
8. Orthogonality

In Section 5.3 we introduced the dot product in Rn and extended the basic geometric notions of length and
distance. A set {f1, f2, . . . , fm} of nonzero vectors in Rn was called an orthogonal set if fi · f j = 0 for
all i 6= j, and it was proved that every orthogonal set is independent. In particular, it was observed that
the expansion of a vector as a linear combination of orthogonal basis vectors is easy to obtain because
formulas exist for the coefficients. Hence the orthogonal bases are the “nice” bases, and much of this
chapter is devoted to extending results about bases to orthogonal bases. This leads to some very powerful
methods and theorems. Our first task is to show that every subspace of Rn has an orthogonal basis.

8.1 Orthogonal Complements and Projections

If {v1, . . . , vm} is linearly independent in a general vector space, and if vm+1 is not in span{v1, . . . , vm},
then {v1, . . . , vm, vm+1} is independent (Lemma 6.4.1). Here is the analog for orthogonal sets in Rn.

Lemma 8.1.1: Orthogonal Lemma

Let {f1, f2, . . . , fm} be an orthogonal set in Rn. Given x in Rn, write

fm+1 = x− x·f1
‖f1‖2 f1− x·f2

‖f2‖2 f2−·· ·− x·fm

‖fm‖2 fm

Then:

1. fm+1 · fk = 0 for k = 1, 2, . . . , m.

2. If x is not in span{f1, . . . , fm}, then fm+1 6= 0 and {f1, . . . , fm, fm+1} is an orthogonal set.

Proof. For convenience, write ti = (x · fi)/‖fi‖2 for each i. Given 1≤ k ≤ m:

fm+1 · fk = (x− t1f1−·· ·− tkfk−·· ·− tmfm) · fk

= x · fk− t1(f1 · fk)−·· ·− tk(fk · fk)−·· ·− tm(fm · fk)

= x · fk− tk‖fk‖2

= 0

This proves (1), and (2) follows because fm+1 6= 0 if x is not in span{f1, . . . , fm}.

The orthogonal lemma has three important consequences for Rn. The first is an extension for orthog-
onal sets of the fundamental fact that any independent set is part of a basis (Theorem 6.4.1).
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416 Orthogonality

Theorem 8.1.1

Let U be a subspace of Rn.

1. Every orthogonal subset {f1, . . . , fm} in U is a subset of an orthogonal basis of U .

2. U has an orthogonal basis.

Proof.

1. If span{f1, . . . , fm}=U , it is already a basis. Otherwise, there exists x in U outside span{f1, . . . , fm}.
If fm+1 is as given in the orthogonal lemma, then fm+1 is in U and {f1, . . . , fm, fm+1} is orthogonal.
If span{f1, . . . , fm, fm+1}=U , we are done. Otherwise, the process continues to create larger and
larger orthogonal subsets of U . They are all independent by Theorem 5.3.5, so we have a basis when
we reach a subset containing dim U vectors.

2. If U = {0}, the empty basis is orthogonal. Otherwise, if f 6= 0 is in U , then {f} is orthogonal, so (2)
follows from (1).

We can improve upon (2) of Theorem 8.1.1. In fact, the second consequence of the orthogonal lemma
is a procedure by which any basis {x1, . . . , xm} of a subspace U of Rn can be systematically modified to
yield an orthogonal basis {f1, . . . , fm} of U . The fi are constructed one at a time from the xi.

To start the process, take f1 = x1. Then x2 is not in span{f1} because {x1, x2} is independent, so take

f2 = x2− x2·f1
‖f1‖2 f1

Thus {f1, f2} is orthogonal by Lemma 8.1.1. Moreover, span{f1, f2} = span{x1, x2} (verify), so x3 is
not in span{f1, f2}. Hence {f1, f2, f3} is orthogonal where

f3 = x3− x3·f1
‖f1‖2 f1− x3·f2

‖f2‖2 f2

Again, span{f1, f2, f3} = span{x1, x2, x3}, so x4 is not in span{f1, f2, f3} and the process continues.
At the mth iteration we construct an orthogonal set {f1, . . . , fm} such that

span{f1, f2, . . . , fm}= span{x1, x2, . . . , xm}=U

Hence {f1, f2, . . . , fm} is the desired orthogonal basis of U . The procedure can be summarized as follows.
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f2
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span{f1, f2}

Gram-Schmidt

0

f3

f2

f1
span{f1, f2}

Theorem 8.1.2: Gram-Schmidt Orthogonalization Algorithm1

If {x1, x2, . . . , xm} is any basis of a subspace U of Rn, construct
f1, f2, . . . , fm in U successively as follows:

f1 = x1

f2 = x2− x2·f1
‖f1‖2 f1

f3 = x3− x3·f1
‖f1‖2 f1− x3·f2

‖f2‖2 f2

...
fk = xk− xk·f1

‖f1‖2 f1− xk·f2
‖f2‖2 f2−·· ·− xk·fk−1

‖fk−1‖2 fk−1

for each k = 2, 3, . . . , m. Then

1. {f1, f2, . . . , fm} is an orthogonal basis of U .

2. span{f1, f2, . . . , fk}= span{x1, x2, . . . , xk} for each
k = 1, 2, . . . , m.

The process (for k = 3) is depicted in the diagrams. Of course, the algorithm converts any basis of Rn

itself into an orthogonal basis.

Example 8.1.1

Find an orthogonal basis of the row space of A =




1 1 −1 −1
3 2 0 1
1 0 1 0


.

Solution. Let x1, x2, x3 denote the rows of A and observe that {x1, x2, x3} is linearly independent.
Take f1 = x1. The algorithm gives

f2 = x2− x2·f1
‖f1‖2 f1 = (3, 2, 0, 1)− 4

4(1, 1, −1, −1) = (2, 1, 1, 2)

f3 = x3− x3·f1
‖f1‖2 f1− x3·f2

‖f2‖2 f2 = x3− 0
4 f1− 3

10f2 =
1
10(4, −3, 7, −6)

Hence {(1, 1, −1, −1), (2, 1, 1, 2), 1
10(4, −3, 7, −6)} is the orthogonal basis provided by the

algorithm. In hand calculations it may be convenient to eliminate fractions (see the Remark
below), so {(1, 1, −1, −1), (2, 1, 1, 2), (4, −3, 7, −6)} is also an orthogonal basis for row A.

1Erhardt Schmidt (1876–1959) was a German mathematician who studied under the great David Hilbert and later developed
the theory of Hilbert spaces. He first described the present algorithm in 1907. Jörgen Pederson Gram (1850–1916) was a Danish
actuary.
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Remark

Observe that the vector x·fi

‖fi‖2 fi is unchanged if a nonzero scalar multiple of fi is used in place of fi. Hence,
if a newly constructed fi is multiplied by a nonzero scalar at some stage of the Gram-Schmidt algorithm,
the subsequent fs will be unchanged. This is useful in actual calculations.

Projections

x

p

x−p

0

U

Suppose a point x and a plane U through the origin in R3 are given, and
we want to find the point p in the plane that is closest to x. Our geometric
intuition assures us that such a point p exists. In fact (see the diagram), p

must be chosen in such a way that x−p is perpendicular to the plane.

Now we make two observations: first, the plane U is a subspace of R3

(because U contains the origin); and second, that the condition that x−p

is perpendicular to the plane U means that x−p is orthogonal to every vector in U . In these terms the
whole discussion makes sense in Rn. Furthermore, the orthogonal lemma provides exactly what is needed
to find p in this more general setting.

Definition 8.1 Orthogonal Complement of a Subspace of Rn

If U is a subspace of Rn, define the orthogonal complement U⊥ of U (pronounced “U -perp”) by

U⊥ = {x in Rn | x ·y = 0 for all y in U}

The following lemma collects some useful properties of the orthogonal complement; the proof of (1)
and (2) is left as Exercise 8.1.6.

Lemma 8.1.2

Let U be a subspace of Rn.

1. U⊥ is a subspace of Rn.

2. {0}⊥ = Rn and (Rn)⊥ = {0}.

3. If U = span{x1, x2, . . . , xk}, then U⊥ = {x in Rn | x ·xi = 0 for i = 1, 2, . . . , k}.

Proof.
3. Let U = span{x1, x2, . . . , xk}; we must show that U⊥ = {x | x · xi = 0 for each i}. If x is in U⊥

then x ·xi = 0 for all i because each xi is in U . Conversely, suppose that x ·xi = 0 for all i; we must
show that x is in U⊥, that is, x ·y = 0 for each y in U . Write y = r1x1+r2x2+ · · ·+rkxk, where each
ri is in R. Then, using Theorem 5.3.1,

x ·y = r1(x ·x1)+ r2(x ·x2)+ · · ·+ rk(x ·xk) = r10+ r20+ · · ·+ rk0 = 0

as required.
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Example 8.1.2

Find U⊥ if U = span{(1, −1, 2, 0), (1, 0, −2, 3)} in R4.

Solution. By Lemma 8.1.2, x = (x, y, z, w) is in U⊥ if and only if it is orthogonal to both
(1, −1, 2, 0) and (1, 0, −2, 3); that is,

x − y + 2z = 0
x − 2z + 3w = 0

Gaussian elimination gives U⊥ = span{(2, 4, 1, 0), (3, 3, 0, −1)}.

x

0

p

d

U

Now consider vectors x and d 6= 0 in R3. The projection p = projd x

of x on d was defined in Section 4.2 as in the diagram.

The following formula for p was derived in Theorem 4.2.4

p = projd x =
(

x·d
‖d‖2

)
d

where it is shown that x−p is orthogonal to d. Now observe that the line
U =Rd = {td | t ∈R} is a subspace of R3, that {d} is an orthogonal basis

of U , and that p ∈U and x−p ∈U⊥ (by Theorem 4.2.4).

In this form, this makes sense for any vector x in Rn and any subspace U of Rn, so we generalize it
as follows. If {f1, f2, . . . , fm} is an orthogonal basis of U , we define the projection p of x on U by the
formula

p =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f2 + · · ·+

(
x·fm

‖fm‖2

)
fm (8.1)

Then p ∈ U and (by the orthogonal lemma) x− p ∈ U⊥, so it looks like we have a generalization of
Theorem 4.2.4.

