of R4.

Exercise 5.2.6 Use Theorem 5.2.3 to determine if the
following sets of vectors are a basis of the indicated
space.

a. {(3, −1), (2, 2)} in R2

b. {(1, 1, −1), (1, −1, 1), (0, 0, 1)} in R3

c. {(−1, 1, −1), (1, −1, 2), (0, 0, 1)} in R3

d. {(5, 2, −1), (1, 0, 1), (3, −1, 0)} in R3
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e. {(2, 1, −1, 3), (1, 1, 0, 2), (0, 1, 0, −3),
(−1, 2, 3, 1)} in R4

f. {(1, 0, −2, 5), (4, 4, −3, 2), (0, 1, 0, −3),
(1, 3, 3, −10)} in R4

Exercise 5.2.7 In each case show that the statement is
true or give an example showing that it is false.

a. If {x, y} is independent, then {x, y, x+ y} is in-
dependent.

b. If {x, y, z} is independent, then {y, z} is indepen-
dent.

c. If {y, z} is dependent, then {x, y, z} is dependent
for any x.

d. If all of x1, x2, . . . , xk are nonzero, then
{x1, x2, . . . , xk} is independent.

e. If one of x1, x2, . . . , xk is zero, then
{x1, x2, . . . , xk} is dependent.

f. If ax+by+ cz = 0, then {x, y, z} is independent.

g. If {x, y, z} is independent, then ax+by+ cz = 0

for some a, b, and c in R.

h. If {x1, x2, . . . , xk} is dependent, then t1x1+t2x2+
· · ·+tkxk = 0 for some numbers ti in R not all zero.

i. If {x1, x2, . . . , xk} is independent, then t1x1 +
t2x2 + · · ·+ tkxk = 0 for some ti in R.

j. Every non-empty subset of a linearly independent
set is again linearly independent.

k. Every set containing a spanning set is again a
spanning set.

Exercise 5.2.8 If A is an n×n matrix, show that det A =
0 if and only if some column of A is a linear combination
of the other columns.

Exercise 5.2.9 Let {x, y, z} be a linearly independent
set in R4. Show that {x, y, z, ek} is a basis of R4 for
some ek in the standard basis {e1, e2, e3, e4}.
Exercise 5.2.10 If {x1, x2, x3, x4, x5, x6} is an inde-
pendent set of vectors, show that the subset {x2, x3, x5}
is also independent.

Exercise 5.2.11 Let A be any m × n matrix, and
let b1, b2, b3, . . . , bk be columns in Rm such that
the system Ax = bi has a solution xi for each i. If
{b1, b2, b3, . . . , bk} is independent in Rm, show that
{x1, x2, x3, . . . , xk} is independent in Rn.

Exercise 5.2.12 If {x1, x2, x3, . . . , xk} is independent,
show {x1, x1 +x2, x1 +x2 +x3, . . . , x1 +x2 + · · ·+xk}
is also independent.

Exercise 5.2.13 If {y, x1, x2, x3, . . . , xk} is indepen-
dent, show that {y+ x1, y+ x2, y+ x3, . . . , y+ xk} is
also independent.

Exercise 5.2.14 If {x1, x2, . . . , xk} is independent in
Rn, and if y is not in span{x1, x2, . . . , xk}, show that
{x1, x2, . . . , xk, y} is independent.

Exercise 5.2.15 If A and B are matrices and the columns
of AB are independent, show that the columns of B are in-
dependent.

Exercise 5.2.16 Suppose that {x, y} is a basis of R2,

and let A =

[
a b

c d

]
.

a. If A is invertible, show that {ax+ by, cx+ dy} is
a basis of R2.

b. If {ax+by, cx+dy} is a basis of R2, show that A

is invertible.

Exercise 5.2.17 Let A denote an m×n matrix.

a. Show that null A = null (UA) for every invertible
m×m matrix U .

b. Show that dim (null A) = dim (null (AV )) for
every invertible n × n matrix V . [Hint: If
{x1, x2, . . . , xk} is a basis of null A, show
that {V−1x1, V−1x2, . . . , V−1xk} is a basis of
null (AV ).]

Exercise 5.2.18 Let A denote an m×n matrix.

a. Show that im A = im (AV ) for every invertible
n×n matrix V .

b. Show that dim ( im A) = dim ( im (UA)) for ev-
ery invertible m × m matrix U . [Hint: If
{y1, y2, . . . , yk} is a basis of im (UA), show that
{U−1y1, U−1y2, . . . , U−1yk} is a basis of im A.]

Exercise 5.2.19 Let U and W denote subspaces of Rn,
and assume that U ⊆W . If dim U = n− 1, show that
either W =U or W = Rn.

Exercise 5.2.20 Let U and W denote subspaces of Rn,
and assume that U ⊆W . If dim W = 1, show that either
U = {0} or U =W .
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5.3 Orthogonality

Length and orthogonality are basic concepts in geometry and, in R2 and R3, they both can be defined
using the dot product. In this section we extend the dot product to vectors in Rn, and so endow Rn with
euclidean geometry. We then introduce the idea of an orthogonal basis—one of the most useful concepts
in linear algebra, and begin exploring some of its applications.

Dot Product, Length, and Distance

If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two n-tuples in Rn, recall that their dot product was
defined in Section 2.2 as follows:

x ·y = x1y1 + x2y2 + · · ·+ xnyn

Observe that if x and y are written as columns then x ·y = xT y is a matrix product (and x ·y = xyT if they
are written as rows). Here x ·y is a 1×1 matrix, which we take to be a number.

Definition 5.6 Length in Rn

As in R3, the length ‖x‖ of the vector is defined by

‖x‖=
√

x ·x =
√

x2
1 + x2

2 + · · ·+ x2
n

Where
√

( ) indicates the positive square root.

A vector x of length 1 is called a unit vector. If x 6= 0, then ‖x‖ 6= 0 and it follows easily that 1
‖x‖x is a

unit vector (see Theorem 5.3.6 below), a fact that we shall use later.

Example 5.3.1

If x = (1, −1, −3, 1) and y = (2, 1, 1, 0) in R4, then x ·y = 2−1−3+0 =−2 and
‖x‖=

√
1+1+9+1 =

√
12 = 2

√
3. Hence 1

2
√

3
x is a unit vector; similarly 1√

6
y is a unit vector.

These definitions agree with those in R2 and R3, and many properties carry over to Rn:

Theorem 5.3.1

Let x, y, and z denote vectors in Rn. Then:

1. x ·y = y ·x.

2. x · (y+ z) = x ·y+x · z.

3. (ax) ·y = a(x ·y) = x · (ay) for all scalars a.
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4. ‖x‖2 = x ·x.

5. ‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0.

6. ‖ax‖= |a|‖x‖ for all scalars a.

Proof. (1), (2), and (3) follow from matrix arithmetic because x ·y = xT y; (4) is clear from the definition;

and (6) is a routine verification since |a| =
√

a2. If x = (x1, x2, . . . , xn), then ‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n

so ‖x‖= 0 if and only if x2
1 + x2

2 + · · ·+ x2
n = 0. Since each xi is a real number this happens if and only if

xi = 0 for each i; that is, if and only if x = 0. This proves (5).

Because of Theorem 5.3.1, computations with dot products in Rn are similar to those in R3. In partic-
ular, the dot product

(x1 +x2 + · · ·+xm) · (y1 +y2 + · · ·+yk)

equals the sum of mk terms, xi ·y j, one for each choice of i and j. For example:

(3x−4y) · (7x+2y) = 21(x ·x)+6(x ·y)−28(y ·x)−8(y ·y)
= 21‖x‖2−22(x ·y)−8‖y‖2

holds for all vectors x and y.

Example 5.3.2

Show that ‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 for any x and y in Rn.

Solution. Using Theorem 5.3.1 several times:

‖x+y‖2 = (x+y) · (x+y) = x ·x+x ·y+y ·x+y ·y
= ‖x‖2 +2(x ·y)+‖y‖2

Example 5.3.3

Suppose that Rn = span{f1, f2, . . . , fk} for some vectors fi. If x · fi = 0 for each i where x is in Rn,
show that x = 0.

Solution. We show x = 0 by showing that ‖x‖= 0 and using (5) of Theorem 5.3.1. Since the fi

span Rn, write x = t1f1 + t2f2 + · · ·+ tkfk where the ti are in R. Then

‖x‖2 = x ·x = x · (t1f1 + t2f2 + · · ·+ tkfk)

= t1(x · f1)+ t2(x · f2)+ · · ·+ tk(x · fk)

= t1(0)+ t2(0)+ · · ·+ tk(0)

= 0
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We saw in Section 4.2 that if u and v are nonzero vectors in R3, then u·v
‖u‖‖v‖ = cosθ where θ is the angle

between u and v. Since |cosθ | ≤ 1 for any angle θ , this shows that |u ·v| ≤ ‖u‖‖v‖. In this form the result
holds in Rn.

Theorem 5.3.2: Cauchy Inequality9

If x and y are vectors in Rn, then
|x ·y| ≤ ‖x‖‖y‖

Moreover |x ·y|= ‖x‖‖y‖ if and only if one of x and y is a multiple of the other.

Proof. The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise, write ‖x‖ = a > 0 and
‖y‖= b > 0 for convenience. A computation like that preceding Example 5.3.2 gives

‖bx−ay‖2 = 2ab(ab−x ·y) and ‖bx+ay‖2 = 2ab(ab+x ·y) (5.1)

It follows that ab−x ·y≥ 0 and ab+x ·y≥ 0, and hence that−ab≤ x ·y≤ ab. Hence |x·y| ≤ ab= ‖x‖‖y‖,
proving the Cauchy inequality.

If equality holds, then |x · y| = ab, so x · y = ab or x · y = −ab. Hence Equation 5.1 shows that
bx−ay = 0 or bx+ay = 0, so one of x and y is a multiple of the other (even if a = 0 or b = 0).

The Cauchy inequality is equivalent to (x ·y)2 ≤ ‖x‖2‖y‖2. In R5 this becomes

(x1y1 + x2y2 + x3y3 + x4y4 + x5y5)
2 ≤ (x2

1 + x2
2 + x2

3 + x2
4 + x2

5)(y
2
1 + y2

2 + y2
3 + y2

4 + y2
5)

for all xi and yi in R.

There is an important consequence of the Cauchy inequality. Given x and y in Rn, use Example 5.3.2
and the fact that x ·y≤ ‖x‖‖y‖ to compute

‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 ≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x+y‖)2

Taking positive square roots gives:

Corollary 5.3.1: Triangle Inequality

If x and y are vectors in Rn, then ‖x+y‖ ≤ ‖x‖+‖y‖.

v w

v+w

The reason for the name comes from the observation that in R3 the
inequality asserts that the sum of the lengths of two sides of a triangle is
not less than the length of the third side. This is illustrated in the diagram.

9Augustin Louis Cauchy (1789–1857) was born in Paris and became a professor at the École Polytechnique at the age of
26. He was one of the great mathematicians, producing more than 700 papers, and is best remembered for his work in analysis
in which he established new standards of rigour and founded the theory of functions of a complex variable. He was a devout
Catholic with a long-term interest in charitable work, and he was a royalist, following King Charles X into exile in Prague after
he was deposed in 1830. Theorem 5.3.2 first appeared in his 1812 memoir on determinants.
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Definition 5.7 Distance in Rn

If x and y are two vectors in Rn, we define the distance d(x, y) between x and y by

d(x, y) = ‖x−y‖

w
v−w

v

The motivation again comes from R3 as is clear in the diagram. This
distance function has all the intuitive properties of distance in R3, includ-
ing another version of the triangle inequality.

Theorem 5.3.3

If x, y, and z are three vectors in Rn we have:

1. d(x, y)≥ 0 for all x and y.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x and y .

4. d(x, z)≤ d(x, y)+d(y, z)for all x, y, and z. Triangle inequality.

Proof. (1) and (2) restate part (5) of Theorem 5.3.1 because d(x, y) = ‖x− y‖, and (3) follows because
‖u‖= ‖−u‖ for every vector u in Rn. To prove (4) use the Corollary to Theorem 5.3.2:

d(x, z) = ‖x− z‖= ‖(x−y)+(y− z)‖
≤ ‖(x−y)‖+‖(y− z)‖= d(x, y)+d(y, z)

Orthogonal Sets and the Expansion Theorem

Definition 5.8 Orthogonal and Orthonormal Sets

We say that two vectors x and y in Rn are orthogonal if x ·y = 0, extending the terminology in R3

(See Theorem 4.2.3). More generally, a set {x1, x2, . . . , xk} of vectors in Rn is called an
orthogonal set if

xi ·x j = 0 for all i 6= j and xi 6= 0 for all i10

Note that {x} is an orthogonal set if x 6= 0. A set {x1, x2, . . . , xk} of vectors in Rn is called
orthonormal if it is orthogonal and, in addition, each xi is a unit vector:

‖xi‖= 1 for each i.

10The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned with orthog-
onal bases.
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Example 5.3.4

The standard basis {e1, e2, . . . , en} is an orthonormal set in Rn.

The routine verification is left to the reader, as is the proof of:

Example 5.3.5

If {x1, x2, . . . , xk} is orthogonal, so also is {a1x1, a2x2, . . . , akxk} for any nonzero scalars ai.

If x 6= 0, it follows from item (6) of Theorem 5.3.1 that 1
‖x‖x is a unit vector, that is it has length 1.

Definition 5.9 Normalizing an Orthogonal Set

Hence if {x1, x2, . . . , xk} is an orthogonal set, then { 1
‖x1‖x1, 1

‖x2‖x2, · · · , 1
‖xk‖xk} is an

orthonormal set, and we say that it is the result of normalizing the orthogonal set {x1, x2, · · · , xk}.