However there is a potential problem: the formula (8.1) for p must be shown to be independent of the
choice of the orthogonal basis {f1, f2, . . . , fm}. To verify this, suppose that {f′1, f′2, . . . , f′m} is another
orthogonal basis of U , and write

p′ =
(

x·f′1
‖f′1‖2

)
f′1 +

(
x·f′2
‖f′2‖2

)
f′2 + · · ·+

(
x·f′m
‖f′m‖2

)
f′m

As before, p′ ∈U and x−p′ ∈U⊥, and we must show that p′ = p. To see this, write the vector p−p′ as
follows:

p−p′ = (x−p′)− (x−p)

This vector is in U (because p and p′ are in U ) and it is in U⊥ (because x−p′ and x−p are in U⊥), and
so it must be zero (it is orthogonal to itself!). This means p′ = p as desired.

Hence, the vector p in equation (8.1) depends only on x and the subspace U , and not on the choice
of orthogonal basis {f1, . . . , fm} of U used to compute it. Thus, we are entitled to make the following
definition:
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Definition 8.2 Projection onto a Subspace of Rn

Let U be a subspace of Rn with orthogonal basis {f1, f2, . . . , fm}. If x is in Rn, the vector

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 + · · ·+ x·fm

‖fm‖2 fm

is called the orthogonal projection of x on U . For the zero subspace U = {0}, we define

proj{0} x = 0

The preceding discussion proves (1) of the following theorem.

Theorem 8.1.3: Projection Theorem

If U is a subspace of Rn and x is in Rn, write p = projU x. Then:

1. p is in U and x−p is in U⊥.

2. p is the vector in U closest to x in the sense that

‖x−p‖< ‖x−y‖ for all y ∈U , y 6= p

Proof.

1. This is proved in the preceding discussion (it is clear if U = {0}).

2. Write x−y = (x−p)+(p−y). Then p−y is in U and so is orthogonal to x−p by (1). Hence, the
Pythagorean theorem gives

‖x−y‖2 = ‖x−p‖2 +‖p−y‖2 > ‖x−p‖2

because p−y 6= 0. This gives (2).

Example 8.1.3

Let U = span{x1, x2} in R4 where x1 = (1, 1, 0, 1) and x2 = (0, 1, 1, 2). If x = (3, −1, 0, 2),
find the vector in U closest to x and express x as the sum of a vector in U and a vector orthogonal
to U .

Solution. {x1, x2} is independent but not orthogonal. The Gram-Schmidt process gives an
orthogonal basis {f1, f2} of U where f1 = x1 = (1, 1, 0, 1) and

f2 = x2− x2·f1
‖f1‖2 f1 = x2− 3

3f1 = (−1, 0, 1, 1)

Hence, we can compute the projection using {f1, f2}:

p = projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =

4
3 f1 +

−1
3 f2 =

1
3

[
5 4 −1 3

]
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Thus, p is the vector in U closest to x, and x−p = 1
3(4, −7, 1, 3) is orthogonal to every vector in

U . (This can be verified by checking that it is orthogonal to the generators x1 and x2 of U .) The
required decomposition of x is thus

x = p+(x−p) = 1
3(5, 4, −1, 3)+ 1

3(4, −7, 1, 3)

Example 8.1.4

Find the point in the plane with equation 2x+ y− z = 0 that is closest to the point (2, −1, −3).

Solution. We write R3 as rows. The plane is the subspace U whose points (x, y, z) satisfy
z = 2x+ y. Hence

U = {(s, t, 2s+ t) | s, t in R}= span{(0, 1, 1), (1, 0, 2)}

The Gram-Schmidt process produces an orthogonal basis {f1, f2} of U where f1 = (0, 1, 1) and
f2 = (1, −1, 1). Hence, the vector in U closest to x = (2, −1, −3) is

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =−2f1 +0f2 = (0, −2, −2)

Thus, the point in U closest to (2, −1, −3) is (0, −2, −2).

The next theorem shows that projection on a subspace of Rn is actually a linear operator Rn→Rn.

Theorem 8.1.4

Let U be a fixed subspace of Rn. If we define T : Rn→Rn by

T (x) = projU x for all x in Rn

1. T is a linear operator.

2. im T =U and ker T =U⊥.

3. dim U + dim U⊥ = n.

Proof. If U = {0}, then U⊥ = Rn, and so T (x) = proj{0} x = 0 for all x. Thus T = 0 is the zero (linear)
operator, so (1), (2), and (3) hold. Hence assume that U 6= {0}.

1. If {f1, f2, . . . , fm} is an orthonormal basis of U , then

T (x) = (x · f1)f1 +(x · f2)f2 + · · ·+(x · fm)fm for all x in Rn (8.2)

by the definition of the projection. Thus T is linear because

(x+y) · fi = x · fi +y · fi and (rx) · fi = r(x · fi) for each i
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2. We have im T ⊆U by (8.2) because each fi is in U . But if x is in U , then x = T (x) by (8.2) and the
expansion theorem applied to the space U . This shows that U ⊆ im T , so im T =U .

Now suppose that x is in U⊥. Then x · fi = 0 for each i (again because each fi is in U ) so x is in
ker T by (8.2). Hence U⊥ ⊆ ker T . On the other hand, Theorem 8.1.3 shows that x−T (x) is in U⊥

for all x in Rn, and it follows that ker T ⊆U⊥. Hence ker T =U⊥, proving (2).

3. This follows from (1), (2), and the dimension theorem (Theorem 7.2.4).

Exercises for 8.1

Exercise 8.1.1 In each case, use the Gram-Schmidt al-
gorithm to convert the given basis B of V into an orthog-
onal basis.

a. V =R2, B = {(1, −1), (2, 1)}

b. V =R2, B = {(2, 1), (1, 2)}

c. V =R3, B = {(1, −1, 1), (1, 0, 1), (1, 1, 2)}

d. V =R3, B = {(0, 1, 1), (1, 1, 1), (1, −2, 2)}

Exercise 8.1.2 In each case, write x as the sum of a
vector in U and a vector in U⊥.

a. x = (1, 5, 7), U = span{(1, −2, 3), (−1, 1, 1)}

b. x = (2, 1, 6), U = span{(3, −1, 2), (2, 0, −3)}

c. x = (3, 1, 5, 9),
U = span{(1, 0, 1, 1), (0, 1, −1, 1), (−2, 0, 1, 1)}

d. x = (2, 0, 1, 6),
U = span{(1, 1, 1, 1), (1, 1, −1, −1), (1, −1, 1, −1)}

e. x = (a, b, c, d),
U = span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}

f. x = (a, b, c, d),
U = span{(1, −1, 2, 0), (−1, 1, 1, 1)}

Exercise 8.1.3 Let x = (1, −2, 1, 6) in R4, and let
U = span{(2, 1, 3, −4), (1, 2, 0, 1)}.

a. Compute projU x.

b. Show that {(1, 0, 2, −3), (4, 7, 1, 2)} is another
orthogonal basis of U .

c. Use the basis in part (b) to compute projU x.

Exercise 8.1.4 In each case, use the Gram-Schmidt al-
gorithm to find an orthogonal basis of the subspace U ,
and find the vector in U closest to x.

a. U = span{(1, 1, 1), (0, 1, 1)}, x = (−1, 2, 1)

b. U = span{(1, −1, 0), (−1, 0, 1)}, x = (2, 1, 0)

c. U = span{(1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 0, 0)},
x = (2, 0, −1, 3)

d. U = span{(1, −1, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1)},
x = (2, 0, 3, 1)

Exercise 8.1.5 Let U = span{v1, v2, . . . , vk}, vi in Rn,
and let A be the k×n matrix with the vi as rows.

a. Show that U⊥ = {x | x in Rn, AxT = 0}.

b. Use part (a) to find U⊥ if
U = span{(1, −1, 2, 1), (1, 0, −1, 1)}.

Exercise 8.1.6

a. Prove part 1 of Lemma 8.1.2.

b. Prove part 2 of Lemma 8.1.2.
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Exercise 8.1.7 Let U be a subspace of Rn. If x in Rn

can be written in any way at all as x = p+q with p in U

and q in U⊥, show that necessarily p = projU x.

Exercise 8.1.8 Let U be a subspace of Rn and let x be
a vector in Rn. Using Exercise 8.1.7, or otherwise, show
that x is in U if and only if x = projU x.

Exercise 8.1.9 Let U be a subspace of Rn.

a. Show that U⊥ = Rn if and only if U = {0}.

b. Show that U⊥ = {0} if and only if U =Rn.

Exercise 8.1.10 If U is a subspace of Rn, show that
projU x = x for all x in U .

Exercise 8.1.11 If U is a subspace of Rn, show that
x = projU x+ projU⊥ x for all x in Rn.

Exercise 8.1.12 If {f1, . . . , fn} is an orthogonal basis of
Rn and U = span {f1, . . . , fm}, show that
U⊥ = span {fm+1, . . . , fn}.
Exercise 8.1.13 If U is a subspace of Rn, show that
U⊥⊥ = U . [Hint: Show that U ⊆ U⊥⊥, then use The-
orem 8.1.4 (3) twice.]

Exercise 8.1.14 If U is a subspace of Rn, show how to
find an n×n matrix A such that U = {x | Ax = 0}. [Hint:
Exercise 8.1.13.]

Exercise 8.1.15 Write Rn as rows. If A is an n×n ma-
trix, write its null space as null A = {x in Rn | AxT = 0}.
Show that:

null A = ( row A)⊥;a. null AT = (col A)⊥.b.

Exercise 8.1.16 If U and W are subspaces, show that
(U +W )⊥ =U⊥∩W⊥. [See Exercise 5.1.22.]

Exercise 8.1.17 Think of Rn as consisting of rows.

a. Let E be an n×n matrix, and let
U = {xE | x in Rn}. Show that the following are
equivalent.

i. E2 = E = ET (E is a projection matrix).

ii. (x−xE) · (yE) = 0 for all x and y in Rn.

iii. projU x = xE for all x in Rn.

[Hint: For (ii) implies (iii): Write x = xE +
(x− xE) and use the uniqueness argument
preceding the definition of projU x. For (iii)
implies (ii): x−xE is in U⊥ for all x in Rn.]

b. If E is a projection matrix, show that I−E is also
a projection matrix.

c. If EF = 0 = FE and E and F are projection ma-
trices, show that E +F is also a projection matrix.

d. If A is m× n and AAT is invertible, show that
E = AT (AAT )−1A is a projection matrix.

Exercise 8.1.18 Let A be an n×n matrix of rank r. Show
that there is an invertible n×n matrix U such that UA is a
row-echelon matrix with the property that the first r rows
are orthogonal. [Hint: Let R be the row-echelon form
of A, and use the Gram-Schmidt process on the nonzero
rows of R from the bottom up. Use Lemma 2.4.1.]

Exercise 8.1.19 Let A be an (n−1)×n matrix with rows
x1, x2, . . . , xn−1 and let Ai denote the
(n−1)× (n−1) matrix obtained from A by deleting col-
umn i. Define the vector y in Rn by

y =
[

det A1 − det A2 det A3 · · · (−1)n+1 det An

]

Show that:

a. xi · y = 0 for all i = 1, 2, . . . , n− 1. [Hint: Write

Bi =

[
xi

A

]
and show that det Bi = 0.]

b. y 6= 0 if and only if {x1, x2, . . . , xn−1} is linearly
independent. [Hint: If some det Ai 6= 0, the rows
of Ai are linearly independent. Conversely, if the
xi are independent, consider A =UR where R is in
reduced row-echelon form.]

c. If {x1, x2, . . . , xn−1} is linearly independent, use
Theorem 8.1.3(3) to show that all solutions to the
system of n−1 homogeneous equations

AxT = 0

are given by ty, t a parameter.
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8.2 Orthogonal Diagonalization

Recall (Theorem 5.5.3) that an n×n matrix A is diagonalizable if and only if it has n linearly independent
eigenvectors. Moreover, the matrix P with these eigenvectors as columns is a diagonalizing matrix for A,
that is

P−1AP is diagonal.

As we have seen, the really nice bases of Rn are the orthogonal ones, so a natural question is: which n×n

matrices have an orthogonal basis of eigenvectors? These turn out to be precisely the symmetric matrices,
and this is the main result of this section.

Before proceeding, recall that an orthogonal set of vectors is called orthonormal if ‖v‖ = 1 for each
vector v in the set, and that any orthogonal set {v1, v2, . . . , vk} can be “normalized”, that is converted into
an orthonormal set { 1

‖v1‖v1, 1
‖v2‖v2, . . . , 1

‖vk‖vk}. In particular, if a matrix A has n orthogonal eigenvectors,
they can (by normalizing) be taken to be orthonormal. The corresponding diagonalizing matrix P has
orthonormal columns, and such matrices are very easy to invert.

Theorem 8.2.1

The following conditions are equivalent for an n×n matrix P.

1. P is invertible and P−1 = PT .

2. The rows of P are orthonormal.

3. The columns of P are orthonormal.

Proof. First recall that condition (1) is equivalent to PPT = I by Corollary 2.4.1 of Theorem 2.4.5. Let
x1, x2, . . . , xn denote the rows of P. Then xT

j is the jth column of PT , so the (i, j)-entry of PPT is xi ·x j.
Thus PPT = I means that xi · x j = 0 if i 6= j and xi · x j = 1 if i = j. Hence condition (1) is equivalent to
(2). The proof of the equivalence of (1) and (3) is similar.

Definition 8.3 Orthogonal Matrices

An n×n matrix P is called an orthogonal matrix2if it satisfies one (and hence all) of the
conditions in Theorem 8.2.1.

Example 8.2.1

The rotation matrix

[
cosθ −sinθ
sinθ cosθ

]
is orthogonal for any angle θ .

These orthogonal matrices have the virtue that they are easy to invert—simply take the transpose. But
they have many other important properties as well. If T : Rn → Rn is a linear operator, we will prove

2In view of (2) and (3) of Theorem 8.2.1, orthonormal matrix might be a better name. But orthogonal matrix is standard.
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(Theorem 10.4.3) that T is distance preserving if and only if its matrix is orthogonal. In particular, the
matrices of rotations and reflections about the origin in R2 and R3 are all orthogonal (see Example 8.2.1).

It is not enough that the rows of a matrix A are merely orthogonal for A to be an orthogonal matrix.
Here is an example.

Example 8.2.2

The matrix




2 1 1
−1 1 1

0 −1 1


 has orthogonal rows but the columns are not orthogonal. However, if

the rows are normalized, the resulting matrix




2√
6

1√
6

1√
6

−1√
3

1√
3

1√
3

0 −1√
2

1√
2


 is orthogonal (so the columns are

now orthonormal as the reader can verify).

Example 8.2.3

If P and Q are orthogonal matrices, then PQ is also orthogonal, as is P−1 = PT .

Solution. P and Q are invertible, so PQ is also invertible and

(PQ)−1 = Q−1P−1 = QT PT = (PQ)T

Hence PQ is orthogonal. Similarly,

(P−1)−1 = P = (PT )T = (P−1)T

shows that P−1 is orthogonal.

Definition 8.4 Orthogonally Diagonalizable Matrices

An n×n matrix A is said to be orthogonally diagonalizable when an orthogonal matrix P can be
found such that P−1AP = PT AP is diagonal.

This condition turns out to characterize the symmetric matrices.

Theorem 8.2.2: Principal Axes Theorem

The following conditions are equivalent for an n×n matrix A.

1. A has an orthonormal set of n eigenvectors.

2. A is orthogonally diagonalizable.

3. A is symmetric.
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Proof. (1)⇔ (2). Given (1), let x1, x2, . . . , xn be orthonormal eigenvectors of A. Then P=
[

x1 x2 . . . xn

]

is orthogonal, and P−1AP is diagonal by Theorem 3.3.4. This proves (2). Conversely, given (2) let P−1AP

be diagonal where P is orthogonal. If x1, x2, . . . , xn are the columns of P then {x1, x2, . . . , xn} is an
orthonormal basis of Rn that consists of eigenvectors of A by Theorem 3.3.4. This proves (1).

(2) ⇒ (3). If PT AP = D is diagonal, where P−1 = PT , then A = PDPT . But DT = D, so this gives
AT = PT T DT PT = PDPT = A.

(3) ⇒ (2). If A is an n× n symmetric matrix, we proceed by induction on n. If n = 1, A is already
diagonal. If n > 1, assume that (3)⇒ (2) for (n−1)× (n−1) symmetric matrices. By Theorem 5.5.7 let
λ1 be a (real) eigenvalue of A, and let Ax1 = λ1x1, where ‖x1‖ = 1. Use the Gram-Schmidt algorithm to
find an orthonormal basis {x1, x2, . . . , xn} for Rn. Let P1 =

[
x1 x2 . . . xn

]
, so P1 is an orthogonal

matrix and PT
1 AP1 =

[
λ1 B

0 A1

]
in block form by Lemma 5.5.2. But PT

1 AP1 is symmetric (A is), so it

follows that B = 0 and A1 is symmetric. Then, by induction, there exists an (n−1)× (n−1) orthogonal

matrix Q such that QT A1Q = D1 is diagonal. Observe that P2 =

[
1 0
0 Q

]
is orthogonal, and compute:

(P1P2)
T A(P1P2) = PT

2 (PT
1 AP1)P2

=

[
1 0
0 QT

][
λ1 0
0 A1

][
1 0
0 Q

]

=

[
λ1 0
0 D1

]

is diagonal. Because P1P2 is orthogonal, this proves (2).

A set of orthonormal eigenvectors of a symmetric matrix A is called a set of principal axes for A. The
name comes from geometry, and this is discussed in Section 8.9. Because the eigenvalues of a (real)
symmetric matrix are real, Theorem 8.2.2 is also called the real spectral theorem, and the set of distinct
eigenvalues is called the spectrum of the matrix. In full generality, the spectral theorem is a similar result
for matrices with complex entries (Theorem 8.7.8).

Example 8.2.4

Find an orthogonal matrix P such that P−1AP is diagonal, where A =




1 0 −1
0 1 2
−1 2 5


.

Solution. The characteristic polynomial of A is (adding twice row 1 to row 2):

cA(x) = det




x−1 0 1
0 x−1 −2
1 −2 x−5


= x(x−1)(x−6)

Thus the eigenvalues are λ = 0, 1, and 6, and corresponding eigenvectors are

x1 =




1
−2

1


 x2 =




2
1
0


 x3 =



−1

2
5






8.2. Orthogonal Diagonalization 427

respectively. Moreover, by what appears to be remarkably good luck, these eigenvectors are
orthogonal. We have ‖x1‖2 = 6, ‖x2‖2 = 5, and ‖x3‖2 = 30, so

P =
[

1√
6
x1

1√
5
x2

1√
30

x3

]
= 1√

30




√
5 2

√
6 −1

−2
√

5
√

6 2√
5 0 5




is an orthogonal matrix. Thus P−1 = PT and

PT AP =




0 0 0
0 1 0
0 0 6




by the diagonalization algorithm.

Actually, the fact that the eigenvectors in Example 8.2.4 are orthogonal is no coincidence. Theo-
rem 5.5.4 guarantees they are linearly independent (they correspond to distinct eigenvalues); the fact that
the matrix is symmetric implies that they are orthogonal. To prove this we need the following useful fact
about symmetric matrices.

Theorem 8.2.3

If A is an n×n symmetric matrix, then

(Ax) ·y = x · (Ay)

for all columns x and y in Rn.3

Proof. Recall that x ·y = xT y for all columns x and y. Because AT = A, we get

(Ax) ·y = (Ax)T y = xT AT y = xT Ay = x · (Ay)

Theorem 8.2.4

If A is a symmetric matrix, then eigenvectors of A corresponding to distinct eigenvalues are
orthogonal.

Proof. Let Ax = λx and Ay = µy, where λ 6= µ . Using Theorem 8.2.3, we compute

λ (x ·y) = (λx) ·y = (Ax) ·y = x · (Ay) = x · (µy) = µ(x ·y)

Hence (λ −µ)(x ·y) = 0, and so x ·y = 0 because λ 6= µ .