Example 5.3.6

If f1 =




1
1
1
−1


, f2 =




1
0
1
2


, f3 =




−1
0
1
0


, and f4 =




−1
3
−1

1


 then {f1, f2, f3, f4} is an orthogonal

set in R4 as is easily verified. After normalizing, the corresponding orthonormal set is
{1

2f1, 1√
6
f2, 1√

2
f3, 1

2
√

3
f4}

v+w

v

w
The most important result about orthogonality is Pythagoras’ theorem.

Given orthogonal vectors v and w in R3, it asserts that

‖v+w‖2 = ‖v‖2 +‖w‖2

as in the diagram. In this form the result holds for any orthogonal set in Rn.

Theorem 5.3.4: Pythagoras’ Theorem

If {x1, x2, . . . , xk} is an orthogonal set in Rn, then

‖x1 +x2 + · · ·+xk‖2 = ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2.

Proof. The fact that xi ·x j = 0 whenever i 6= j gives
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‖x1 +x2 + · · ·+xk‖2 = (x1 +x2 + · · ·+xk) · (x1 +x2 + · · ·+xk)

= (x1 ·x1 +x2 ·x2 + · · ·+xk ·xk)+∑
i 6= j

xi ·x j

= ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2 +0

This is what we wanted.

If v and w are orthogonal, nonzero vectors in R3, then they are certainly not parallel, and so are linearly
independent Example 5.2.7. The next theorem gives a far-reaching extension of this observation.

Theorem 5.3.5

Every orthogonal set in Rn is linearly independent.

Proof. Let {x1, x2, . . . , xk} be an orthogonal set in Rn and suppose a linear combination vanishes, say:
t1x1 + t2x2 + · · ·+ tkxk = 0. Then

0 = x1 ·0 = x1 · (t1x1 + t2x2 + · · ·+ tkxk)

= t1(x1 ·x1)+ t2(x1 ·x2)+ · · ·+ tk(x1 ·xk)

= t1‖x1‖2 + t2(0)+ · · ·+ tk(0)

= t1‖x1‖2

Since ‖x1‖2 6= 0, this implies that t1 = 0. Similarly ti = 0 for each i.

Theorem 5.3.5 suggests considering orthogonal bases for Rn, that is orthogonal sets that span Rn.
These turn out to be the best bases in the sense that, when expanding a vector as a linear combination of
the basis vectors, there are explicit formulas for the coefficients.

Theorem 5.3.6: Expansion Theorem

Let {f1, f2, . . . , fm} be an orthogonal basis of a subspace U of Rn. If x is any vector in U , we have

x =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f1 + · · ·+

(
x·fm

‖fm‖2

)
fm

Proof. Since {f1, f2, . . . , fm} spans U , we have x = t1f1+ t2f2+ · · ·+ tmfm where the ti are scalars. To find
t1 we take the dot product of both sides with f1:

x · f1 = (t1f1 + t2f2 + · · ·+ tmfm) · f1

= t1(f1 · f1)+ t2(f2 · f1)+ · · ·+ tm(fm · f1)

= t1‖f1‖2 + t2(0)+ · · ·+ tm(0)

= t1‖f1‖2
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Since f1 6= 0, this gives t1 =
x·f1
‖f1‖2 . Similarly, ti =

x·fi

‖fi‖2 for each i.

The expansion in Theorem 5.3.6 of x as a linear combination of the orthogonal basis {f1, f2, . . . , fm} is
called the Fourier expansion of x, and the coefficients t1 =

x·fi

‖fi‖2 are called the Fourier coefficients. Note

that if {f1, f2, . . . , fm} is actually orthonormal, then ti = x · fi for each i. We will have a great deal more to
say about this in Section 10.5.

Example 5.3.7

Expand x = (a, b, c, d) as a linear combination of the orthogonal basis {f1, f2, f3, f4} of R4 given
in Example 5.3.6.

Solution. We have f1 = (1, 1, 1, −1), f2 = (1, 0, 1, 2), f3 = (−1, 0, 1, 0), and
f4 = (−1, 3, −1, 1) so the Fourier coefficients are

t1 =
x·f1
‖f1‖2 = 1

4(a+b+ c+d) t3 =
x·f3
‖f3‖2 =

1
2(−a+ c)

t2 =
x·f2
‖f2‖2 = 1

6(a+ c+2d) t4 =
x·f4
‖f4‖2 =

1
12(−a+3b− c+d)

The reader can verify that indeed x = t1f1 + t2f2 + t3f3 + t4f4.

A natural question arises here: Does every subspace U of Rn have an orthogonal basis? The answer is
“yes”; in fact, there is a systematic procedure, called the Gram-Schmidt algorithm, for turning any basis
of U into an orthogonal one. This leads to a definition of the projection onto a subspace U that generalizes
the projection along a vector used in R2 and R3. All this is discussed in Section 8.1.

Exercises for 5.3

We often write vectors in Rn as row n-tuples.

Exercise 5.3.1 Obtain orthonormal bases of R3 by nor-
malizing the following.

a. {(1, −1, 2), (0, 2, 1), (5, 1, −2)}

b. {(1, 1, 1), (4, 1, −5), (2, −3, 1)}

Exercise 5.3.2 In each case, show that the set of vectors
is orthogonal in R4.

a. {(1, −1, 2, 5), (4, 1, 1, −1), (−7, 28, 5, 5)}

b. {(2, −1, 4, 5), (0, −1, 1, −1), (0, 3, 2, −1)}

Exercise 5.3.3 In each case, show that B is an or-
thogonal basis of R3 and use Theorem 5.3.6 to expand
x = (a, b, c) as a linear combination of the basis vectors.

a. B = {(1, −1, 3), (−2, 1, 1), (4, 7, 1)}

b. B = {(1, 0, −1), (1, 4, 1), (2, −1, 2)}

c. B = {(1, 2, 3), (−1, −1, 1), (5, −4, 1)}

d. B = {(1, 1, 1), (1, −1, 0), (1, 1, −2)}

Exercise 5.3.4 In each case, write x as a linear combi-
nation of the orthogonal basis of the subspace U .

a. x=(13, −20, 15); U = span{(1, −2, 3), (−1, 1, 1)}
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b. x = (14, 1, −8, 5);
U = span{(2, −1, 0, 3), (2, 1, −2, −1)}

Exercise 5.3.5 In each case, find all (a, b, c, d) in R4

such that the given set is orthogonal.

a. {(1, 2, 1, 0), (1, −1, 1, 3), (2, −1, 0, −1),
(a, b, c, d)}

b. {(1, 0, −1, 1), (2, 1, 1, −1), (1, −3, 1, 0),
(a, b, c, d)}

Exercise 5.3.6 If ‖x‖= 3, ‖y‖= 1, and x ·y =−2, com-
pute:

‖3x−5y‖a. ‖2x+7y‖b.

(3x−y) · (2y−x)c. (x−2y) · (3x+5y)d.

Exercise 5.3.7 In each case either show that the state-
ment is true or give an example showing that it is false.

a. Every independent set in Rn is orthogonal.

b. If {x, y} is an orthogonal set in Rn, then {x, x+y}
is also orthogonal.

c. If {x, y} and {z, w} are both orthogonal in Rn,
then {x, y, z, w} is also orthogonal.

d. If {x1, x2} and {y1, y2, y3} are both or-
thogonal and xi · y j = 0 for all i and j, then
{x1, x2, y1, y2, y3} is orthogonal.

e. If {x1, x2, . . . , xn} is orthogonal in Rn, then
Rn = span{x1, x2, . . . , xn}.

f. If x 6= 0 in Rn, then {x} is an orthogonal set.

Exercise 5.3.8 Let v denote a nonzero vector in Rn.

a. Show that P = {x in Rn | x · v = 0} is a subspace
of Rn.

b. Show that Rv = {tv | t in R} is a subspace of Rn.

c. Describe P and Rv geometrically when n = 3.

Exercise 5.3.9 If A is an m×n matrix with orthonormal
columns, show that AT A = In. [Hint: If c1, c2, . . . , cn are
the columns of A, show that column j of AT A has entries
c1 · c j, c2 · c j, . . . , cn · c j].

Exercise 5.3.10 Use the Cauchy inequality to show that√
xy ≤ 1

2(x+ y) for all x ≥ 0 and y ≥ 0. Here
√

xy and

1
2 (x+ y) are called, respectively, the geometric mean and
arithmetic mean of x and y.

[Hint: Use x =

[ √
x√
y

]
and y =

[ √
y√
x

]
.]

Exercise 5.3.11 Use the Cauchy inequality to prove
that:

a. r1 + r2+ · · ·+ rn ≤ n(r2
1 + r2

2 + · · ·+ r2
n) for all ri in

R and all n≥ 1.

b. r1r2 + r1r3 + r2r3 ≤ r2
1 + r2

2 + r2
3 for all r1, r2, and

r3 in R. [Hint: See part (a).]

Exercise 5.3.12

a. Show that x and y are orthogonal in Rn if and only
if ‖x+y‖= ‖x−y‖.

b. Show that x+ y and x− y are orthogonal in Rn if
and only if ‖x‖= ‖y‖.

Exercise 5.3.13

a. Show that ‖x+y‖2 = ‖x‖2 +‖y‖2 if and only if x

is orthogonal to y.

b. If x =

[
1
1

]
, y =

[
1
0

]
and z =

[
−2

3

]
, show

that ‖x+y+ z‖2 = ‖x‖2 +‖y‖2 +‖z‖2 but
x ·y 6= 0, x · z 6= 0, and y · z 6= 0.

Exercise 5.3.14

a. Show that x ·y = 1
4 [‖x+y‖2−‖x−y‖2] for all x,

y in Rn.

b. Show that ‖x‖2 +‖y‖2 = 1
2

[
‖x+y‖2 +‖x−y‖2

]

for all x, y in Rn.

Exercise 5.3.15 If A is n×n, show that every eigenvalue
of AT A is nonnegative. [Hint: Compute ‖Ax‖2 where x

is an eigenvector.]

Exercise 5.3.16 If Rn = span{x1, . . . , xm} and
x·xi = 0 for all i, show that x= 0. [Hint: Show ‖x‖= 0.]

Exercise 5.3.17 If Rn = span {x1, . . . , xm} and x ·xi =
y ·xi for all i, show that x = y. [Hint: Exercise 5.3.16]

Exercise 5.3.18 Let {e1, . . . , en} be an orthogonal basis
of Rn. Given x and y in Rn, show that

x ·y = (x·e1)(y·e1)
‖e1‖2 + · · ·+ (x·en)(y·en)

‖en‖2
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5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the definition of the rank of a matrix given in
Section 1.2, and to study its properties. This requires that we deal with rows and columns in the same way.
While it has been our custom to write the n-tuples in Rn as columns, in this section we will frequently
write them as rows. Subspaces, independence, spanning, and dimension are defined for rows using matrix
operations, just as for columns. If A is an m×n matrix, we define:

Definition 5.10 Column and Row Space of a Matrix

The column space, col A, of A is the subspace of Rm spanned by the columns of A.
The row space, row A, of A is the subspace of Rn spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

Lemma 5.4.1

Let A and B denote m×n matrices.

1. If A→ B by elementary row operations, then row A = row B.

2. If A→ B by elementary column operations, then col A = col B.

Proof. We prove (1); the proof of (2) is analogous. It is enough to do it in the case when A→ B by a single
row operation. Let R1, R2, . . . , Rm denote the rows of A. The row operation A→ B either interchanges
two rows, multiplies a row by a nonzero constant, or adds a multiple of a row to a different row. We leave
the first two cases to the reader. In the last case, suppose that a times row p is added to row q where p < q.
Then the rows of B are R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm, and Theorem 5.1.1 shows that

span{R1, . . . , Rp, . . . , Rq, . . . , Rm}= span{R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm}

That is, row A = row B.

If A is any matrix, we can carry A→ R by elementary row operations where R is a row-echelon matrix.
Hence row A = row R by Lemma 5.4.1; so the first part of the following result is of interest.

Lemma 5.4.2

If R is a row-echelon matrix, then

1. The nonzero rows of R are a basis of row R.

2. The columns of R containing leading ones are a basis of col R.

Proof. The rows of R are independent by Example 5.2.6, and they span row R by definition. This proves
(1).
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Let c j1 , c j2 , . . . , c jr denote the columns of R containing leading 1s. Then {c j1 , c j2 , . . . , c jr} is
independent because the leading 1s are in different rows (and have zeros below and to the left of them).
Let U denote the subspace of all columns in Rm in which the last m−r entries are zero. Then dim U = r (it
is just Rr with extra zeros). Hence the independent set {c j1 , c j2 , . . . , c jr} is a basis of U by Theorem 5.2.7.
Since each c ji is in col R, it follows that col R =U , proving (2).

With Lemma 5.4.2 we can fill a gap in the definition of the rank of a matrix given in Chapter 1. Let A

be any matrix and suppose A is carried to some row-echelon matrix R by row operations. Note that R is
not unique. In Section 1.2 we defined the rank of A, denoted rank A, to be the number of leading 1s in R,
that is the number of nonzero rows of R. The fact that this number does not depend on the choice of R was
not proved in Section 1.2. However part 1 of Lemma 5.4.2 shows that

rank A = dim ( row A)

and hence that rank A is independent of R.

Lemma 5.4.2 can be used to find bases of subspaces of Rn (written as rows). Here is an example.

Example 5.4.1

Find a basis of U = span{(1, 1, 2, 3), (2, 4, 1, 0), (1, 5, −4, −9)}.

Solution. U is the row space of




1 1 2 3
2 4 1 0
1 5 −4 −9


. This matrix has row-echelon form




1 1 2 3
0 1 −3

2 −3
0 0 0 0


, so {(1, 1, 2, 3), (0, 1, −3

2 , −3)} is basis of U by Lemma 5.4.2.