3The converse also holds (Exercise 8.2.15).
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Now the procedure for diagonalizing a symmetric n×n matrix is clear. Find the distinct eigenvalues
(all real by Theorem 5.5.7) and find orthonormal bases for each eigenspace (the Gram-Schmidt algorithm
may be needed). Then the set of all these basis vectors is orthonormal (by Theorem 8.2.4) and contains n

vectors. Here is an example.

Example 8.2.5

Orthogonally diagonalize the symmetric matrix A =




8 −2 2
−2 5 4

2 4 5


.

Solution. The characteristic polynomial is

cA(x) = det




x−8 2 −2
2 x−5 −4
−2 −4 x−5


= x(x−9)2

Hence the distinct eigenvalues are 0 and 9 of multiplicities 1 and 2, respectively, so dim (E0) = 1
and dim (E9) = 2 by Theorem 5.5.6 (A is diagonalizable, being symmetric). Gaussian elimination
gives

E0(A) = span{x1}, x1 =




1
2
−2


 , and E9(A) = span







−2

1
0


 ,




2
0
1







The eigenvectors in E9 are both orthogonal to x1 as Theorem 8.2.4 guarantees, but not to each
other. However, the Gram-Schmidt process yields an orthogonal basis

{x2, x3} of E9(A) where x2 =



−2

1
0


 and x3 =




2
4
5




Normalizing gives orthonormal vectors {1
3x1, 1√

5
x2, 1

3
√

5
x3}, so

P =
[

1
3x1

1√
5
x2

1
3
√

5
x3

]
= 1

3
√

5




√
5 −6 2

2
√

5 3 4
−2
√

5 0 5




is an orthogonal matrix such that P−1AP is diagonal.
It is worth noting that other, more convenient, diagonalizing matrices P exist. For example,

y2 =




2
1
2


 and y3 =



−2

2
1


 lie in E9(A) and they are orthogonal. Moreover, they both have

norm 3 (as does x1), so

Q =
[

1
3x1

1
3y2

1
3y3

]
= 1

3




1 2 −2
2 1 2
−2 2 1




is a nicer orthogonal matrix with the property that Q−1AQ is diagonal.
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O
x1x2 = 1

x1

x2

O y2
1− y2

2 = 1

y1y2

If A is symmetric and a set of orthogonal eigenvectors of A is given,
the eigenvectors are called principal axes of A. The name comes from
geometry. An expression q= ax2

1+bx1x2+cx2
2 is called a quadratic form

in the variables x1 and x2, and the graph of the equation q = 1 is called a
conic in these variables. For example, if q = x1x2, the graph of q = 1 is
given in the first diagram.

But if we introduce new variables y1 and y2 by setting x1 = y1+y2 and
x2 = y1− y2, then q becomes q = y2

1− y2
2, a diagonal form with no cross

term y1y2 (see the second diagram). Because of this, the y1 and y2 axes
are called the principal axes for the conic (hence the name). Orthogonal
diagonalization provides a systematic method for finding principal axes.
Here is an illustration.

Example 8.2.6

Find principal axes for the quadratic form q = x2
1−4x1x2 + x2

2.

Solution. In order to utilize diagonalization, we first express q in matrix form. Observe that

q =
[

x1 x2
][ 1 −4

0 1

][
x1

x2

]

The matrix here is not symmetric, but we can remedy that by writing

q = x2
1−2x1x2−2x2x1 + x2

2

Then we have

q =
[

x1 x2
][ 1 −2
−2 1

][
x1

x2

]
= xT Ax

where x =

[
x1

x2

]
and A =

[
1 −2
−2 1

]
is symmetric. The eigenvalues of A are λ1 = 3 and

λ2 =−1, with corresponding (orthogonal) eigenvectors x1 =

[
1
−1

]
and x2 =

[
1
1

]
. Since

‖x1‖= ‖x2‖=
√

2, so

P = 1√
2

[
1 1
−1 1

]
is orthogonal and PT AP = D =

[
3 0
0 −1

]

Now define new variables

[
y1

y2

]
= y by y = PT x, equivalently x = Py (since P−1 = PT ). Hence

y1 =
1√
2
(x1− x2) and y2 =

1√
2
(x1 + x2)

In terms of y1 and y2, q takes the form

q = xT Ax = (Py)T A(Py) = yT (PT AP)y = yT Dy = 3y2
1− y2

2

Note that y = PT x is obtained from x by a counterclockwise rotation of π
4 (see Theorem 2.4.6).
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Observe that the quadratic form q in Example 8.2.6 can be diagonalized in other ways. For example

q = x2
1−4x1x2 + x2

2 = z2
1− 1

3z2
2

where z1 = x1−2x2 and z2 = 3x2. We examine this more carefully in Section 8.9.

If we are willing to replace “diagonal” by “upper triangular” in the principal axes theorem, we can
weaken the requirement that A is symmetric to insisting only that A has real eigenvalues.

Theorem 8.2.5: Triangulation Theorem

If A is an n×n matrix with n real eigenvalues, an orthogonal matrix P exists such that PT AP is
upper triangular.4

Proof. We modify the proof of Theorem 8.2.2. If Ax1 = λ1x1 where ‖x1‖= 1, let {x1, x2, . . . , xn} be an

orthonormal basis of Rn, and let P1 =
[

x1 x2 · · · xn

]
. Then P1 is orthogonal and PT

1 AP1 =

[
λ1 B

0 A1

]

in block form. By induction, let QT A1Q = T1 be upper triangular where Q is of size (n−1)× (n−1) and

orthogonal. Then P2 =

[
1 0
0 Q

]
is orthogonal, so P = P1P2 is also orthogonal and PT AP =

[
λ1 BQ

0 T1

]

is upper triangular.

The proof of Theorem 8.2.5 gives no way to construct the matrix P. However, an algorithm will be given in
Section 11.1 where an improved version of Theorem 8.2.5 is presented. In a different direction, a version
of Theorem 8.2.5 holds for an arbitrary matrix with complex entries (Schur’s theorem in Section 8.7).

As for a diagonal matrix, the eigenvalues of an upper triangular matrix are displayed along the main
diagonal. Because A and PT AP have the same determinant and trace whenever P is orthogonal, Theo-
rem 8.2.5 gives:

Corollary 8.2.1

If A is an n×n matrix with real eigenvalues λ1, λ2, . . . , λn (possibly not all distinct), then
det A = λ1λ2 . . .λn and tr A = λ1 +λ2 + · · ·+λn.

This corollary remains true even if the eigenvalues are not real (using Schur’s theorem).

Exercises for 8.2

Exercise 8.2.1 Normalize the rows to make each of the
following matrices orthogonal.

A =

[
1 1
−1 1

]
a. A =

[
3 −4
4 3

]
b.

A =

[
1 2
−4 2

]
c.

A =

[
a b

−b a

]
, (a, b) 6= (0, 0)d.

4There is also a lower triangular version.
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A =




cosθ −sinθ 0
sin θ cosθ 0

0 0 2


e.

A =




2 1 −1
1 −1 1
0 1 1


f.

A =



−1 2 2

2 −1 2
2 2 −1


g.

A =




2 6 −3
3 2 6
−6 3 2


h.

Exercise 8.2.2 If P is a triangular orthogonal matrix,
show that P is diagonal and that all diagonal entries are 1
or −1.

Exercise 8.2.3 If P is orthogonal, show that kP is or-
thogonal if and only if k = 1 or k =−1.

Exercise 8.2.4 If the first two rows of an orthogonal ma-
trix are (1

3 , 2
3 , 2

3) and (2
3 , 1

3 , −2
3 ), find all possible third

rows.

Exercise 8.2.5 For each matrix A, find an orthogonal
matrix P such that P−1AP is diagonal.

A =

[
0 1
1 0

]
a. A =

[
1 −1
−1 1

]
b.

A =




3 0 0
0 2 2
0 2 5


c. A =




3 0 7
0 5 0
7 0 3


d.

A =




1 1 0
1 1 0
0 0 2


e. A=




5 −2 −4
−2 8 −2
−4 −2 5


f.

A =




5 3 0 0
3 5 0 0
0 0 7 1
0 0 1 7


g.

A =




3 5 −1 1
5 3 1 −1
−1 1 3 5

1 −1 5 3


h.

Exercise 8.2.6 Consider A =




0 a 0
a 0 c

0 c 0


 where one

of a, c 6= 0. Show that cA(x) = x(x− k)(x+ k), where

k =
√

a2 + c2 and find an orthogonal matrix P such that
P−1AP is diagonal.

Exercise 8.2.7 Consider A =




0 0 a

0 b 0
a 0 0


. Show that

cA(x) = (x−b)(x−a)(x+a) and find an orthogonal ma-
trix P such that P−1AP is diagonal.

Exercise 8.2.8 Given A =

[
b a

a b

]
, show that

cA(x) = (x−a−b)(x+a−b) and find an orthogonal ma-
trix P such that P−1AP is diagonal.

Exercise 8.2.9 Consider A =




b 0 a

0 b 0
a 0 b


. Show that

cA(x) = (x−b)(x−b−a)(x−b+a) and find an orthog-
onal matrix P such that P−1AP is diagonal.

Exercise 8.2.10 In each case find new variables y1 and
y2 that diagonalize the quadratic form q.

q = x2
1 +6x1x2 + x2

2a. q = x2
1 +4x1x2−2x2

2b.

Exercise 8.2.11 Show that the following are equivalent
for a symmetric matrix A.

A is orthogonal.a. A2 = I.b.

All eigenvalues of A are ±1.c.

[Hint: For (b) if and only if (c), use Theorem 8.2.2.]

Exercise 8.2.12 We call matrices A and B orthogonally

similar (and write A
◦∼ B) if B = PT AP for an orthogonal

matrix P.

a. Show that A
◦∼ A for all A; A

◦∼ B⇒ B
◦∼ A; and

A
◦∼ B and B

◦∼C⇒ A
◦∼C.

b. Show that the following are equivalent for two
symmetric matrices A and B.

i. A and B are similar.

ii. A and B are orthogonally similar.

iii. A and B have the same eigenvalues.

Exercise 8.2.13 Assume that A and B are orthogonally
similar (Exercise 8.2.12).

a. If A and B are invertible, show that A−1 and B−1

are orthogonally similar.
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b. Show that A2 and B2 are orthogonally similar.

c. Show that, if A is symmetric, so is B.

Exercise 8.2.14 If A is symmetric, show that every
eigenvalue of A is nonnegative if and only if A = B2 for
some symmetric matrix B.

Exercise 8.2.15 Prove the converse of Theorem 8.2.3:

If (Ax) · y = x · (Ay) for all n-columns x and y, then
A is symmetric.

Exercise 8.2.16 Show that every eigenvalue of A is zero
if and only if A is nilpotent (Ak = 0 for some k ≥ 1).

Exercise 8.2.17 If A has real eigenvalues, show that
A = B+C where B is symmetric and C is nilpotent.
[Hint: Theorem 8.2.5.]

Exercise 8.2.18 Let P be an orthogonal matrix.

a. Show that det P = 1 or det P =−1.

b. Give 2×2 examples of P such that det P = 1 and
det P =−1.

c. If det P = −1, show that I + P has no inverse.
[Hint: PT (I +P) = (I +P)T .]

d. If P is n× n and det P 6= (−1)n, show that I−P

has no inverse.

[Hint: PT (I−P) =−(I−P)T .]

Exercise 8.2.19 We call a square matrix E a projection

matrix if E2 = E = ET . (See Exercise 8.1.17.)

a. If E is a projection matrix, show that P = I− 2E

is orthogonal and symmetric.

b. If P is orthogonal and symmetric, show that
E = 1

2(I−P) is a projection matrix.

c. If U is m× n and UTU = I (for example, a unit
column in Rn), show that E =UUT is a projection
matrix.

Exercise 8.2.20 A matrix that we obtain from the iden-
tity matrix by writing its rows in a different order is called
a permutation matrix. Show that every permutation
matrix is orthogonal.

Exercise 8.2.21 If the rows r1, . . . , rn of the n×n ma-
trix A = [ai j] are orthogonal, show that the (i, j)-entry of
A−1 is a ji

‖r j‖2 .

Exercise 8.2.22

a. Let A be an m×n matrix. Show that the following
are equivalent.

i. A has orthogonal rows.

ii. A can be factored as A = DP, where D is in-
vertible and diagonal and P has orthonormal
rows.

iii. AAT is an invertible, diagonal matrix.

b. Show that an n× n matrix A has orthogonal rows
if and only if A can be factored as A = DP, where
P is orthogonal and D is diagonal and invertible.

Exercise 8.2.23 Let A be a skew-symmetric matrix; that
is, AT =−A. Assume that A is an n×n matrix.

a. Show that I + A is invertible. [Hint: By Theo-
rem 2.4.5, it suffices to show that (I + A)x = 0,
x in Rn, implies x = 0. Compute x · x = xT x, and
use the fact that Ax =−x and A2x = x.]

b. Show that P = (I−A)(I+A)−1 is orthogonal.

c. Show that every orthogonal matrix P such that
I +P is invertible arises as in part (b) from some
skew-symmetric matrix A.
[Hint: Solve P = (I−A)(I+A)−1 for A.]

Exercise 8.2.24 Show that the following are equivalent
for an n×n matrix P.

a. P is orthogonal.

b. ‖Px‖= ‖x‖ for all columns x in Rn.

c. ‖Px−Py‖ = ‖x− y‖ for all columns x and y in
Rn.

d. (Px) · (Py) = x ·y for all columns x and y in Rn.

[Hints: For (c)⇒ (d), see Exercise 5.3.14(a). For
(d) ⇒ (a), show that column i of P equals Pei,
where ei is column i of the identity matrix.]
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Exercise 8.2.25 Show that every 2 × 2 orthog-

onal matrix has the form

[
cos θ −sinθ

sinθ cosθ

]
or

[
cos θ sin θ

sinθ −cosθ

]
for some angle θ .

[Hint: If a2 + b2 = 1, then a = cos θ and b = sinθ for
some angle θ .]

Exercise 8.2.26 Use Theorem 8.2.5 to show that every
symmetric matrix is orthogonally diagonalizable.

8.3 Positive Definite Matrices

All the eigenvalues of any symmetric matrix are real; this section is about the case in which the eigenvalues
are positive. These matrices, which arise whenever optimization (maximum and minimum) problems are
encountered, have countless applications throughout science and engineering. They also arise in statistics
(for example, in factor analysis used in the social sciences) and in geometry (see Section 8.9). We will
encounter them again in Chapter 10 when describing all inner products in Rn.

Definition 8.5 Positive Definite Matrices

A square matrix is called positive definite if it is symmetric and all its eigenvalues λ are positive,
that is λ > 0.

Because these matrices are symmetric, the principal axes theorem plays a central role in the theory.

Theorem 8.3.1

If A is positive definite, then it is invertible and det A > 0.

Proof. If A is n×n and the eigenvalues are λ1, λ2, . . . , λn, then det A = λ1λ2 · · ·λn > 0 by the principal
axes theorem (or the corollary to Theorem 8.2.5).

If x is a column in Rn and A is any real n×n matrix, we view the 1×1 matrix xT Ax as a real number.
With this convention, we have the following characterization of positive definite matrices.

Theorem 8.3.2

A symmetric matrix A is positive definite if and only if xT Ax > 0 for every column x 6= 0 in Rn.

Proof. A is symmetric so, by the principal axes theorem, let PT AP = D = diag (λ1, λ2, . . . , λn) where

P−1 =PT and the λi are the eigenvalues of A. Given a column x inRn, write y=PT x=
[

y1 y2 . . . yn

]T
.

Then
xT Ax = xT (PDPT )x = yT Dy = λ1y2

1 +λ2y2
2 + · · ·+λny2

n (8.3)

If A is positive definite and x 6= 0, then xT Ax > 0 by (8.3) because some y j 6= 0 and every λi > 0. Con-
versely, if xT Ax > 0 whenever x 6= 0, let x = Pe j 6= 0 where e j is column j of In. Then y = e j, so (8.3)
reads λ j = xT Ax > 0.
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Note that Theorem 8.3.2 shows that the positive definite matrices are exactly the symmetric matrices A for
which the quadratic form q = xT Ax takes only positive values.

Example 8.3.1

If U is any invertible n×n matrix, show that A =UTU is positive definite.

Solution. If x is in Rn and x 6= 0, then

xT Ax = xT (UTU)x = (Ux)T (Ux) = ‖Ux‖2 > 0

because Ux 6= 0 (U is invertible). Hence Theorem 8.3.2 applies.

It is remarkable that the converse to Example 8.3.1 is also true. In fact every positive definite matrix
A can be factored as A =UTU where U is an upper triangular matrix with positive elements on the main
diagonal. However, before verifying this, we introduce another concept that is central to any discussion of
positive definite matrices.

If A is any n×n matrix, let (r)A denote the r× r submatrix in the upper left corner of A; that is, (r)A is
the matrix obtained from A by deleting the last n−r rows and columns. The matrices (1)A, (2)A, (3)A, . . . ,
(n)A = A are called the principal submatrices of A.

Example 8.3.2

If A =




10 5 2
5 3 2
2 2 3


 then (1)A = [10], (2)A =

[
10 5

5 3

]
and (3)A = A.

Lemma 8.3.1

If A is positive definite, so is each principal submatrix (r)A for r = 1, 2, . . . , n.

Proof. Write A =

[
(r)A P

Q R

]
in block form. If y 6= 0 in Rr, write x =

[
y

0

]
in Rn.

Then x 6= 0, so the fact that A is positive definite gives

0 < xT Ax =
[

yT 0
][ (r)A P

Q R

][
y

0

]
= yT ((r)A)y

This shows that (r)A is positive definite by Theorem 8.3.2.5

If A is positive definite, Lemma 8.3.1 and Theorem 8.3.1 show that det ((r)A) > 0 for every r. This
proves part of the following theorem which contains the converse to Example 8.3.1, and characterizes the
positive definite matrices among the symmetric ones.

5A similar argument shows that, if B is any matrix obtained from a positive definite matrix A by deleting certain rows and
deleting the same columns, then B is also positive definite.
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Theorem 8.3.3

The following conditions are equivalent for a symmetric n×n matrix A:
1. A is positive definite.

2. det ((r)A)> 0 for each r = 1, 2, . . . , n.

3. A =UTU where U is an upper triangular matrix with positive entries on the main diagonal.

Furthermore, the factorization in (3) is unique (called the Cholesky factorization6of A).

Proof. First, (3)⇒ (1) by Example 8.3.1, and (1)⇒ (2) by Lemma 8.3.1 and Theorem 8.3.1.

(2)⇒ (3). Assume (2) and proceed by induction on n. If n = 1, then A = [a] where a > 0 by (2), so
take U = [

√
a]. If n > 1, write B =(n−1) A. Then B is symmetric and satisfies (2) so, by induction, we

have B =UTU as in (3) where U is of size (n−1)× (n−1). Then, as A is symmetric, it has block form

A =

[
B p

pT b

]
where p is a column in Rn−1 and b is in R. If we write x = (UT )−1p and c = b− xT x,

block multiplication gives

A =

[
UTU p

pT b

]
=

[
UT 0
xT 1

][
U x

0 c

]

as the reader can verify. Taking determinants and applying Theorem 3.1.5 gives det A = det (UT ) det U ·
c = c(det U)2. Hence c > 0 because det A > 0 by (2), so the above factorization can be written

A =

[
UT 0
xT

√
c

][
U x

0
√

c

]

Since U has positive diagonal entries, this proves (3).

As to the uniqueness, suppose that A = UTU = UT
1 U1 are two Cholesky factorizations. Now write

D =UU−1
1 = (UT )−1UT

1 . Then D is upper triangular, because D =UU−1
1 , and lower triangular, because

D = (UT )−1UT
1 , and so it is a diagonal matrix. Thus U = DU1 and U1 = DU , so it suffices to show that

D = I. But eliminating U1 gives U = D2U , so D2 = I because U is invertible. Since the diagonal entries
of D are positive (this is true of U and U1), it follows that D = I.

The remarkable thing is that the matrix U in the Cholesky factorization is easy to obtain from A using
row operations. The key is that Step 1 of the following algorithm is possible for any positive definite
matrix A. A proof of the algorithm is given following Example 8.3.3.

Algorithm for the Cholesky Factorization

If A is a positive definite matrix, the Cholesky factorization A =UTU can be obtained as follows:

Step 1. Carry A to an upper triangular matrix U1 with positive diagonal entries using row
operations each of which adds a multiple of a row to a lower row.