Note that {(1, 1, 2, 3), (0, 2, −3, −6)} is another basis that avoids fractions.

Lemmas 5.4.1 and 5.4.2 are enough to prove the following fundamental theorem.

Theorem 5.4.1: Rank Theorem

Let A denote any m×n matrix of rank r. Then

dim (col A) = dim ( row A) = r

Moreover, if A is carried to a row-echelon matrix R by row operations, then

1. The r nonzero rows of R are a basis of row A.

2. If the leading 1s lie in columns j1, j2, . . . , jr of R, then columns j1, j2, . . . , jr of A are a
basis of col A.

Proof. We have row A = row R by Lemma 5.4.1, so (1) follows from Lemma 5.4.2. Moreover, R = UA

for some invertible matrix U by Theorem 2.5.1. Now write A =
[

c1 c2 . . . cn

]
where c1, c2, . . . , cn

are the columns of A. Then

R =UA =U
[

c1 c2 · · · cn

]
=
[

Uc1 Uc2 · · · Ucn

]
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Thus, in the notation of (2), the set B = {Uc j1 , Uc j2 , . . . , Uc jr} is a basis of col R by Lemma 5.4.2. So, to
prove (2) and the fact that dim (col A) = r, it is enough to show that D = {c j1 , c j2 , . . . , c jr} is a basis of
col A. First, D is linearly independent because U is invertible (verify), so we show that, for each j, column
c j is a linear combination of the c ji . But Uc j is column j of R, and so is a linear combination of the Uc ji ,
say Uc j = a1Uc j1 +a2Uc j2 + · · ·+arUc jr where each ai is a real number.

Since U is invertible, it follows that c j = a1c j1 +a2c j2 + · · ·+arc jr and the proof is complete.

Example 5.4.2

Compute the rank of A =




1 2 2 −1
3 6 5 0
1 2 1 2


 and find bases for row A and col A.

Solution. The reduction of A to row-echelon form is as follows:



1 2 2 −1
3 6 5 0
1 2 1 2


→




1 2 2 −1
0 0 −1 3
0 0 −1 3


→




1 2 2 −1
0 0 −1 3
0 0 0 0




Hence rank A = 2, and {
[

1 2 2 −1
]

,
[

0 0 1 −3
]
} is a basis of row A by Lemma 5.4.2.

Since the leading 1s are in columns 1 and 3 of the row-echelon matrix, Theorem 5.4.1 shows that

columns 1 and 3 of A are a basis








1
3
1


 ,




2
5
1





 of col A.

Theorem 5.4.1 has several important consequences. The first, Corollary 5.4.1 below, follows because
the rows of A are independent (respectively span row A) if and only if their transposes are independent
(respectively span col A).

Corollary 5.4.1

If A is any matrix, then rank A = rank (AT ).

If A is an m× n matrix, we have col A ⊆ Rm and row A ⊆ Rn. Hence Theorem 5.2.8 shows that
dim (col A)≤ dim (Rm) = m and dim ( row A)≤ dim (Rn) = n. Thus Theorem 5.4.1 gives:

Corollary 5.4.2

If A is an m×n matrix, then rank A≤ m and rank A≤ n.

Corollary 5.4.3

rank A = rank (UA) = rank (AV) whenever U and V are invertible.
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Proof. Lemma 5.4.1 gives rank A = rank (UA). Using this and Corollary 5.4.1 we get

rank (AV) = rank (AV)T = rank (V T AT ) = rank (AT ) = rank A

The next corollary requires a preliminary lemma.

Lemma 5.4.3

Let A, U , and V be matrices of sizes m×n, p×m, and n×q respectively.

1. col (AV)⊆ col A, with equality if VV ′ = In for some V ′.

2. row (UA)⊆ row A, with equality if U ′U = Im for some U ′.

Proof. For (1), write V =
[
v1, v2, . . . , vq

]
where v j is column j of V . Then we have

AV =
[
Av1, Av2, . . . , Avq

]
, and each Av j is in col A by Definition 2.4. It follows that col (AV) ⊆ col A.

If VV ′ = In, we obtain col A = col [(AV )V ′]⊆ col (AV) in the same way. This proves (1).

As to (2), we have col
[
(UA)T

]
= col (ATUT ) ⊆ col (AT ) by (1), from which row (UA)⊆ row A. If

U ′U = Im, this is equality as in the proof of (1).

Corollary 5.4.4

If A is m×n and B is n×m, then rank AB≤ rank A and rank AB≤ rank B.

Proof. By Lemma 5.4.3, col (AB)⊆ col A and row (BA)⊆ row A, so Theorem 5.4.1 applies.

In Section 5.1 we discussed two other subspaces associated with an m× n matrix A: the null space
null (A) and the image space im (A)

null (A) = {x in Rn | Ax = 0} and im (A) = {Ax | x in Rn}

Using rank, there are simple ways to find bases of these spaces. If A has rank r, we have im (A) = col (A)
by Example 5.1.8, so dim [ im (A)]= dim [col (A)]= r. Hence Theorem 5.4.1 provides a method of finding
a basis of im (A). This is recorded as part (2) of the following theorem.

Theorem 5.4.2

Let A denote an m×n matrix of rank r. Then

1. The n− r basic solutions to the system Ax = 0 provided by the gaussian algorithm are a
basis of null (A), so dim [null (A)] = n− r.

2. Theorem 5.4.1 provides a basis of im (A) = col (A), and dim [ im (A)] = r.

Proof. It remains to prove (1). We already know (Theorem 2.2.1) that null (A) is spanned by the n− r

basic solutions of Ax = 0. Hence using Theorem 5.2.7, it suffices to show that dim [null (A)] = n− r. So
let {x1, . . . , xk} be a basis of null (A), and extend it to a basis {x1, . . . , xk, xk+1, . . . , xn} of Rn (by
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Theorem 5.2.6). It is enough to show that {Axk+1, . . . , Axn} is a basis of im (A); then n− k = r by the
above and so k = n− r as required.

Spanning. Choose Ax in im (A), x in Rn, and write x = a1x1+ · · ·+akxk+ak+1xk+1+ · · ·+anxn where
the ai are in R. Then Ax = ak+1Axk+1 + · · ·+anAxn because {x1, . . . , xk} ⊆ null (A).

Independence. Let tk+1Axk+1 + · · ·+ tnAxn = 0, ti in R. Then tk+1xk+1 + · · ·+ tnxn is in null A, so
tk+1xk+1 + · · ·+ tnxn = t1x1 + · · ·+ tkxk for some t1, . . . , tk in R. But then the independence of the xi

shows that ti = 0 for every i.

Example 5.4.3

If A =




1 −2 1 1
−1 2 0 1

2 −4 1 0


, find bases of null (A) and im (A), and so find their dimensions.

Solution. If x is in null (A), then Ax = 0, so x is given by solving the system Ax = 0. The
reduction of the augmented matrix to reduced form is




1 −2 1 1 0
−1 2 0 1 0

2 −4 1 0 0


→




1 −2 0 −1 0
0 0 1 2 0
0 0 0 0 0




Hence r = rank (A) = 2. Here, im (A) = col (A) has basis








1
−1

2


 ,




1
0
1





 by Theorem 5.4.1

because the leading 1s are in columns 1 and 3. In particular, dim [ im (A)] = 2 = r as in
Theorem 5.4.2.
Turning to null (A), we use gaussian elimination. The leading variables are x1 and x3, so the
nonleading variables become parameters: x2 = s and x4 = t. It follows from the reduced matrix
that x1 = 2s+ t and x3 =−2t, so the general solution is

x =




x1

x2

x3

x4


=




2s+ t

s

−2t

t


= sx1 + tx2 where x1 =




2
1
0
0


 , and x2 =




1
0
−2

1


 .

Hence null (A). But x1 and x2 are solutions (basic), so

null (A) = span{x1, x2}

However Theorem 5.4.2 asserts that {x1, x2} is a basis of null (A). (In fact it is easy to verify
directly that {x1, x2} is independent in this case.) In particular, dim [null (A)] = 2 = n− r, as
Theorem 5.4.2 asserts.

Let A be an m×n matrix. Corollary 5.4.2 of Theorem 5.4.1 asserts that rank A≤m and rank A≤ n, and
it is natural to ask when these extreme cases arise. If c1, c2, . . . , cn are the columns of A, Theorem 5.2.2
shows that {c1, c2, . . . , cn} spans Rm if and only if the system Ax = b is consistent for every b in Rm, and
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that {c1, c2, . . . , cn} is independent if and only if Ax = 0, x in Rn, implies x = 0. The next two useful
theorems improve on both these results, and relate them to when the rank of A is n or m.

Theorem 5.4.3

The following are equivalent for an m×n matrix A:

1. rank A = n.

2. The rows of A span Rn.

3. The columns of A are linearly independent in Rm.

4. The n×n matrix AT A is invertible.

5. CA = In for some n×m matrix C.

6. If Ax = 0, x in Rn, then x = 0.

Proof. (1)⇒ (2). We have row A ⊆ Rn, and dim ( row A) = n by (1), so row A = Rn by Theorem 5.2.8.
This is (2).

(2)⇒ (3). By (2), row A = Rn, so rank A = n. This means dim (col A) = n. Since the n columns of
A span col A, they are independent by Theorem 5.2.7.

(3)⇒ (4). If (AT A)x = 0, x in Rn, we show that x = 0 (Theorem 2.4.5). We have

‖Ax‖2 = (Ax)T Ax = xT AT Ax = xT 0 = 0

Hence Ax = 0, so x = 0 by (3) and Theorem 5.2.2.

(4)⇒ (5). Given (4), take C = (AT A)−1AT .

(5)⇒ (6). If Ax = 0, then left multiplication by C (from (5)) gives x = 0.

(6) ⇒ (1). Given (6), the columns of A are independent by Theorem 5.2.2. Hence dim (col A) = n,
and (1) follows.

Theorem 5.4.4

The following are equivalent for an m×n matrix A:

1. rank A = m.

2. The columns of A span Rm.

3. The rows of A are linearly independent in Rn.

4. The m×m matrix AAT is invertible.

5. AC = Im for some n×m matrix C.

6. The system Ax = b is consistent for every b in Rm.
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Proof. (1)⇒ (2). By (1), dim (col A = m, so col A = Rm by Theorem 5.2.8.

(2)⇒ (3). By (2), col A = Rm, so rank A = m. This means dim ( row A) = m. Since the m rows of A

span row A, they are independent by Theorem 5.2.7.

(3) ⇒ (4). We have rank A = m by (3), so the n×m matrix AT has rank m. Hence applying Theo-
rem 5.4.3 to AT in place of A shows that (AT )T AT is invertible, proving (4).

(4)⇒ (5). Given (4), take C = AT (AAT )
−1 in (5).

(5)⇒ (6). Comparing columns in AC = Im gives Ac j = e j for each j, where c j and e j denote column j

of C and Im respectively. Given b inRm, write b=∑m
j=1 r je j, r j in R. Then Ax=b holds with x=∑m

j=1 r jc j

as the reader can verify.

(6)⇒ (1). Given (6), the columns of A span Rm by Theorem 5.2.2. Thus col A = Rm and (1) follows.

Example 5.4.4

Show that

[
3 x+ y+ z

x+ y+ z x2 + y2 + z2

]
is invertible if x, y, and z are not all equal.

Solution. The given matrix has the form AT A where A =




1 x

1 y

1 z


 has independent columns

because x, y, and z are not all equal (verify). Hence Theorem 5.4.3 applies.

Theorem 5.4.3 and Theorem 5.4.4 relate several important properties of an m× n matrix A to the
invertibility of the square, symmetric matrices AT A and AAT . In fact, even if the columns of A are not
independent or do not span Rm, the matrices AT A and AAT are both symmetric and, as such, have real
eigenvalues as we shall see. We return to this in Chapter 7.

Exercises for 5.4

Exercise 5.4.1 In each case find bases for the row and
column spaces of A and determine the rank of A.




2 −4 6 8
2 −1 3 2
4 −5 9 10
0 −1 1 2


a.




2 −1 1
−2 1 1

4 −2 3
−6 3 0


b.




1 −1 5 −2 2
2 −2 −2 5 1
0 0 −12 9 −3
−1 1 7 −7 1


c.

[
1 2 −1 3
−3 −6 3 −2

]
d.

Exercise 5.4.2 In each case find a basis of the subspace
U .

a. U = span{(1, −1, 0, 3), (2, 1, 5, 1), (4, −2, 5, 7)}

b. U = span{(1, −1, 2, 5, 1), (3, 1, 4, 2, 7),
(1, 1, 0, 0, 0), (5, 1, 6, 7, 8)}

c. U = span








1
1
0
0


 ,




0
0
1
1


 ,




1
0
1
0


 ,




0
1
0
1







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d.

U = span








1
5
−6


 ,




2
6
−8


 ,




3
7

−10


 ,




4
8

12







Exercise 5.4.3

a. Can a 3×4 matrix have independent columns?
Independent rows? Explain.

b. If A is 4×3 and rank A = 2, can A have indepen-
dent columns? Independent rows? Explain.

c. If A is an m×n matrix and rank A = m, show that
m≤ n.

d. Can a nonsquare matrix have its rows independent
and its columns independent? Explain.

e. Can the null space of a 3× 6 matrix have dimen-
sion 2? Explain.

f. Suppose that A is 5×4 and null (A)=Rx for some
column x 6= 0. Can dim ( im A) = 2?

Exercise 5.4.4 If A is m×n show that

col (A) = {Ax | x in Rn}

Exercise 5.4.5 If A is m× n and B is n×m, show that
AB = 0 if and only if col B⊆ null A.