Step 2. Obtain U from U1 by dividing each row of U1 by the square root of the diagonal entry in
that row.

6Andre-Louis Cholesky (1875–1918), was a French mathematician who died in World War I. His factorization was published
in 1924 by a fellow officer.
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Example 8.3.3

Find the Cholesky factorization of A =




10 5 2
5 3 2
2 2 3


.

Solution. The matrix A is positive definite by Theorem 8.3.3 because det (1)A = 10 > 0,
det (2)A = 5 > 0, and det (3)A = det A = 3 > 0. Hence Step 1 of the algorithm is carried out as
follows:

A =




10 5 2
5 3 2
2 2 3


→




10 5 2
0 1

2 1
0 1 13

5


→




10 5 2
0 1

2 1
0 0 3

5


=U1

Now carry out Step 2 on U1 to obtain U =




√
10 5√

10
2√
10

0 1√
2

√
2

0 0
√

3√
5


.

The reader can verify that UTU = A.

Proof of the Cholesky Algorithm. If A is positive definite, let A = UTU be the Cholesky factorization,
and let D = diag (d1, . . . , dn) be the common diagonal of U and UT . Then UT D−1 is lower triangular
with ones on the diagonal (call such matrices LT-1). Hence L = (UT D−1)−1 is also LT-1, and so In→ L

by a sequence of row operations each of which adds a multiple of a row to a lower row (verify; modify
columns right to left). But then A→ LA by the same sequence of row operations (see the discussion
preceding Theorem 2.5.1). Since LA = [D(UT )−1][UTU ] = DU is upper triangular with positive entries
on the diagonal, this shows that Step 1 of the algorithm is possible.

Turning to Step 2, let A→U1 as in Step 1 so that U1 = L1A where L1 is LT-1. Since A is symmetric,
we get

L1UT
1 = L1(L1A)T = L1AT LT

1 = L1ALT
1 =U1LT

1 (8.4)

Let D1 = diag (e1, . . . , en) denote the diagonal of U1. Then (8.4) gives L1(U
T
1 D−1

1 ) =U1LT
1 D−1

1 . This is
both upper triangular (right side) and LT-1 (left side), and so must equal In. In particular, UT

1 D−1
1 = L−1

1 .
Now let D2 = diag (

√
e1, . . . ,

√
en), so that D2

2 = D1. If we write U = D−1
2 U1 we have

UTU = (UT
1 D−1

2 )(D−1
2 U1) =UT

1 (D
2
2)
−1U1 = (UT

1 D−1
1 )U1 = (L−1

1 )U1 = A

This proves Step 2 because U = D−1
2 U1 is formed by dividing each row of U1 by the square root of its

diagonal entry (verify).
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Exercises for 8.3

Exercise 8.3.1 Find the Cholesky decomposition of
each of the following matrices.

[
4 3
3 5

]
a.

[
2 −1
−1 1

]
b.




12 4 3
4 2 −1
3 −1 7


c.




20 4 5
4 2 3
5 3 5


d.

Exercise 8.3.2

a. If A is positive definite, show that Ak is positive
definite for all k ≥ 1.

b. Prove the converse to (a) when k is odd.

c. Find a symmetric matrix A such that A2 is positive
definite but A is not.

Exercise 8.3.3 Let A =

[
1 a

a b

]
. If a2 < b, show that

A is positive definite and find the Cholesky factorization.

Exercise 8.3.4 If A and B are positive definite and r > 0,
show that A+B and rA are both positive definite.

Exercise 8.3.5 If A and B are positive definite, show that[
A 0
0 B

]
is positive definite.

Exercise 8.3.6 If A is an n× n positive definite matrix
and U is an n×m matrix of rank m, show that UT AU is
positive definite.

Exercise 8.3.7 If A is positive definite, show that each
diagonal entry is positive.

Exercise 8.3.8 Let A0 be formed from A by deleting
rows 2 and 4 and deleting columns 2 and 4. If A is posi-
tive definite, show that A0 is positive definite.

Exercise 8.3.9 If A is positive definite, show that
A =CCT where C has orthogonal columns.

Exercise 8.3.10 If A is positive definite, show that
A =C2 where C is positive definite.

Exercise 8.3.11 Let A be a positive definite matrix. If a

is a real number, show that aA is positive definite if and
only if a > 0.

Exercise 8.3.12

a. Suppose an invertible matrix A can be factored in
Mnn as A = LDU where L is lower triangular with
1s on the diagonal, U is upper triangular with 1s
on the diagonal, and D is diagonal with positive
diagonal entries. Show that the factorization is
unique: If A = L1D1U1 is another such factoriza-
tion, show that L1 = L, D1 = D, and U1 =U .

b. Show that a matrix A is positive definite if and
only if A is symmetric and admits a factorization
A = LDU as in (a).

Exercise 8.3.13 Let A be positive definite and write
dr = det (r)A for each r = 1, 2, . . . , n. If U is the
upper triangular matrix obtained in step 1 of the algo-
rithm, show that the diagonal elements u11, u22, . . . , unn

of U are given by u11 = d1, u j j = d j/d j−1 if j > 1.
[Hint: If LA = U where L is lower triangular with 1s
on the diagonal, use block multiplication to show that
det (r)A = det (r)U for each r.]

8.4 QR-Factorization7

One of the main virtues of orthogonal matrices is that they can be easily inverted—the transpose is the
inverse. This fact, combined with the factorization theorem in this section, provides a useful way to
simplify many matrix calculations (for example, in least squares approximation).

7This section is not used elsewhere in the book
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Definition 8.6 QR-factorization

Let A be an m×n matrix with independent columns. A QR-factorization of A expresses it as
A = QR where Q is m×n with orthonormal columns and R is an invertible and upper triangular
matrix with positive diagonal entries.

The importance of the factorization lies in the fact that there are computer algorithms that accomplish it
with good control over round-off error, making it particularly useful in matrix calculations. The factoriza-
tion is a matrix version of the Gram-Schmidt process.

Suppose A =
[

c1 c2 · · · cn

]
is an m×n matrix with linearly independent columns c1, c2, . . . , cn.

The Gram-Schmidt algorithm can be applied to these columns to provide orthogonal columns f1, f2, . . . , fn

where f1 = c1 and
fk = ck− ck·f1

‖f1‖2 f1 +
ck·f2
‖f2‖2 f2−·· ·− ck·fk−1

‖fk−1‖2 fk−1

for each k = 2, 3, . . . , n. Now write qk =
1
‖fk‖fk for each k. Then q1, q2, . . . , qn are orthonormal columns,

and the above equation becomes

‖fk‖qk = ck− (ck ·q1)q1− (ck ·q2)q2−·· ·− (ck ·qk−1)qk−1

Using these equations, express each ck as a linear combination of the qi:

c1 = ‖f1‖q1
c2 = (c2 ·q1)q1 +‖f2‖q2
c3 = (c3 ·q1)q1 +(c3 ·q2)q2 +‖f3‖q3
...

...
cn = (cn ·q1)q1 +(cn ·q2)q2 +(cn ·q3)q3 + · · ·+‖fn‖qn

These equations have a matrix form that gives the required factorization:

A =
[

c1 c2 c3 · · · cn

]

=
[

q1 q2 q3 · · · qn

]




‖f1‖ c2 ·q1 c3 ·q1 · · · cn ·q1
0 ‖f2‖ c3 ·q2 · · · cn ·q2
0 0 ‖f3‖ · · · cn ·q3
...

...
...

. . .
...

0 0 0 · · · ‖fn‖




(8.5)

Here the first factor Q =
[

q1 q2 q3 · · · qn

]
has orthonormal columns, and the second factor is an

n×n upper triangular matrix R with positive diagonal entries (and so is invertible). We record this in the
following theorem.

Theorem 8.4.1: QR-Factorization

Every m×n matrix A with linearly independent columns has a QR-factorization A = QR where Q

has orthonormal columns and R is upper triangular with positive diagonal entries.

The matrices Q and R in Theorem 8.4.1 are uniquely determined by A; we return to this below.
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Example 8.4.1

Find the QR-factorization of A =




1 1 0
−1 0 1

0 1 1
0 0 1


.

Solution. Denote the columns of A as c1, c2, and c3, and observe that {c1, c2, c3} is independent.
If we apply the Gram-Schmidt algorithm to these columns, the result is:

f1 = c1 =




1
−1

0
0


 , f2 = c2− 1

2f1 =




1
2
1
2

1

0


 , and f3 = c3 +

1
2f1− f2 =




0
0
0
1


 .

Write q j =
1
‖f j‖2 f j for each j, so {q1, q2, q3} is orthonormal. Then equation (8.5) preceding

Theorem 8.4.1 gives A = QR where

Q =
[

q1 q2 q3
]
=




1√
2

1√
6

0
−1√

2
1√
6

0

0 2√
6

0

0 0 1



= 1√

6




√
3 1 0

−
√

3 1 0
0 2 0
0 0

√
6




R =



‖f1‖ c2 ·q1 c3 ·q1

0 ‖f2‖ c3 ·q2
0 0 ‖f3‖


=




√
2 1√

2
−1√

2

0
√

3√
2

√
3√
2

0 0 1


= 1√

2




2 1 −1
0
√

3
√

3
0 0

√
2




The reader can verify that indeed A = QR.

If a matrix A has independent rows and we apply QR-factorization to AT , the result is:

Corollary 8.4.1

If A has independent rows, then A factors uniquely as A = LP where P has orthonormal rows and L

is an invertible lower triangular matrix with positive main diagonal entries.

Since a square matrix with orthonormal columns is orthogonal, we have

Theorem 8.4.2

Every square, invertible matrix A has factorizations A = QR and A = LP where Q and P are
orthogonal, R is upper triangular with positive diagonal entries, and L is lower triangular with
positive diagonal entries.
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Remark

In Section 5.6 we found how to find a best approximation z to a solution of a (possibly inconsistent) system
Ax = b of linear equations: take z to be any solution of the “normal” equations (AT A)z = AT b. If A has
independent columns this z is unique (AT A is invertible by Theorem 5.4.3), so it is often desirable to com-
pute (AT A)−1. This is particularly useful in least squares approximation (Section 5.6). This is simplified
if we have a QR-factorization of A (and is one of the main reasons for the importance of Theorem 8.4.1).
For if A = QR is such a factorization, then QT Q = In because Q has orthonormal columns (verify), so we
obtain

AT A = RT QT QR = RT R

Hence computing (AT A)−1 amounts to finding R−1, and this is a routine matter because R is upper trian-
gular. Thus the difficulty in computing (AT A)−1 lies in obtaining the QR-factorization of A.