Exercise 5.4.6 Show that the rank does not change when
an elementary row or column operation is performed on
a matrix.

Exercise 5.4.7 In each case find a basis of the null
space of A. Then compute rank A and verify (1) of The-
orem 5.4.2.

a. A =




3 1 1
2 0 1
4 2 1
1 −1 1




b. A =




3 5 5 2 0
1 0 2 2 1
1 1 1 −2 −2
−2 0 −4 −4 −2




Exercise 5.4.8 Let A = cr where c 6= 0 is a column in
Rm and r 6= 0 is a row in Rn.

a. Show that col A = span{c} and
row A = span{r}.

b. Find dim (null A).

c. Show that null A = null r.

Exercise 5.4.9 Let A be m × n with columns
c1, c2, . . . , cn.

a. If {c1, . . . , cn} is independent, show null A= {0}.

b. If null A = {0}, show that {c1, . . . , cn} is inde-
pendent.

Exercise 5.4.10 Let A be an n×n matrix.

a. Show that A2 = 0 if and only if col A⊆ null A.

b. Conclude that if A2 = 0, then rank A≤ n
2 .

c. Find a matrix A for which col A = null A.

Exercise 5.4.11 Let B be m× n and let AB be k× n. If
rank B= rank (AB), show that null B= null (AB). [Hint:
Theorem 5.4.1.]

Exercise 5.4.12 Give a careful argument why
rank (AT ) = rank A.

Exercise 5.4.13 Let A be an m × n matrix with
columns c1, c2, . . . , cn. If rank A = n, show that
{AT c1, AT c2, . . . , AT cn} is a basis of Rn.

Exercise 5.4.14 If A is m×n and b is m×1, show that
b lies in the column space of A if and only if
rank [A b] = rank A.

Exercise 5.4.15

a. Show that Ax = b has a solution if and only if
rank A = rank [A b]. [Hint: Exercises 5.4.12 and
5.4.14.]

b. If Ax = b has no solution, show that
rank [A b] = 1+ rank A.

Exercise 5.4.16 Let X be a k×m matrix. If I is the
m×m identity matrix, show that I +XT X is invertible.

[Hint: I +XT X = AT A where A =

[
I

X

]
in block

form.]
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Exercise 5.4.17 If A is m× n of rank r, show that A

can be factored as A = PQ where P is m× r with r in-
dependent columns, and Q is r× n with r independent

rows. [Hint: Let UAV =

[
Ir 0
0 0

]
by Theorem 2.5.3,

and write U−1 =

[
U1 U2

U3 U4

]
and V−1 =

[
V1 V2

V3 V4

]
in

block form, where U1 and V1 are r× r.]

Exercise 5.4.18

a. Show that if A and B have independent columns,
so does AB.

b. Show that if A and B have independent rows, so
does AB.

Exercise 5.4.19 A matrix obtained from A by deleting
rows and columns is called a submatrix of A. If A has an
invertible k× k submatrix, show that rank A ≥ k. [Hint:
Show that row and column operations carry

A→
[

Ik P

0 Q

]
in block form.] Remark: It can be shown

that rank A is the largest integer r such that A has an in-
vertible r× r submatrix.

5.5 Similarity and Diagonalization

In Section 3.3 we studied diagonalization of a square matrix A, and found important applications (for
example to linear dynamical systems). We can now utilize the concepts of subspace, basis, and dimension
to clarify the diagonalization process, reveal some new results, and prove some theorems which could not
be demonstrated in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of diagonalization, and is used
throughout the book.

Similar Matrices

Definition 5.11 Similar Matrices

If A and B are n×n matrices, we say that A and B are similar, and write A∼ B, if B = P−1AP for
some invertible matrix P.

Note that A ∼ B if and only if B = QAQ−1 where Q is invertible (write P−1 = Q). The language of
similarity is used throughout linear algebra. For example, a matrix A is diagonalizable if and only if it is
similar to a diagonal matrix.

If A∼ B, then necessarily B∼ A. To see why, suppose that B = P−1AP. Then A = PBP−1 = Q−1BQ

where Q = P−1 is invertible. This proves the second of the following properties of similarity (the others
are left as an exercise):

1. A∼ A for all square matrices A.

2. If A∼ B, then B∼ A. (5.2)

3. If A∼ B and B∼ A, then A∼C.

These properties are often expressed by saying that the similarity relation∼ is an equivalence relation on
the set of n×n matrices. Here is an example showing how these properties are used.
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Example 5.5.1

If A is similar to B and either A or B is diagonalizable, show that the other is also diagonalizable.

Solution. We have A∼ B. Suppose that A is diagonalizable, say A∼ D where D is diagonal. Since
B∼ A by (2) of (5.2), we have B∼ A and A∼ D. Hence B∼ D by (3) of (5.2), so B is
diagonalizable too. An analogous argument works if we assume instead that B is diagonalizable.

Similarity is compatible with inverses, transposes, and powers:

If A∼ B then A−1 ∼ B−1, AT ∼ BT , and Ak ∼ Bk for all integers k ≥ 1.

The proofs are routine matrix computations using Theorem 3.3.1. Thus, for example, if A is diagonaliz-
able, so also are AT , A−1 (if it exists), and Ak (for each k ≥ 1). Indeed, if A ∼ D where D is a diagonal
matrix, we obtain AT ∼ DT , A−1 ∼ D−1, and Ak ∼ Dk, and each of the matrices DT , D−1, and Dk is
diagonal.

We pause to introduce a simple matrix function that will be referred to later.

Definition 5.12 Trace of a Matrix

The trace tr A of an n×n matrix A is defined to be the sum of the main diagonal elements of A.

In other words:
If A =

[
ai j

]
, then tr A = a11 +a22 + · · ·+ann.

It is evident that tr (A+B) = tr A+ tr B and that tr (cA) = c tr A holds for all n×n matrices A and B and
all scalars c. The following fact is more surprising.

Lemma 5.5.1

Let A and B be n×n matrices. Then tr (AB) = tr (BA).

Proof. Write A =
[
ai j

]
and B =

[
bi j

]
. For each i, the (i, i)-entry di of the matrix AB is given as follows:

di = ai1b1i +ai2b2i + · · ·+ainbni = ∑ j ai jb ji. Hence

tr (AB) = d1 +d2 + · · ·+dn = ∑
i

di = ∑
i

(

∑
j

ai jb ji

)

Similarly we have tr (BA) = ∑i(∑ j bi ja ji). Since these two double sums are the same, Lemma 5.5.1 is
proved.

As the name indicates, similar matrices share many properties, some of which are collected in the next
theorem for reference.
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Theorem 5.5.1

If A and B are similar n×n matrices, then A and B have the same determinant, rank, trace,
characteristic polynomial, and eigenvalues.

Proof. Let B = P−1AP for some invertible matrix P. Then we have

det B = det (P−1) det A det P = det A because det (P−1) = 1/ det P

Similarly, rank B = rank (P−1AP) = rank A by Corollary 5.4.3. Next Lemma 5.5.1 gives

tr (P−1AP) = tr
[
P−1(AP)

]
= tr

[
(AP)P−1]= tr A

As to the characteristic polynomial,

cB(x) = det (xI−B) = det{x(P−1IP)−P−1AP}
= det{P−1(xI−A)P}
= det (xI−A)

= cA(x)

Finally, this shows that A and B have the same eigenvalues because the eigenvalues of a matrix are the
roots of its characteristic polynomial.

Example 5.5.2

Sharing the five properties in Theorem 5.5.1 does not guarantee that two matrices are similar. The

matrices A =

[
1 1
0 1

]
and I =

[
1 0
0 1

]
have the same determinant, rank, trace, characteristic

polynomial, and eigenvalues, but they are not similar because P−1IP = I for any invertible matrix
P.

Diagonalization Revisited

Recall that a square matrix A is diagonalizable if there exists an invertible matrix P such that P−1AP = D

is a diagonal matrix, that is if A is similar to a diagonal matrix D. Unfortunately, not all matrices are

diagonalizable, for example

[
1 1
0 1

]
(see Example 3.3.10). Determining whether A is diagonalizable is

closely related to the eigenvalues and eigenvectors of A. Recall that a number λ is called an eigenvalue of
A if Ax = λx for some nonzero column x in Rn, and any such nonzero vector x is called an eigenvector of
A corresponding to λ (or simply a λ -eigenvector of A). The eigenvalues and eigenvectors of A are closely
related to the characteristic polynomial cA(x) of A, defined by

cA(x) = det (xI−A)

If A is n×n this is a polynomial of degree n, and its relationship to the eigenvalues is given in the following
theorem (a repeat of Theorem 3.3.2).
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Theorem 5.5.2

Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I−A)x = 0

of linear equations with λ I−A as coefficient matrix.

Example 5.5.3

Show that the eigenvalues of a triangular matrix are the main diagonal entries.

Solution. Assume that A is triangular. Then the matrix xI−A is also triangular and has diagonal
entries (x−a11), (x−a22), . . . , (x−ann) where A =

[
ai j

]
. Hence Theorem 3.1.4 gives

cA(x) = (x−a11)(x−a22) · · ·(x−ann)

and the result follows because the eigenvalues are the roots of cA(x).

Theorem 3.3.4 asserts (in part) that an n× n matrix A is diagonalizable if and only if it has n eigen-
vectors x1, . . . , xn such that the matrix P =

[
x1 · · · xn

]
with the xi as columns is invertible. This is

equivalent to requiring that {x1, . . . , xn} is a basis of Rn consisting of eigenvectors of A. Hence we can
restate Theorem 3.3.4 as follows:

Theorem 5.5.3

Let A be an n×n matrix.

1. A is diagonalizable if and only if Rn has a basis {x1, x2, . . . , xn} consisting of eigenvectors
of A.

2. When this is the case, the matrix P =
[

x1 x2 · · · xn

]
is invertible and

P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the eigenvalue of A corresponding to
xi.

The next result is a basic tool for determining when a matrix is diagonalizable. It reveals an important
connection between eigenvalues and linear independence: Eigenvectors corresponding to distinct eigen-
values are necessarily linearly independent.

Theorem 5.5.4

Let x1, x2, . . . , xk be eigenvectors corresponding to distinct eigenvalues λ1, λ2, . . . , λk of an n×n

matrix A. Then {x1, x2, . . . , xk} is a linearly independent set.
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Proof. We use induction on k. If k = 1, then {x1} is independent because x1 6= 0. In general, suppose
the theorem is true for some k ≥ 1. Given eigenvectors {x1, x2, . . . , xk+1}, suppose a linear combination
vanishes:

t1x1 + t2x2 + · · ·+ tk+1xk+1 = 0 (5.3)

We must show that each ti = 0. Left multiply (5.3) by A and use the fact that Axi = λixi to get

t1λ1x1 + t2λ2x2 + · · ·+ tk+1λk+1xk+1 = 0 (5.4)

If we multiply (5.3) by λ1 and subtract the result from (5.4), the first terms cancel and we obtain

t2(λ2−λ1)x2 + t3(λ3−λ1)x3 + · · ·+ tk+1(λk+1−λ1)xk+1 = 0

Since x2, x3, . . . , xk+1 correspond to distinct eigenvalues λ2, λ3, . . . , λk+1, the set {x2, x3, . . . , xk+1} is
independent by the induction hypothesis. Hence,

t2(λ2−λ1) = 0, t3(λ3−λ1) = 0, . . . , tk+1(λk+1−λ1) = 0

and so t2 = t3 = · · ·= tk+1 = 0 because the λi are distinct. Hence (5.3) becomes t1x1 = 0, which implies
that t1 = 0 because x1 6= 0. This is what we wanted.

Theorem 5.5.4 will be applied several times; we begin by using it to give a useful condition for when
a matrix is diagonalizable.

Theorem 5.5.5

If A is an n×n matrix with n distinct eigenvalues, then A is diagonalizable.

Proof. Choose one eigenvector for each of the n distinct eigenvalues. Then these eigenvectors are inde-
pendent by Theorem 5.5.4, and so are a basis of Rn by Theorem 5.2.7. Now use Theorem 5.5.3.

Example 5.5.4

Show that A =




1 0 0
1 2 3
−1 1 0


 is diagonalizable.

Solution. A routine computation shows that cA(x) = (x−1)(x−3)(x+1) and so has distinct
eigenvalues 1, 3, and −1. Hence Theorem 5.5.5 applies.

However, a matrix can have multiple eigenvalues as we saw in Section 3.3. To deal with this situation,
we prove an important lemma which formalizes a technique that is basic to diagonalization, and which
will be used three times below.
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Lemma 5.5.2

Let {x1, x2, . . . , xk} be a linearly independent set of eigenvectors of an n×n matrix A, extend it to
a basis {x1, x2, . . . , xk, . . . , xn} of Rn, and let

P =
[

x1 x2 · · · xn

]

be the (invertible) n×n matrix with the xi as its columns. If λ1, λ2, . . . , λk are the (not necessarily
distinct) eigenvalues of A corresponding to x1, x2, . . . , xk respectively, then P−1AP has block form

P−1AP =

[
diag (λ1, λ2, . . . , λk) B

0 A1

]

where B has size k× (n− k) and A1 has size (n− k)× (n− k).

Proof. If {e1, e2, . . . , en} is the standard basis of Rn, then

[
e1 e2 . . . en

]
= In = P−1P = P−1 [ x1 x2 · · · xn

]

=
[

P−1x1 P−1x2 · · · P−1xn

]

Comparing columns, we have P−1xi = ei for each 1≤ i≤ n. On the other hand, observe that

P−1AP = P−1A
[

x1 x2 · · · xn

]
=
[
(P−1A)x1 (P−1A)x2 · · · (P−1A)xn

]

Hence, if 1≤ i≤ k, column i of P−1AP is

(P−1A)xi = P−1(λixi) = λi(P
−1xi) = λiei

This describes the first k columns of P−1AP, and Lemma 5.5.2 follows.

Note that Lemma 5.5.2 (with k = n) shows that an n× n matrix A is diagonalizable if Rn has a basis of
eigenvectors of A, as in (1) of Theorem 5.5.3.

Definition 5.13 Eigenspace of a Matrix

If λ is an eigenvalue of an n×n matrix A, define the eigenspace of A corresponding to λ by

Eλ (A) = {x in Rn | Ax = λx}

This is a subspace of Rn and the eigenvectors corresponding to λ are just the nonzero vectors in Eλ (A). In
fact Eλ (A) is the null space of the matrix (λ I−A):

Eλ (A) = {x | (λ I−A)x = 0}= null (λ I−A)

Hence, by Theorem 5.4.2, the basic solutions of the homogeneous system (λ I−A)x = 0 given by the
gaussian algorithm form a basis for Eλ (A). In particular

dim Eλ (A) is the number of basic solutions x of (λ I−A)x = 0 (5.5)
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Now recall (Definition 3.7) that the multiplicity11 of an eigenvalue λ of A is the number of times λ occurs
as a root of the characteristic polynomial cA(x) of A. In other words, the multiplicity of λ is the largest
integer m≥ 1 such that

cA(x) = (x−λ )mg(x)

for some polynomial g(x). Because of (5.5), the assertion (without proof) in Theorem 3.3.5 can be stated
as follows: A square matrix is diagonalizable if and only if the multiplicity of each eigenvalue λ equals
dim [Eλ (A)]. We are going to prove this, and the proof requires the following result which is valid for any

square matrix, diagonalizable or not.

Lemma 5.5.3

Let λ be an eigenvalue of multiplicity m of a square matrix A. Then dim [Eλ (A)]≤ m.

Proof. Write dim [Eλ (A)] = d. It suffices to show that cA(x) = (x−λ )dg(x) for some polynomial g(x),
because m is the highest power of (x−λ ) that divides cA(x). To this end, let {x1, x2, . . . , xd} be a basis
of Eλ (A). Then Lemma 5.5.2 shows that an invertible n×n matrix P exists such that

P−1AP =

[
λ Id B

0 A1

]

in block form, where Id denotes the d × d identity matrix. Now write A′ = P−1AP and observe that
cA′(x) = cA(x) by Theorem 5.5.1. But Theorem 3.1.5 gives

cA(x) = cA′(x) = det (xIn−A′) = det

[
(x−λ )Id −B

0 xIn−d−A1

]

= det [(x−λ )Id] det [(xIn−d−A1)]

= (x−λ )dg(x)

where g(x) = cA1(x). This is what we wanted.

It is impossible to ignore the question when equality holds in Lemma 5.5.3 for each eigenvalue λ . It
turns out that this characterizes the diagonalizable n× n matrices A for which cA(x) factors completely

over R. By this we mean that cA(x) = (x− λ1)(x− λ2) · · ·(x− λn), where the λi are real numbers (not
necessarily distinct); in other words, every eigenvalue of A is real. This need not happen (consider A =[

0 −1
1 0

]
), and we investigate the general case below.

Theorem 5.5.6

The following are equivalent for a square matrix A for which cA(x) factors completely.

1. A is diagonalizable.

2. dim [Eλ (A)] equals the multiplicity of λ for every eigenvalue λ of the matrix A.

11This is often called the algebraic multiplicity of λ .
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Proof. Let A be n×n and let λ1, λ2, . . . , λk be the distinct eigenvalues of A. For each i, let mi denote the
multiplicity of λi and write di = dim

[
Eλi

(A)
]
. Then

cA(x) = (x−λ1)
m1(x−λ2)

m2 . . .(x−λk)
mk

so m1 + · · ·+mk = n because cA(x) has degree n. Moreover, di ≤ mi for each i by Lemma 5.5.3.

(1)⇒ (2). By (1), Rn has a basis of n eigenvectors of A, so let ti of them lie in Eλi
(A) for each i. Since

the subspace spanned by these ti eigenvectors has dimension ti, we have ti≤ di for each i by Theorem 5.2.4.
Hence

n = t1+ · · ·+ tk ≤ d1 + · · ·+dk ≤ m1 + · · ·+mk = n

It follows that d1+ · · ·+dk = m1+ · · ·+mk so, since di ≤ mi for each i, we must have di = mi. This is (2).

(2)⇒ (1). Let Bi denote a basis of Eλi
(A) for each i, and let B = B1∪· · ·∪Bk. Since each Bi contains

mi vectors by (2), and since the Bi are pairwise disjoint (the λi are distinct), it follows that B contains n

vectors. So it suffices to show that B is linearly independent (then B is a basis of Rn). Suppose a linear
combination of the vectors in B vanishes, and let yi denote the sum of all terms that come from Bi. Then yi

lies in Eλi
(A), so the nonzero yi are independent by Theorem 5.5.4 (as the λi are distinct). Since the sum

of the yi is zero, it follows that yi = 0 for each i. Hence all coefficients of terms in yi are zero (because Bi

is independent). Since this holds for each i, it shows that B is independent.

Example 5.5.5

If A =




5 8 16
4 1 8
−4 −4 −11


 and B =




2 1 1
2 1 −2
−1 0 −2


 show that A is diagonalizable but B is not.

Solution. We have cA(x) = (x+3)2(x−1) so the eigenvalues are λ1 =−3 and λ2 = 1. The
corresponding eigenspaces are Eλ1

(A) = span{x1, x2} and Eλ2
(A) = span{x3} where

x1 =



−1

1
0


 , x2 =



−2

0
1


 , x3 =




2
1
−1




as the reader can verify. Since {x1, x2} is independent, we have dim (Eλ1
(A)) = 2 which is the

multiplicity of λ1. Similarly, dim (Eλ2
(A)) = 1 equals the multiplicity of λ2. Hence A is

diagonalizable by Theorem 5.5.6, and a diagonalizing matrix is P =
[

x1 x2 x3
]
.

Turning to B, cB(x) = (x+1)2(x−3) so the eigenvalues are λ1 =−1 and λ2 = 3. The
corresponding eigenspaces are Eλ1

(B) = span{y1} and Eλ2
(B) = span{y2} where

y1 =



−1

2
1


 , y2 =




5
6
−1




Here dim (Eλ1
(B)) = 1 is smaller than the multiplicity of λ1, so the matrix B is not diagonalizable,

again by Theorem 5.5.6. The fact that dim (Eλ1
(B)) = 1 means that there is no possibility of

finding three linearly independent eigenvectors.
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Complex Eigenvalues

All the matrices we have considered have had real eigenvalues. But this need not be the case: The matrix

A =

[
0 −1
1 0

]
has characteristic polynomial cA(x) = x2 + 1 which has no real roots. Nonetheless, this

matrix is diagonalizable; the only difference is that we must use a larger set of scalars, the complex
numbers. The basic properties of these numbers are outlined in Appendix A.

Indeed, nearly everything we have done for real matrices can be done for complex matrices. The
methods are the same; the only difference is that the arithmetic is carried out with complex numbers rather
than real ones. For example, the gaussian algorithm works in exactly the same way to solve systems of
linear equations with complex coefficients, matrix multiplication is defined the same way, and the matrix
inversion algorithm works in the same way.

But the complex numbers are better than the real numbers in one respect: While there are polynomials
like x2 + 1 with real coefficients that have no real root, this problem does not arise with the complex
numbers: Every nonconstant polynomial with complex coefficients has a complex root, and hence factors
completely as a product of linear factors. This fact is known as the fundamental theorem of algebra.12

Example 5.5.6

Diagonalize the matrix A =

[
0 −1
1 0

]
.

Solution. The characteristic polynomial of A is

cA(x) = det (xI−A) = x2 +1 = (x− i)(x+ i)

where i2 =−1. Hence the eigenvalues are λ1 = i and λ2 =−i, with corresponding eigenvectors

x1 =

[
1
−i

]
and x2 =

[
1
i

]
. Hence A is diagonalizable by the complex version of Theorem 5.5.5,

and the complex version of Theorem 5.5.3 shows that P =
[

x1 x2
]
=

[
1 1
−i i

]
is invertible

and P−1AP =

[
λ1 0
0 λ2

]
=

[
i 0
0 −i

]
. Of course, this can be checked directly.

We shall return to complex linear algebra in Section 8.7.

12This was a famous open problem in 1799 when Gauss solved it at the age of 22 in his Ph.D. dissertation.
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Symmetric Matrices13

On the other hand, many of the applications of linear algebra involve a real matrix A and, while A will
have complex eigenvalues by the fundamental theorem of algebra, it is always of interest to know when
the eigenvalues are, in fact, real. While this can happen in a variety of ways, it turns out to hold whenever
A is symmetric. This important theorem will be used extensively later. Surprisingly, the theory of complex

eigenvalues can be used to prove this useful result about real eigenvalues.

Let z denote the conjugate of a complex number z. If A is a complex matrix, the conjugate matrix A

is defined to be the matrix obtained from A by conjugating every entry. Thus, if A =
[
zi j

]
, then A =

[
zi j

]
.

For example,

If A =

[
−i+2 5

i 3+4i

]
then A =

[
i+2 5
−i 3−4i

]

Recall that z+w = z+w and zw = z w hold for all complex numbers z and w. It follows that if A and B

are two complex matrices, then

A+B = A+B, AB = A B and λA = λ A

hold for all complex scalars λ . These facts are used in the proof of the following theorem.

Theorem 5.5.7

Let A be a symmetric real matrix. If λ is any complex eigenvalue of A, then λ is real.14

Proof. Observe that A = A because A is real. If λ is an eigenvalue of A, we show that λ is real by showing
that λ = λ . Let x be a (possibly complex) eigenvector corresponding to λ , so that x 6= 0 and Ax = λx.
Define c = xT x.

If we write x =




z1

z2
...

zn


 where the zi are complex numbers, we have

c = xT x = z1z1 + z2z2 + · · ·+ znzn = |z1|2 + |z2|2 + · · ·+ |zn|2

Thus c is a real number, and c > 0 because at least one of the zi 6= 0 (as x 6= 0). We show that λ = λ by
verifying that λc = λc. We have

λc = λ (xT x) = (λx)T x = (Ax)T x = xT AT x

At this point we use the hypothesis that A is symmetric and real. This means AT = A = A so we continue
the calculation:

13This discussion uses complex conjugation and absolute value. These topics are discussed in Appendix A.
14This theorem was first proved in 1829 by the great French mathematician Augustin Louis Cauchy (1789–1857).
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λc = xT AT x = xT (A x) = xT (Ax) = xT (λx)

= xT (λ x)

= λxT x

= λc

as required.

The technique in the proof of Theorem 5.5.7 will be used again when we return to complex linear algebra
in Section 8.7.

Example 5.5.7

Verify Theorem 5.5.7 for every real, symmetric 2×2 matrix A.

Solution. If A =

[
a b

b c

]
we have cA(x) = x2− (a+ c)x+(ac−b2), so the eigenvalues are given

by λ = 1
2 [(a+ c)±

√
(a+ c)2−4(ac−b2)]. But here

(a+ c)2−4(ac−b2) = (a− c)2 +4b2 ≥ 0

for any choice of a, b, and c. Hence, the eigenvalues are real numbers.

Exercises for 5.5

Exercise 5.5.1 By computing the trace, determinant,
and rank, show that A and B are not similar in each case.

a. A =

[
1 2
2 1

]
, B =

[
1 1
−1 1

]

b. A =

[
3 1
2 −1

]
, B =

[
1 1
2 1

]

c. A =

[
2 1
1 −1

]
, B =

[
3 0
1 −1

]

d. A =

[
3 1
−1 2

]
, B =

[
2 −1
3 2

]

e. A =




2 1 1
1 0 1
1 1 0


, B =




1 −2 1
−2 4 −2
−3 6 −3




f. A =




1 2 −3
1 −1 2
0 3 −5


, B =



−2 1 3

6 −3 −9
0 0 0




Exercise 5.5.2 Show that




1 2 −1 0
2 0 1 1
1 1 0 −1
4 3 0 0


 and




1 −1 3 0
−1 0 1 1

0 −1 4 1
5 −1 −1 −4


 are not similar.

Exercise 5.5.3 If A∼ B, show that:

AT ∼ BTa. A−1 ∼ B−1b.

rA∼ rB for r in Rc. An ∼ Bn for n≥ 1d.
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Exercise 5.5.4 In each case, decide whether the matrix
A is diagonalizable. If so, find P such that P−1AP is di-
agonal.




1 0 0
1 2 1
0 0 1


a.




3 0 6
0 −3 0
5 0 2


b.




3 1 6
2 1 0
−1 0 −3


c.




4 0 0
0 2 2
2 3 1


d.

Exercise 5.5.5 If A is invertible, show that AB is similar
to BA for all B.

Exercise 5.5.6 Show that the only matrix similar to a
scalar matrix A = rI, r in R, is A itself.

Exercise 5.5.7 Let λ be an eigenvalue of A with cor-
responding eigenvector x. If B = P−1AP is similar to A,
show that P−1x is an eigenvector of B corresponding to
λ .

Exercise 5.5.8 If A∼ B and A has any of the following
properties, show that B has the same property.

a. Idempotent, that is A2 = A.

b. Nilpotent, that is Ak = 0 for some k ≥ 1.

c. Invertible.

Exercise 5.5.9 Let A denote an n× n upper triangular
matrix.

a. If all the main diagonal entries of A are distinct,
show that A is diagonalizable.

b. If all the main diagonal entries of A are equal,
show that A is diagonalizable only if it is already

diagonal.

c. Show that




1 0 1
0 1 0
0 0 2


 is diagonalizable but that




1 1 0
0 1 0
0 0 2


 is not diagonalizable.