We conclude by proving the uniqueness of the QR-factorization.

Theorem 8.4.3

Let A be an m×n matrix with independent columns. If A = QR and A = Q1R1 are
QR-factorizations of A, then Q1 = Q and R1 = R.

Proof. Write Q =
[

c1 c2 · · · cn

]
and Q1 =

[
d1 d2 · · · dn

]
in terms of their columns, and ob-

serve first that QT Q = In = QT
1 Q1 because Q and Q1 have orthonormal columns. Hence it suffices to show

that Q1 =Q (then R1 =QT
1 A=QT A=R). Since QT

1 Q1 = In, the equation QR=Q1R1 gives QT
1 Q=R1R−1;

for convenience we write this matrix as

QT
1 Q = R1R−1 =

[
ti j

]

This matrix is upper triangular with positive diagonal elements (since this is true for R and R1), so tii > 0
for each i and ti j = 0 if i > j. On the other hand, the (i, j)-entry of QT

1 Q is dT
i c j = di · c j, so we have

di · c j = ti j for all i and j. But each c j is in span{d1, d2, . . . , dn} because Q = Q1(R1R−1). Hence the
expansion theorem gives

c j = (d1 · c j)d1 +(d2 · c j)d2 + · · ·+(dn · c j)dn = t1 jd1 + t2 jd2 + · · ·+ t j jdi

because di · c j = ti j = 0 if i > j. The first few equations here are

c1 = t11d1

c2 = t12d1 + t22d2

c3 = t13d1 + t23d2 + t33d3

c4 = t14d1 + t24d2 + t34d3 + t44d4
...

...

The first of these equations gives 1 = ‖c1‖ = ‖t11d1‖ = |t11|‖d1‖ = t11, whence c1 = d1. But then we
have t12 = d1 · c2 = c1 · c2 = 0, so the second equation becomes c2 = t22d2. Now a similar argument gives
c2 = d2, and then t13 = 0 and t23 = 0 follows in the same way. Hence c3 = t33d3 and c3 = d3. Continue in
this way to get ci = di for all i. This means that Q1 = Q, which is what we wanted.
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Exercises for 8.4

Exercise 8.4.1 In each case find the QR-factorization of
A.

A =

[
1 −1
−1 0

]
a. A =

[
2 1
1 1

]
b.

A =




1 1 1
1 1 0
1 0 0
0 0 0


c. A =




1 1 0
−1 0 1

0 1 1
1 −1 0


d.

Exercise 8.4.2 Let A and B denote matrices.

a. If A and B have independent columns, show
that AB has independent columns. [Hint: Theo-
rem 5.4.3.]

b. Show that A has a QR-factorization if and only if
A has independent columns.

c. If AB has a QR-factorization, show that the same
is true of B but not necessarily A.

[Hint: Consider AAT where A =

[
1 0 0
1 1 1

]
.]

Exercise 8.4.3 If R is upper triangular and invertible,
show that there exists a diagonal matrix D with diagonal
entries ±1 such that R1 = DR is invertible, upper trian-
gular, and has positive diagonal entries.

Exercise 8.4.4 If A has independent columns, let
A = QR where Q has orthonormal columns and R is in-
vertible and upper triangular. [Some authors call this a
QR-factorization of A.] Show that there is a diagonal ma-
trix D with diagonal entries ±1 such that A = (QD)(DR)
is the QR-factorization of A. [Hint: Preceding exercise.]

8.5 Computing Eigenvalues

In practice, the problem of finding eigenvalues of a matrix is virtually never solved by finding the roots
of the characteristic polynomial. This is difficult for large matrices and iterative methods are much better.
Two such methods are described briefly in this section.

The Power Method

In Chapter 3 our initial rationale for diagonalizing matrices was to be able to compute the powers of a
square matrix, and the eigenvalues were needed to do this. In this section, we are interested in efficiently
computing eigenvalues, and it may come as no surprise that the first method we discuss uses the powers
of a matrix.

Recall that an eigenvalue λ of an n×n matrix A is called a dominant eigenvalue if λ has multiplicity
1, and

|λ |> |µ| for all eigenvalues µ 6= λ

Any corresponding eigenvector is called a dominant eigenvector of A. When such an eigenvalue exists,
one technique for finding it is as follows: Let x0 in Rn be a first approximation to a dominant eigenvector
λ , and compute successive approximations x1, x2, . . . as follows:

x1 = Ax0 x2 = Ax1 x3 = Ax2 · · ·
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In general, we define
xk+1 = Axk for each k ≥ 0

If the first estimate x0 is good enough, these vectors xn will approximate the dominant eigenvector λ (see
below). This technique is called the power method (because xk = Akx0 for each k ≥ 1). Observe that if z

is any eigenvector corresponding to λ , then

z·(Az)
‖z‖2 = z·(λz)

‖z‖2 = λ

Because the vectors x1, x2, . . . , xn, . . . approximate dominant eigenvectors, this suggests that we define
the Rayleigh quotients as follows:

rk =
xk·xk+1
‖xk‖2 for k ≥ 1

Then the numbers rk approximate the dominant eigenvalue λ .

Example 8.5.1

Use the power method to approximate a dominant eigenvector and eigenvalue of A =

[
1 1
2 0

]
.

Solution. The eigenvalues of A are 2 and −1, with eigenvectors

[
1
1

]
and

[
1
−2

]
. Take

x0 =

[
1
0

]
as the first approximation and compute x1, x2, . . . , successively, from

x1 = Ax0, x2 = Ax1, . . . . The result is

x1 =

[
1
2

]
, x2 =

[
3
2

]
, x3 =

[
5
6

]
, x4 =

[
11
10

]
, x3 =

[
21
22

]
, . . .

These vectors are approaching scalar multiples of the dominant eigenvector

[
1
1

]
. Moreover, the

Rayleigh quotients are
r1 =

7
5 , r2 =

27
13 , r3 =

115
61 , r4 =

451
221 , . . .

and these are approaching the dominant eigenvalue 2.

To see why the power method works, let λ1, λ2, . . . , λm be eigenvalues of A with λ1 dominant and
let y1, y2, . . . , ym be corresponding eigenvectors. What is required is that the first approximation x0 be a
linear combination of these eigenvectors:

x0 = a1y1 +a2y2 + · · ·+amym with a1 6= 0

If k ≥ 1, the fact that xk = Akx0 and Akyi = λ k
i yi for each i gives

xk = a1λ k
1 y1 +a2λ k

2 y2 + · · ·+amλ k
mym for k ≥ 1

Hence
1

λ k
1

xk = a1y1 +a2

(
λ2
λ1

)k

y2 + · · ·+am

(
λm

λ1

)k

ym
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The right side approaches a1y1 as k increases because λ1 is dominant
(∣∣∣ λi

λ1

∣∣∣< 1 for each i > 1
)

. Because

a1 6= 0, this means that xk approximates the dominant eigenvector a1λ k
1 y1.

The power method requires that the first approximation x0 be a linear combination of eigenvectors.
(In Example 8.5.1 the eigenvectors form a basis of R2.) But even in this case the method fails if a1 = 0,

where a1 is the coefficient of the dominant eigenvector (try x0 =

[
−1

2

]
in Example 8.5.1). In general,

the rate of convergence is quite slow if any of the ratios
∣∣∣ λi

λ1

∣∣∣ is near 1. Also, because the method requires

repeated multiplications by A, it is not recommended unless these multiplications are easy to carry out (for
example, if most of the entries of A are zero).

QR-Algorithm

A much better method for approximating the eigenvalues of an invertible matrix A depends on the factor-
ization (using the Gram-Schmidt algorithm) of A in the form

A = QR

where Q is orthogonal and R is invertible and upper triangular (see Theorem 8.4.2). The QR-algorithm

uses this repeatedly to create a sequence of matrices A1 = A, A2, A3, . . . , as follows:

1. Define A1 = A and factor it as A1 = Q1R1.

2. Define A2 = R1Q1 and factor it as A2 = Q2R2.

3. Define A3 = R2Q2 and factor it as A3 = Q3R3.
...

In general, Ak is factored as Ak = QkRk and we define Ak+1 = RkQk. Then Ak+1 is similar to Ak [in fact,
Ak+1 = RkQk = (Q−1

k
Ak)Qk], and hence each Ak has the same eigenvalues as A. If the eigenvalues of A are

real and have distinct absolute values, the remarkable thing is that the sequence of matrices A1, A2, A3, . . .
converges to an upper triangular matrix with these eigenvalues on the main diagonal. [See below for the
case of complex eigenvalues.]

Example 8.5.2

If A =

[
1 1
2 0

]
as in Example 8.5.1, use the QR-algorithm to approximate the eigenvalues.

Solution. The matrices A1, A2, and A3 are as follows:

A1 =

[
1 1
2 0

]
= Q1R1 where Q1 =

1√
5

[
1 2
2 −1

]
and R1 =

1√
5

[
5 1
0 2

]

A2 =
1
5

[
7 9
4 −2

]
=

[
1.4 −1.8
−0.8 −0.4

]
= Q2R2
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where Q2 =
1√
65

[
7 4
4 −7

]
and R2 =

1√
65

[
13 11

0 10

]

A3 =
1

13

[
27 −5

8 −14

]
=

[
2.08 −0.38
0.62 −1.08

]

This is converging to

[
2 ∗
0 −1

]
and so is approximating the eigenvalues 2 and −1 on the main

diagonal.

It is beyond the scope of this book to pursue a detailed discussion of these methods. The reader is
referred to J. M. Wilkinson, The Algebraic Eigenvalue Problem (Oxford, England: Oxford University
Press, 1965) or G. W. Stewart, Introduction to Matrix Computations (New York: Academic Press, 1973).
We conclude with some remarks on the QR-algorithm.