Exercise 5.5.10 Let A be a diagonalizable n×n matrix
with eigenvalues λ1, λ2, . . . , λn (including multiplici-
ties). Show that:

a. det A = λ1λ2 · · ·λn

b. tr A = λ1 +λ2 + · · ·+λn

Exercise 5.5.11 Given a polynomial p(x) = r0 + r1x+
· · ·+ rnxn and a square matrix A, the matrix p(A) =
r0I + r1A + · · ·+ rnAn is called the evaluation of p(x)
at A. Let B = P−1AP. Show that p(B) = P−1 p(A)P for
all polynomials p(x).

Exercise 5.5.12 Let P be an invertible n× n matrix. If
A is any n×n matrix, write TP(A) = P−1AP. Verify that:

TP(I) = Ia. TP(AB)= TP(A)TP(B)b.

TP(A + B) = TP(A) +
TP(B)

c. TP(rA) = rTP(A)d.

TP(A
k) = [TP(A)]

k for k ≥ 1e.

If A is invertible, TP(A
−1) = [TP(A)]

−1.f.

If Q is invertible, TQ[TP(A)] = TPQ(A).g.

Exercise 5.5.13

a. Show that two diagonalizable matrices are similar
if and only if they have the same eigenvalues with
the same multiplicities.

b. If A is diagonalizable, show that A∼ AT .

c. Show that A∼ AT if A =

[
1 1
0 1

]

Exercise 5.5.14 If A is 2× 2 and diagonalizable, show
that C(A) = {X | XA = AX} has dimension 2 or 4. [Hint:
If P−1AP = D, show that X is in C(A) if and only if
P−1XP is in C(D).]

Exercise 5.5.15 If A is diagonalizable and p(x) is a
polynomial such that p(λ ) = 0 for all eigenvalues λ of
A, show that p(A) = 0 (see Example 3.3.9). In particular,
show cA(A) = 0. [Remark: cA(A) = 0 for all square ma-
trices A—this is the Cayley-Hamilton theorem, see The-
orem 11.1.2.]

Exercise 5.5.16 Let A be n×n with n distinct real eigen-
values. If AC =CA, show that C is diagonalizable.
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Exercise 5.5.17 Let A =




0 a b

a 0 c

b c 0


 and

B =




c a b

a b c

b c a


.

a. Show that x3 − (a2 + b2 + c2)x− 2abc has real
roots by considering A.

b. Show that a2 + b2 + c2 ≥ ab+ ac+ bc by consid-
ering B.

Exercise 5.5.18 Assume the 2×2 matrix A is similar to
an upper triangular matrix. If tr A = 0 = tr A2, show that
A2 = 0.

Exercise 5.5.19 Show that A is similar to AT for all 2×2

matrices A. [Hint: Let A =

[
a b

c d

]
. If c = 0 treat the

cases b = 0 and b 6= 0 separately. If c 6= 0, reduce to the
case c = 1 using Exercise 5.5.12(d).]

Exercise 5.5.20 Refer to Section 3.4 on linear recur-
rences. Assume that the sequence x0, x1, x2, . . . satisfies

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

for all n≥ 0. Define

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
r0 r1 r2 · · · rk−1


 , Vn =




xn

xn+1

...
xn+k−1


 .

Then show that:

a. Vn = AnV0 for all n.

b. cA(x) = xk− rk−1xk−1−·· ·− r1x− r0

c. If λ is an eigenvalue of A, the eigenspace Eλ has
dimension 1, and x = (1, λ , λ 2, . . . , λ k−1)T is an
eigenvector. [Hint: Use cA(λ ) = 0 to show that
Eλ = Rx.]

d. A is diagonalizable if and only if the eigenvalues
of A are distinct. [Hint: See part (c) and Theo-
rem 5.5.4.]

e. If λ1, λ2, . . . , λk are distinct real eigenvalues,
there exist constants t1, t2, . . . , tk such that xn =
t1λ n

1 + · · ·+ tkλ n
k holds for all n. [Hint: If D is di-

agonal with λ1, λ2, . . . , λk as the main diagonal
entries, show that An = PDnP−1 has entries that are
linear combinations of λ n

1 , λ n
2 , . . . , λ n

k .]

Exercise 5.5.21 Suppose A is 2× 2 and A2 = 0. If
tr A 6= 0 show that A = 0.

5.6 Best Approximation and Least Squares

Often an exact solution to a problem in applied mathematics is difficult to obtain. However, it is usually
just as useful to find arbitrarily close approximations to a solution. In particular, finding “linear approx-
imations” is a potent technique in applied mathematics. One basic case is the situation where a system
of linear equations has no solution, and it is desirable to find a “best approximation” to a solution to the
system. In this section best approximations are defined and a method for finding them is described. The
result is then applied to “least squares” approximation of data.

Suppose A is an m×n matrix and b is a column in Rm, and consider the system

Ax = b

of m linear equations in n variables. This need not have a solution. However, given any column z ∈ Rn,
the distance ‖b−Az‖ is a measure of how far Az is from b. Hence it is natural to ask whether there is a
column z in Rn that is as close as possible to a solution in the sense that

‖b−Az‖
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is the minimum value of ‖b−Ax‖ as x ranges over all columns in Rn.

The answer is “yes”, and to describe it define

U = {Ax | x lies in Rn}

Az

b b−Az

0
U

This is a subspace of Rn (verify) and we want a vector Az in U as close as
possible to b. That there is such a vector is clear geometrically if n = 3 by
the diagram. In general such a vector Az exists by a general result called
the projection theorem that will be proved in Chapter 8 (Theorem 8.1.3).
Moreover, the projection theorem gives a simple way to compute z because
it also shows that the vector b−Az is orthogonal to every vector Ax in U .
Thus, for all x in Rn,

0 = (Ax) · (b−Az) = (Ax)T (b−Az) = xT AT (b−Az)

= x · [AT (b−Az)]

In other words, the vector AT (b−Az) in Rn is orthogonal to every vector in Rn and so must be zero (being
orthogonal to itself). Hence z satisfies

(AT A)z = AT b

Definition 5.14 Normal Equations

This is a system of linear equations called the normal equations for z.

Note that this system can have more than one solution (see Exercise 5.6.5). However, the n×n matrix AT A

is invertible if (and only if) the columns of A are linearly independent (Theorem 5.4.3); so, in this case,
z is uniquely determined and is given explicitly by z = (AT A)−1AT b. However, the most efficient way to
find z is to apply gaussian elimination to the normal equations.

This discussion is summarized in the following theorem.

Theorem 5.6.1: Best Approximation Theorem

Let A be an m×n matrix, let b be any column in Rm, and consider the system

Ax = b

of m equations in n variables.

1. Any solution z to the normal equations

(AT A)z = AT b

is a best approximation to a solution to Ax = b in the sense that ‖b−Az‖ is the minimum
value of ‖b−Ax‖ as x ranges over all columns in Rn.

2. If the columns of A are linearly independent, then AT A is invertible and z is given uniquely
by z = (AT A)−1AT b.
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We note in passing that if A is n×n and invertible, then

z = (AT A)−1AT b = A−1b

is the solution to the system of equations, and ‖b−Az‖ = 0. Hence if A has independent columns, then
(AT A)−1AT is playing the role of the inverse of the nonsquare matrix A. The matrix AT (AAT )−1 plays a
similar role when the rows of A are linearly independent. These are both special cases of the generalized

inverse of a matrix A (see Exercise 5.6.14). However, we shall not pursue this topic here.

Example 5.6.1

The system of linear equations
3x− y= 4

x+ 2y= 0
2x+ y= 1

has no solution. Find the vector z =

[
x0

y0

]
that best approximates a solution.

Solution. In this case,

A =




3 −1
1 2
2 1


 , so AT A =

[
3 1 2
−1 2 1

]


3 −1
1 2
2 1


=

[
14 1

1 6

]

is invertible. The normal equations (AT A)z = AT b are
[

14 1
1 6

]
z =

[
14
−3

]
, so z = 1

83

[
87
−56

]

Thus x0 =
87
83 and y0 =

−56
83 . With these values of x and y, the left sides of the equations are,

approximately,

3x0− y0 =
317
83 = 3.82

x0 + 2y0 =
−25
83 =−0.30

2x0 + y0 =
118
83 = 1.42

This is as close as possible to a solution.

Example 5.6.2

The average number g of goals per game scored by a hockey player seems to be related linearly to
two factors: the number x1 of years of experience and the number x2 of goals in the preceding 10
games. The data on the following page were collected on four players. Find the linear function
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g = a0 +a1x1 +a2x2 that best fits these data.

g x1 x2

0.8 5 3
0.8 3 4
0.6 1 5
0.4 2 1

Solution. If the relationship is given by g = r0 + r1x1 + r2x2, then the data can be described as
follows: 



1 5 3
1 3 4
1 1 5
1 2 1







r0

r1

r2


=




0.8
0.8
0.6
0.4




Using the notation in Theorem 5.6.1, we get

z = (AT A)−1AT b

= 1
42




119 −17 −19
−17 5 1
−19 1 5






1 1 1 1
5 3 1 2
3 4 5 1







0.8
0.8
0.6
0.4


=




0.14
0.09
0.08




Hence the best-fitting function is g = 0.14+0.09x1 +0.08x2. The amount of computation would
have been reduced if the normal equations had been constructed and then solved by gaussian
elimination.

Least Squares Approximation

In many scientific investigations, data are collected that relate two variables. For example, if x is the
number of dollars spent on advertising by a manufacturer and y is the value of sales in the region in
question, the manufacturer could generate data by spending x1, x2, . . . , xn dollars at different times and
measuring the corresponding sales values y1, y2, . . . , yn.

(x1, y1)
(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

Line 1Line 2

0
x

y

Suppose it is known that a linear relationship exists between the vari-
ables x and y—in other words, that y = a+ bx for some constants a and
b. If the data are plotted, the points (x1, y1), (x2, y2), . . . , (xn, yn) may
appear to lie on a straight line and estimating a and b requires finding
the “best-fitting” line through these data points. For example, if five data
points occur as shown in the diagram, line 1 is clearly a better fit than line
2. In general, the problem is to find the values of the constants a and b

such that the line y = a+bx best approximates the data in question. Note
that an exact fit would be obtained if a and b were such that yi = a+ bxi

were true for each data point (xi, yi). But this is too much to expect. Ex-
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perimental errors in measurement are bound to occur, so the choice of a and b should be made in such a
way that the errors between the observed values yi and the corresponding fitted values a+bxi are in some
sense minimized. Least squares approximation is a way to do this.

The first thing we must do is explain exactly what we mean by the best fit of a line y = a+ bx to an
observed set of data points (x1, y1), (x2, y2), . . . , (xn, yn). For convenience, write the linear function
r0 + r1x as

f (x) = r0 + r1x

so that the fitted points (on the line) have coordinates (x1, f (x1)), . . . , (xn, f (xn)).

(x1, f (x1))

(x1, y1)

(xi, f (xi))

(xi, yi) (xn, f (xn))

(xn, yn)

d1

di

dn

y
=

f (
x)

0 x1 xi xn

x

y

The second diagram is a sketch of what the line y = f (x) might look
like. For each i the observed data point (xi, yi) and the fitted point
(xi, f (xi)) need not be the same, and the distance di between them mea-
sures how far the line misses the observed point. For this reason di is often
called the error at xi, and a natural measure of how close the line y = f (x)
is to the observed data points is the sum d1 + d2 + · · ·+ dn of all these
errors. However, it turns out to be better to use the sum of squares

S = d2
1 +d2

2 + · · ·+d2
n

as the measure of error, and the line y = f (x) is to be chosen so as to make this sum as small
as possible. This line is said to be the least squares approximating line for the data points
(x1, y1), (x2, y2), . . . , (xn, yn).

The square of the error di is given by d2
i = [yi− f (xi)]

2 for each i, so the quantity S to be minimized is
the sum:

S = [y1− f (x1)]
2 +[y2− f (x2)]

2 + · · ·+[yn− f (xn)]
2

Note that all the numbers xi and yi are given here; what is required is that the function f be chosen in such
a way as to minimize S. Because f (x) = r0 + r1x, this amounts to choosing r0 and r1 to minimize S. This
problem can be solved using Theorem 5.6.1. The following notation is convenient.

x =




x1

x2
...

xn


 y =




y1

y2
...

yn


 and f (x) =




f (x1)
f (x2)

...
f (xn)


=




r0 + r1x1

r0 + r1x2
...

r0 + r1xn




Then the problem takes the following form: Choose r0 and r1 such that

S = [y1− f (x1)]
2 +[y2− f (x2)]

2 + · · ·+[yn− f (xn)]
2 = ‖y− f (x)‖2

is as small as possible. Now write

M =




1 x1

1 x2
...

...
1 xn


 and r =

[
r0

r1

]

Then Mr = f (x), so we are looking for a column r =

[
r0

r1

]
such that ‖y−Mr‖2 is as small as possible.

In other words, we are looking for a best approximation z to the system Mr = y. Hence Theorem 5.6.1
applies directly, and we have
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Theorem 5.6.2

Suppose that n data points (x1, y1), (x2, y2), . . . , (xn, yn) are given, where at least two of
x1, x2, . . . , xn are distinct. Put

y =




y1

y2
...

yn


 M =




1 x1

1 x2
...

...
1 xn




Then the least squares approximating line for these data points has equation

y = z0 + z1x

where z =

[
z0

z1

]
is found by gaussian elimination from the normal equations

(MT M)z = MT y

The condition that at least two of x1, x2, . . . , xn are distinct ensures that MT M is an invertible
matrix, so z is unique:

z = (MT M)−1MT y

Example 5.6.3

Let data points (x1, y1), (x2, y2), . . . , (x5, y5) be given as in the accompanying table. Find the
least squares approximating line for these data.

x y

1 1
3 2
4 3
6 4
7 5

Solution. In this case we have

MT M =

[
1 1 · · · 1
x1 x2 · · · x5

]



1 x1

1 x2
...

...
1 x5




=

[
5 x1 + · · ·+ x5

x1 + · · ·+ x5 x2
1 + · · ·+ x2

5

]
=

[
5 21

21 111

]
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and MT y =

[
1 1 · · · 1
x1 x2 · · · x5

]



y1

y2
...

y5




=

[
y1 + y2 + · · ·+ y5

x1y1 + x2y2 + · · ·+ x5y5

]
=

[
15
78

]

so the normal equations (MT M)z = MT y for z =

[
z0

z1

]
become

[
5 21

21 111

]
=

[
z0

z1

]
=

[
15
78

]

The solution (using gaussian elimination) is z =

[
z0

z1

]
=

[
0.24
0.66

]
to two decimal places, so the

least squares approximating line for these data is y = 0.24+0.66x. Note that MT M is indeed
invertible here (the determinant is 114), and the exact solution is

z = (MT M)−1MT y = 1
114

[
111 −21
−21 5

][
15
78

]
= 1

114

[
27
75

]
= 1

38

[
9

25

]

Least Squares Approximating Polynomials

Suppose now that, rather than a straight line, we want to find a polynomial

y = f (x) = r0 + r1x+ r2x2 + · · ·+ rmxm

of degree m that best approximates the data pairs (x1, y1), (x2, y2), . . . , (xn, yn). As before, write

x =




x1

x2
...

xn


 y =




y1

y2
...

yn


 and f (x) =




f (x1)
f (x2)

...
f (xn)




For each xi we have two values of the variable y, the observed value yi, and the computed value f (xi). The
problem is to choose f (x)—that is, choose r0, r1, . . . , rm —such that the f (xi) are as close as possible to
the yi. Again we define “as close as possible” by the least squares condition: We choose the ri such that

‖y− f (x)‖2 = [y1− f (x1)]
2 +[y2− f (x2)]

2 + · · ·+[yn− f (xn)]
2

is as small as possible.
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Definition 5.15 Least Squares Approximation

A polynomial f (x) satisfying this condition is called a least squares approximating polynomial

of degree m for the given data pairs.

If we write

M =




1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2
...

...
...

...

1 xn x2
n · · · xm

n




and r =




r0

r1
...

rm




we see that f (x) = Mr. Hence we want to find r such that ‖y−Mr‖2 is as small as possible; that is, we
want a best approximation z to the system Mr = y. Theorem 5.6.1 gives the first part of Theorem 5.6.3.

Theorem 5.6.3

Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and write

y =




y1

y2
...

yn


 M =




1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2
...

...
...

...

1 xn x2
n · · · xm

n




z =




z0

z1
...

zm




1. If z is any solution to the normal equations

(MT M)z = MT y

then the polynomial
z0 + z1x+ z2x2 + · · ·+ zmxm

is a least squares approximating polynomial of degree m for the given data pairs.

2. If at least m+1 of the numbers x1, x2, . . . , xn are distinct (so n≥ m+1), the matrix MT M is
invertible and z is uniquely determined by

z = (MT M)−1MT y

Proof. It remains to prove (2), and for that we show that the columns of M are linearly independent
(Theorem 5.4.3). Suppose a linear combination of the columns vanishes:

r0




1
1
...
1


+ r1




x1

x2
...

xn


+ · · ·+ rm




xm
1

xm
2
...

xm
n


=




0
0
...
0



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If we write q(x) = r0 + r1x+ · · ·+ rmxm, equating coefficients shows that

q(x1) = q(x2) = · · ·= q(xn) = 0

Hence q(x) is a polynomial of degree m with at least m+1 distinct roots, so q(x) must be the zero poly-
nomial (see Appendix D or Theorem 6.5.4). Thus r0 = r1 = · · ·= rm = 0 as required.

Example 5.6.4

Find the least squares approximating quadratic y = z0 + z1x+ z2x2 for the following data points.

(−3, 3), (−1, 1), (0, 1), (1, 2), (3, 4)

Solution. This is an instance of Theorem 5.6.3 with m = 2. Here

y =




3
1
1
2
4




M =




1 −3 9
1 −1 1
1 0 0
1 1 1
1 3 9




Hence,

MT M =




1 1 1 1 1
−3 −1 0 1 3

9 1 0 1 9







1 −3 9
1 −1 1
1 0 0
1 1 1
1 3 9



=




5 0 20
0 20 0

20 0 164




MT y =




1 1 1 1 1
−3 −1 0 1 3

9 1 0 1 9







3
1
1
2
4



=




11
4

66




The normal equations for z are



5 0 20
0 20 0

20 0 164


z =




11
4

66


 whence z =




1.15
0.20
0.26




This means that the least squares approximating quadratic for these data is
y = 1.15+0.20x+0.26x2.
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Other Functions

There is an extension of Theorem 5.6.3 that should be mentioned. Given data pairs (x1, y1), (x2, y2),
. . . , (xn, yn), that theorem shows how to find a polynomial

f (x) = r0 + r1x+ · · ·+ rmxm

such that ‖y− f (x)‖2 is as small as possible, where x and f (x) are as before. Choosing the appropriate
polynomial f (x) amounts to choosing the coefficients r0, r1, . . . , rm, and Theorem 5.6.3 gives a formula
for the optimal choices. Here f (x) is a linear combination of the functions 1, x, x2, . . . , xm where the ri

are the coefficients, and this suggests applying the method to other functions. If f0(x), f1(x), . . . , fm(x)
are given functions, write

f (x) = r0 f0(x)+ r1 f1(x)+ · · ·+ rm fm(x)

where the ri are real numbers. Then the more general question is whether r0, r1, . . . , rm can be found such
that ‖y− f (x)‖2 is as small as possible where

f (x) =




f (x1)
f (x2)

...
f (xm)




Such a function f (x) is called a least squares best approximation for these data pairs of the form
r0 f0(x)+ r1 f1(x)+ · · ·+ rm fm(x), ri in R. The proof of Theorem 5.6.3 goes through to prove

Theorem 5.6.4

Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and suppose that m+1 functions
f0(x), f1(x), . . . , fm(x) are specified. Write

y =




y1

y2
...

yn


 M =




f0(x1) f1(x1) · · · fm(x1)
f0(x2) f1(x2) · · · fm(x2)

...
...

...
f0(xn) f1(xn) · · · fm(xn)


 z =




z1

z2
...

zm




1. If z is any solution to the normal equations

(MT M)z = MT y

then the function
z0 f0(x)+ z1 f1(x)+ · · ·+ zm fm(x)

is the best approximation for these data among all functions of the form
r0 f0(x)+ r1 f1(x)+ · · ·+ rm fm(x) where the ri are in R.

2. If MT M is invertible (that is, if rank (M) = m+1), then z is uniquely determined; in fact,
z = (MT M)−1(MT y).
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Clearly Theorem 5.6.4 contains Theorem 5.6.3 as a special case, but there is no simple test in gen-
eral for whether MT M is invertible. Conditions for this to hold depend on the choice of the functions
f0(x), f1(x), . . . , fm(x).

Example 5.6.5

Given the data pairs (−1, 0), (0, 1), and (1, 4), find the least squares approximating function of
the form r0x+ r12x.

Solution. The functions are f0(x) = x and f1(x) = 2x, so the matrix M is

M =




f0(x1) f1(x1)
f0(x2) f1(x2)
f0(x3) f1(x3)


=



−1 2−1

0 20

1 21


= 1

2



−2 1

0 2
2 4




In this case MT M = 1
4

[
8 6
6 21

]
is invertible, so the normal equations

1
4

[
8 6
6 21

]
z =

[
4
9

]

have a unique solution z = 1
11

[
10
16

]
. Hence the best-fitting function of the form r0x+ r12x is

f (x) = 10
11x+ 16

112x. Note that f (x) =




f (−1)
f (0)
f (1)


=




−2
11

16
11

42
11


, compared with y =




0
1
4




Exercises for 5.6

Exercise 5.6.1 Find the best approximation to a solution
of each of the following systems of equations.

x+ y− z= 5
2x− y+ 6z = 1
3x+ 2y− z= 6
−x+ 4y+ z= 0

a. 3x + y+ z= 6
2x + 3y− z= 1
2x− y+ z= 0
3x− 3y+ 3z = 8

b.

Exercise 5.6.2 Find the least squares approximating line
y = z0 + z1x for each of the following sets of data points.

a. (1, 1), (3, 2), (4, 3), (6, 4)

b. (2, 4), (4, 3), (7, 2), (8, 1)

c. (−1, −1), (0, 1), (1, 2), (2, 4), (3, 6)

d. (−2, 3), (−1, 1), (0, 0), (1, −2), (2, −4)

Exercise 5.6.3 Find the least squares approximating
quadratic y = z0 + z1x+ z2x2 for each of the following
sets of data points.

a. (0, 1), (2, 2), (3, 3), (4, 5)

b. (−2, 1), (0, 0), (3, 2), (4, 3)
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Exercise 5.6.4 Find a least squares approximating func-
tion of the form r0x+ r1x2 + r22x for each of the follow-
ing sets of data pairs.

a. (−1, 1), (0, 3), (1, 1), (2, 0)

b. (0, 1), (1, 1), (2, 5), (3, 10)

Exercise 5.6.5 Find the least squares approximating
function of the form r0 + r1x2 + r2 sin πx

2 for each of the
following sets of data pairs.

a. (0, 3), (1, 0), (1, −1), (−1, 2)

b. (−1, 1
2), (0, 1), (2, 5), (3, 9)

Exercise 5.6.6 If M is a square invertible matrix, show
that z = M−1y (in the notation of Theorem 5.6.3).

Exercise 5.6.7 Newton’s laws of motion imply that an
object dropped from rest at a height of 100 metres will
be at a height s = 100− 1

2gt2 metres t seconds later,
where g is a constant called the acceleration due to grav-
ity. The values of s and t given in the table are observed.
Write x = t2, find the least squares approximating line
s = a+bx for these data, and use b to estimate g.

Then find the least squares approximating quadratic
s = a0 +a1t +a2t2 and use the value of a2 to estimate g.

t 1 2 3
s 95 80 56

Exercise 5.6.8 A naturalist measured the heights yi (in
metres) of several spruce trees with trunk diameters xi (in
centimetres). The data are as given in the table. Find the
least squares approximating line for these data and use
it to estimate the height of a spruce tree with a trunk of
diameter 10 cm.

xi 5 7 8 12 13 16
yi 2 3.3 4 7.3 7.9 10.1

Exercise 5.6.9 The yield y of wheat in bushels per acre
appears to be a linear function of the number of days x1 of
sunshine, the number of inches x2 of rain, and the num-
ber of pounds x3 of fertilizer applied per acre. Find the
best fit to the data in the table by an equation of the form
y = r0 + r1x1 + r2x2 + r3x3. [Hint: If a calculator for in-
verting AT A is not available, the inverse is given in the
answer.]

y x1 x2 x3

28 50 18 10
30 40 20 16
21 35 14 10
23 40 12 12
23 30 16 14

Exercise 5.6.10

a. Use m = 0 in Theorem 5.6.3 to show that the
best-fitting horizontal line y = a0 through the data
points (x1, y1), . . . , (xn, yn) is

y = 1
n
(y1 + y2 + · · ·+ yn)

the average of the y coordinates.

b. Deduce the conclusion in (a) without using Theo-
rem 5.6.3.

Exercise 5.6.11 Assume n=m+1 in Theorem 5.6.3 (so
M is square). If the xi are distinct, use Theorem 3.2.6 to
show that M is invertible. Deduce that z = M−1y and that
the least squares polynomial is the interpolating polyno-
mial (Theorem 3.2.6) and actually passes through all the
data points.

Exercise 5.6.12 Let A be any m× n matrix and write
K = {x | AT Ax = 0}. Let b be an m-column. Show that,
if z is an n-column such that ‖b−Az‖ is minimal, then all

such vectors have the form z+ x for some x ∈ K. [Hint:
‖b−Ay‖ is minimal if and only if AT Ay = AT b.]

Exercise 5.6.13 Given the situation in Theorem 5.6.4,
write

f (x) = r0 p0(x)+ r1 p1(x)+ · · ·+ rm pm(x)

Suppose that f (x) has at most k roots for any choice of
the coefficients r0, r1, . . . , rm, not all zero.

a. Show that MT M is invertible if at least k+1 of the
xi are distinct.

b. If at least two of the xi are distinct, show that
there is always a best approximation of the form
r0 + r1ex.

c. If at least three of the xi are distinct, show that
there is always a best approximation of the form
r0 + r1x+ r2ex. [Calculus is needed.]
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Exercise 5.6.14 If A is an m×n matrix, it can be proved
that there exists a unique n×m matrix A# satisfying the
following four conditions: AA#A = A; A#AA# = A#; AA#

and A#A are symmetric. The matrix A# is called the gen-

eralized inverse of A, or the Moore-Penrose inverse.

a. If A is square and invertible, show that A# = A−1.

b. If rank A = m, show that A# = AT (AAT )−1.

c. If rank A = n, show that A# = (AT A)−1AT .

5.7 An Application to Correlation and Variance

Suppose the heights h1, h2, . . . , hn of n men are measured. Such a data set is called a sample of the heights
of all the men in the population under study, and various questions are often asked about such a sample:
What is the average height in the sample? How much variation is there in the sample heights, and how can
it be measured? What can be inferred from the sample about the heights of all men in the population? How
do these heights compare to heights of men in neighbouring countries? Does the prevalence of smoking
affect the height of a man?

The analysis of samples, and of inferences that can be drawn from them, is a subject called mathemat-

ical statistics, and an extensive body of information has been developed to answer many such questions.
In this section we will describe a few ways that linear algebra can be used.

It is convenient to represent a sample {x1, x2, . . . , xn} as a sample vector15 x =
[

x1 x2 · · · xn

]

in Rn. This being done, the dot product in Rn provides a convenient tool to study the sample and describe
some of the statistical concepts related to it. The most widely known statistic for describing a data set is
the sample mean x defined by16

x = 1
n
(x1 + x2 + · · ·+ xn) =

1
n

n

∑
i=1

xi

The mean x is “typical” of the sample values xi, but may not itself be one of them. The number xi− x is
called the deviation of xi from the mean x. The deviation is positive if xi > x and it is negative if xi < x.
Moreover, the sum of these deviations is zero:

n

∑
i=1

(xi− x) =

(
n

∑
i=1

xi

)
−nx = nx−nx = 0 (5.6)

−1 0 1

Sample x

x

−3 −2 −1

Centred
Sample xc

xc

This is described by saying that the sample mean x is central to the
sample values xi.

If the mean x is subtracted from each data value xi, the resulting data
xi− x are said to be centred. The corresponding data vector is

xc =
[

x1− x x2− x · · · xn− x
]

and (5.6) shows that the mean xc = 0. For example, we have plotted the
sample x =

[
−1 0 1 4 6

]
in the first diagram. The mean is x = 2,

15We write vectors in Rn as row matrices, for convenience.
16The mean is often called the “average” of the sample values xi, but statisticians use the term “mean”.
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and the centred sample xc =
[
−3 −2 −1 2 4

]
is also plotted. Thus, the effect of centring is to shift

the data by an amount x (to the left if x is positive) so that the mean moves to 0.

Another question that arises about samples is how much variability there is in the sample

x =
[

x1 x2 · · · xn

]

that is, how widely are the data “spread out” around the sample mean x. A natural measure of variability
would be the sum of the deviations of the xi about the mean, but this sum is zero by (5.6); these deviations
cancel out. To avoid this cancellation, statisticians use the squares (xi−x)2 of the deviations as a measure
of variability. More precisely, they compute a statistic called the sample variance s2

x defined17 as follows:

s2
x =

1
n−1 [(x1− x)2 +(x2− x)2 + · · ·+(xn− x)2] = 1

n−1

n

∑
i=1

(xi− x)2

The sample variance will be large if there are many xi at a large distance from the mean x, and it will
be small if all the xi are tightly clustered about the mean. The variance is clearly nonnegative (hence the
notation s2

x), and the square root sx of the variance is called the sample standard deviation.

The sample mean and variance can be conveniently described using the dot product. Let

1 =
[

1 1 · · · 1
]

denote the row with every entry equal to 1. If x =
[

x1 x2 · · · xn

]
, then x · 1 = x1 + x2 + · · ·+ xn, so

the sample mean is given by the formula
x = 1

n
(x ·1)

Moreover, remembering that x is a scalar, we have x1 =
[

x x · · · x
]
, so the centred sample vector xc

is given by
xc = x− x1 =

[
x1− x x2− x · · · xn− x

]

Thus we obtain a formula for the sample variance:

s2
x =

1
n−1‖xc‖2 = 1

n−1‖x− x1‖2

Linear algebra is also useful for comparing two different samples. To illustrate how, consider two exam-
ples.

Doctor Visits

Days
Sick

The following table represents the number of sick days at work per
year and the yearly number of visits to a physician for 10 individuals.

Individual 1 2 3 4 5 6 7 8 9 10
Doctor visits 2 6 8 1 5 10 3 9 7 4

Sick days 2 4 8 3 5 9 4 7 7 2

The data are plotted in the scatter diagram where it is evident that,
roughly speaking, the more visits to the doctor the more sick days. This is
an example of a positive correlation between sick days and doctor visits.

17Since there are n sample values, it seems more natural to divide by n here, rather than by n−1. The reason for using n−1
is that then the sample variance s2x provides a better estimate of the variance of the entire population from which the sample
was drawn.
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Vitamin C Doses

Days
Sick

Now consider the following table representing the daily doses of vita-
min C and the number of sick days.

Individual 1 2 3 4 5 6 7 8 9 10
Vitamin C 1 5 7 0 4 9 2 8 6 3
Sick days 5 2 2 6 2 1 4 3 2 5

The scatter diagram is plotted as shown and it appears that the more vita-
min C taken, the fewer sick days. In this case there is a negative correla-

tion between daily vitamin C and sick days.

In both these situations, we have paired samples, that is observations of two variables are made for ten
individuals: doctor visits and sick days in the first case; daily vitamin C and sick days in the second case.
The scatter diagrams point to a relationship between these variables, and there is a way to use the sample
to compute a number, called the correlation coefficient, that measures the degree to which the variables
are associated.

To motivate the definition of the correlation coefficient, suppose two paired samples
x =

[
x1 x2 · · · xn

]
, and y =

[
y1 y2 · · · yn

]
are given and consider the centred samples

xc =
[

x1− x x2− x · · · xn− x
]

and yc =
[

y1− y y2− y · · · yn− y
]

If xk is large among the xi’s, then the deviation xk− x will be positive; and xk− x will be negative if xk

is small among the xi’s. The situation is similar for y, and the following table displays the sign of the
quantity (xi− x)(yk− y) in all four cases:

Sign of (xi− x)(yk− y) :

xi large xi small
yi large positive negative
yi small negative positive

Intuitively, if x and y are positively correlated, then two things happen:

1. Large values of the xi tend to be associated with large values of the yi, and

2. Small values of the xi tend to be associated with small values of the yi.

It follows from the table that, if x and y are positively correlated, then the dot product

xc ·yc =
n

∑
i=1

(xi− x)(yi− y)

is positive. Similarly xc ·yc is negative if x and y are negatively correlated. With this in mind, the sample

correlation coefficient18 r is defined by

r = r(x, y) =
xc·yc

‖xc‖ ‖yc‖

18The idea of using a single number to measure the degree of relationship between different variables was pioneered by
Francis Galton (1822–1911). He was studying the degree to which characteristics of an offspring relate to those of its parents.
The idea was refined by Karl Pearson (1857–1936) and r is often referred to as the Pearson correlation coefficient.
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Bearing the situation in R3 in mind, r is the cosine of the “angle” between the vectors xc and yc, and so
we would expect it to lie between −1 and 1. Moreover, we would expect r to be near 1 (or −1) if these
vectors were pointing in the same (opposite) direction, that is the “angle” is near zero (or π).

This is confirmed by Theorem 5.7.1 below, and it is also borne out in the examples above. If we
compute the correlation between sick days and visits to the physician (in the first scatter diagram above)
the result is r = 0.90 as expected. On the other hand, the correlation between daily vitamin C doses and
sick days (second scatter diagram) is r =−0.84.

However, a word of caution is in order here. We cannot conclude from the second example that taking
more vitamin C will reduce the number of sick days at work. The (negative) correlation may arise because
of some third factor that is related to both variables. For example, case it may be that less healthy people
are inclined to take more vitamin C. Correlation does not imply causation. Similarly, the correlation
between sick days and visits to the doctor does not mean that having many sick days causes more visits to
the doctor. A correlation between two variables may point to the existence of other underlying factors, but
it does not necessarily mean that there is a causality relationship between the variables.

Our discussion of the dot product in Rn provides the basic properties of the correlation coefficient:

Theorem 5.7.1

Let x =
[

x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
be (nonzero) paired samples, and let

r = r(x, y) denote the correlation coefficient. Then:

1. −1≤ r ≤ 1.

2. r = 1 if and only if there exist a and b > 0 such that yi = a+bxi for each i.

3. r =−1 if and only if there exist a and b < 0 such that yi = a+bxi for each i.

Proof. The Cauchy inequality (Theorem 5.3.2) proves (1), and also shows that r = ±1 if and only if one
of xc and yc is a scalar multiple of the other. This in turn holds if and only if yc = bxc for some b 6= 0, and
it is easy to verify that r = 1 when b > 0 and r =−1 when b < 0.

Finally, yc = bxc means yi−y = b(xi−x) for each i; that is, yi = a+bxi where a = y−bx. Conversely,
if yi = a+ bxi, then y = a+ bx (verify), so y1− y = (a+ bxi)− (a+ bx) = b(x1− x) for each i. In other
words, yc = bxc. This completes the proof.

Properties (2) and (3) in Theorem 5.7.1 show that r(x, y) = 1 means that there is a linear relation
with positive slope between the paired data (so large x values are paired with large y values). Similarly,
r(x, y) =−1 means that there is a linear relation with negative slope between the paired data (so small x

values are paired with small y values). This is borne out in the two scatter diagrams above.

We conclude by using the dot product to derive some useful formulas for computing variances and
correlation coefficients. Given samples x =

[
x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
, the key ob-

servation is the following formula:
xc ·yc = x ·y−nx y (5.7)

Indeed, remembering that x and y are scalars:
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xc ·yc = (x− x1) · (y− y1)

= x ·y−x · (y1)− (x1) ·y+(x1)(y1)

= x ·y− y(x ·1)− x(1 ·y)+ xy(1 ·1)
= x ·y− y(nx)− x(ny)+ x y(n)

= x ·y−nx y

Taking y = x in (5.7) gives a formula for the variance s2
x =

1
n−1‖xc‖2 of x.

Variance Formula

If x is a sample vector, then s2
x =

1
n−1

(
‖xc‖2−nx2

)
.

We also get a convenient formula for the correlation coefficient, r = r(x, y) =
xc·yc

‖xc‖ ‖yc‖ . Moreover, (5.7)

and the fact that s2
x =

1
n−1‖xc‖2 give:

Correlation Formula

If x and y are sample vectors, then

r = r(x, y) =
x ·y−nx y

(n−1)sxsy

Finally, we give a method that simplifies the computations of variances and correlations.

Data Scaling

Let x =
[

x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
be sample vectors. Given constants a, b,

c, and d, consider new samples z =
[

z1 z2 · · · zn

]
and w =

[
w1 w2 · · · wn

]
where

zi = a+bxi, for each i and wi = c+dyi for each i. Then:

a. z = a+bx

b. s2
z = b2s2

x , so sz = |b|sx

c. If b and d have the same sign, then r(x, y) = r(z, w).

The verification is left as an exercise. For example, if x =
[

101 98 103 99 100 97
]
, subtracting

100 yields z =
[

1 −2 3 −1 0 −3
]
. A routine calculation shows that z = −1

3 and s2
z = 14

3 , so
x = 100− 1

3 = 99.67, and s2
z =

14
3 = 4.67.
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Exercises for 5.7

Exercise 5.7.1 The following table gives IQ scores for 10 fathers and their eldest sons. Calculate the means, the
variances, and the correlation coefficient r. (The data scaling formula is useful.)

1 2 3 4 5 6 7 8 9 10
Father’s IQ 140 131 120 115 110 106 100 95 91 86
Son’s IQ 130 138 110 99 109 120 105 99 100 94

Exercise 5.7.2 The following table gives the number of years of education and the annual income (in thousands)
of 10 individuals. Find the means, the variances, and the correlation coefficient. (Again the data scaling formula is
useful.)

Individual 1 2 3 4 5 6 7 8 9 10
Years of education 12 16 13 18 19 12 18 19 12 14
Yearly income 31 48 35 28 55 40 39 60 32 35
(1000’s)

Exercise 5.7.3 If x is a sample vector, and xc is the centred sample, show that xc = 0 and the standard deviation of
xc is sx.

Exercise 5.7.4 Prove the data scaling formulas found on page 326: (a), (b), and (c).

Supplementary Exercises for Chapter 5

Exercise 5.1 In each case either show that the state-
ment is true or give an example showing that it is false.
Throughout, x, y, z, x1, x2, . . . , xn denote vectors in Rn.

a. If U is a subspace of Rn and x+ y is in U , then x

and y are both in U .

b. If U is a subspace of Rn and rx is in U , then x is
in U .

c. If U is a nonempty set and sx+ ty is in U for any
s and t whenever x and y are in U , then U is a
subspace.

d. If U is a subspace of Rn and x is in U , then −x is
in U .

e. If {x, y} is independent, then {x, y, x+ y} is in-
dependent.

f. If {x, y, z} is independent, then {x, y} is inde-
pendent.

g. If {x, y} is not independent, then {x, y, z} is not
independent.

h. If all of x1, x2, . . . , xn are nonzero, then
{x1, x2, . . . , xn} is independent.

i. If one of x1, x2, . . . , xn is zero, then
{x1, x2, . . . , xn} is not independent.

j. If ax+by+cz = 0 where a, b, and c are in R, then
{x, y, z} is independent.

k. If {x, y, z} is independent, then ax+by+ cz = 0

for some a, b, and c in R.

l. If {x1, x2, . . . , xn} is not independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for ti in R not all zero.

m. If {x1, x2, . . . , xn} is independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for some ti in R.

n. Every set of four non-zero vectors in R4 is a basis.
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o. No basis of R3 can contain a vector with a compo-
nent 0.

p. R3 has a basis of the form {x, x+ y, y} where x

and y are vectors.

q. Every basis of R5 contains one column of I5.

r. Every nonempty subset of a basis of R3 is again a
basis of R3.

s. If {x1, x2, x3, x4} and {y1, y2, y3, y4} are bases
of R4, then {x1 +y1, x2 +y2, x3 +y3, x4 +y4} is
also a basis of R4.