Shifting. Convergence is accelerated if, at stage k of the algorithm, a number sk is chosen and Ak− skI is
factored in the form QkRk rather than Ak itself. Then

Q−1
k AkQk = Q−1

k (QkRk + skI)Qk = RkQk + skI

so we take Ak+1 = RkQk + skI. If the shifts sk are carefully chosen, convergence can be greatly improved.

Preliminary Preparation. A matrix such as



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




is said to be in upper Hessenberg form, and the QR-factorizations of such matrices are greatly simplified.
Given an n×n matrix A, a series of orthogonal matrices H1, H2, . . . , Hm (called Householder matrices)
can be easily constructed such that

B = HT
m · · ·HT

1 AH1 · · ·Hm

is in upper Hessenberg form. Then the QR-algorithm can be efficiently applied to B and, because B is
similar to A, it produces the eigenvalues of A.

Complex Eigenvalues. If some of the eigenvalues of a real matrix A are not real, the QR-algorithm con-
verges to a block upper triangular matrix where the diagonal blocks are either 1×1 (the real eigenvalues)
or 2×2 (each providing a pair of conjugate complex eigenvalues of A).
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Exercises for 8.5

Exercise 8.5.1 In each case, find the exact eigenvalues
and determine corresponding eigenvectors. Then start

with x0 =

[
1
1

]
and compute x4 and r3 using the power

method.

A =

[
2 −4
−3 3

]
a. A =

[
5 2
−3 −2

]
b.

A =

[
1 2
2 1

]
c. A =

[
3 1
1 0

]
d.

Exercise 8.5.2 In each case, find the exact eigenvalues
and then approximate them using the QR-algorithm.

A =

[
1 1
1 0

]
a. A =

[
3 1
1 0

]
b.

Exercise 8.5.3 Apply the power method to

A =

[
0 1
−1 0

]
, starting at x0 =

[
1
1

]
. Does it con-

verge? Explain.

Exercise 8.5.4 If A is symmetric, show that each matrix
Ak in the QR-algorithm is also symmetric. Deduce that
they converge to a diagonal matrix.

Exercise 8.5.5 Apply the QR-algorithm to

A =

[
2 −3
1 −2

]
. Explain.

Exercise 8.5.6 Given a matrix A, let Ak, Qk, and Rk,
k ≥ 1, be the matrices constructed in the QR-algorithm.
Show that Ak = (Q1Q2 · · ·Qk)(Rk · · ·R2R1) for each k≥ 1
and hence that this is a QR-factorization of Ak.
[Hint: Show that QkRk = Rk−1Qk−1 for each k ≥ 2, and
use this equality to compute (Q1Q2 · · ·Qk)(Rk · · ·R2R1)
“from the centre out.” Use the fact that (AB)n+1 =
A(BA)nB for any square matrices A and B.]

8.6 The Singular Value Decomposition

When working with a square matrix A it is clearly useful to be able to “diagonalize” A, that is to find
a factorization A = Q−1DQ where Q is invertible and D is diagonal. Unfortunately such a factorization
may not exist for A. However, even if A is not square gaussian elimination provides a factorization of
the form A = PDQ where P and Q are invertible and D is diagonal—the Smith Normal form (Theorem
2.5.3). However, if A is real we can choose P and Q to be orthogonal real matrices and D to be real. Such
a factorization is called a singular value decomposition (SVD) for A, one of the most useful tools in
applied linear algebra. In this Section we show how to explicitly compute an SVD for any real matrix A,
and illustrate some of its many applications.

We need a fact about two subspaces associated with an m×n matrix A:

im A = {Ax | x in Rn} and col A = span{a | a is a column of A}

Then im A is called the image of A (so named because of the linear transformationRn→Rm with x 7→Ax);
and col A is called the column space of A (Definition 5.10). Surprisingly, these spaces are equal:

Lemma 8.6.1

For any m×n matrix A, im A = col A.
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Proof. Let A =
[

a1 a2 · · · an

]
in terms of its columns. Let x ∈ im A, say x = Ay, y in Rn. If

y =
[

y1 y2 · · · yn

]T
, then Ay = y1a1 + y2a2 + · · ·+ ynan ∈ col A by Definition 2.5. This shows that

im A⊆ col A. For the other inclusion, each ak = Aek where ek is column k of In.

8.6.1. Singular Value Decompositions

We know a lot about any real symmetric matrix: Its eigenvalues are real (Theorem 5.5.7), and it is orthog-
onally diagonalizable by the Principal Axes Theorem (Theorem 8.2.2). So for any real matrix A (square
or not), the fact that both AT A and AAT are real and symmetric suggests that we can learn a lot about A by
studying them. This section shows just how true this is.

The following Lemma reveals some similarities between AT A and AAT which simplify the statement
and the proof of the SVD we are constructing.

Lemma 8.6.2

Let A be a real m×n matrix. Then:

1. The eigenvalues of AT A and AAT are real and non-negative.

2. AT A and AAT have the same set of positive eigenvalues.

Proof.

1. Let λ be an eigenvalue of AT A, with eigenvector 0 6= q ∈ Rn. Then:

‖Aq‖2 = (Aq)T (Aq) = qT (AT Aq) = qT (λq) = λ (qT q) = λ‖q‖2

Then (1.) follows for AT A, and the case AAT follows by replacing A by AT .

2. Write N(B) for the set of positive eigenvalues of a matrix B. We must show that N(AT A) = N(AAT ).
If λ ∈ N(AT A) with eigenvector 0 6= q ∈ Rn, then Aq ∈ Rm and

AAT (Aq) = A[(AT A)q] = A(λq) = λ (Aq)

Moreover, Aq 6= 0 since AT Aq = λq 6= 0 and both λ 6= 0 and q 6= 0. Hence λ is an eigenvalue of
AAT , proving N(AT A)⊆ N(AAT ). For the other inclusion replace A by AT .

To analyze an m×n matrix A we have two symmetric matrices to work with: AT A and AAT . In view
of Lemma 8.6.2, we choose AT A (sometimes called the Gram matrix of A), and derive a series of facts
which we will need. This narrative is a bit long, but trust that it will be worth the effort. We parse it out in
several steps:

1. The n×n matrix AT A is real and symmetric so, by the Principal Axes Theorem 8.2.2, let
{q1, q2, . . . , qn} ⊆ Rn be an orthonormal basis of eigenvectors of AT A, with corresponding eigenval-
ues λ1, λ2, . . . , λn. By Lemma 8.6.2(1), λi is real for each i and λi ≥ 0. By re-ordering the qi we may
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(and do) assume that
λ1 ≥ λ2 ≥ ·· · ≥ λr > 0 and 8 λi = 0 if i > r (i)

By Theorems 8.2.1 and 3.3.4, the matrix

Q =
[

q1 q2 · · · qn

]
is orthogonal and orthogonally diagonalizes AT A (ii)

2. Even though the λi are the eigenvalues of AT A, the number r in (i) turns out to be rank A. To understand
why, consider the vectors Aqi ∈ im A. For all i, j:

Aqi ·Aq j = (Aqi)
T Aq j = qT

i (A
T A)q j = qT

i (λ jq j) = λ j(q
T
i q j) = λ j(qi ·q j)

Because {q1, q2, . . . , qn} is an orthonormal set, this gives

Aqi ·Aq j = 0 if i 6= j and ‖Aqi‖2 = λi‖qi‖2 = λi for each i (iii)

We can extract two conclusions from (iii) and (i):

{Aq1, Aq2, . . . , Aqr} ⊆ im A is an orthogonal set and Aqi = 0 if i > r (iv)

With this write U = span{Aq1, Aq2, . . . , Aqr} ⊆ im A; we claim that U = im A, that is im A ⊆U .
For this we must show that Ax ∈U for each x ∈ Rn. Since {q1, . . . , qr, . . . , qn} is a basis of Rn (it is
orthonormal), we can write xk = t1q1 + · · ·+ trqr + · · ·+ tnqn where each t j ∈ R. Then, using (iv) we
obtain

Ax = t1Aq1 + · · ·+ trAqr + · · ·+ tnAqn = t1Aq1 + · · ·+ trAqr ∈U

This shows that U = im A, and so

{Aq1, Aq2, . . . , Aqr} is an orthogonal basis of im (A) (v)

But col A = im A by Lemma 8.6.1, and rank A = dim (col A) by Theorem 5.4.1, so

rank A = dim (col A) = dim ( im A)
(v)
= r (vi)

3. Before proceeding, some definitions are in order:

Definition 8.7

The real numbers σi =
√

λi
(iii)
= ‖Aq̄i‖ for i = 1, 2, . . . , n, are called the singular values of the

matrix A.

Clearly σ1, σ2, . . . , σr are the positive singular values of A. By (i) we have

σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 and σi = 0 if i > r (vii)

With (vi) this makes the following definitions depend only upon A.

8Of course they could all be positive (r = n) or all zero (so AT A = 0, and hence A = 0 by Exercise 5.3.9).
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Definition 8.8

Let A be a real, m×n matrix of rank r, with positive singular values σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 and
σi = 0 if i > r. Define:

DA = diag (σ1, . . . , σr) and ΣA =

[
DA 0
0 0

]

m×n

Here ΣA is in block form and is called the singular matrix of A.

The singular values σi and the matrices DA and ΣA will be referred to frequently below.

4. Returning to our narrative, normalize the vectors Aq1, Aq2, . . . , Aqr, by defining

pi =
1
‖Aqi‖Aqi ∈ Rm for each i = 1, 2, . . . , r (viii)

By (v) and Lemma 8.6.1, we conclude that

{p1, p2, . . . , pr} is an orthonormal basis of col A⊆ Rm (ix)

Employing the Gram-Schmidt algorithm (or otherwise), construct pr+1, . . . , pm so that

{p1, . . . , pr, . . . , pm} is an orthonormal basis of Rm (x)

5. By (x) and (ii) we have two orthogonal matrices

P =
[

p1 · · · pr · · · pm

]
of size m×m and Q =

[
q1 · · · qr · · · qn

]
of size n×n

These matrices are related. In fact we have:

σipi =
√

λipi

(iii)
= ‖Aqi‖pi

(viii)
= Aqi for each i = 1, 2, . . . , r (xi)

This yields the following expression for AQ in terms of its columns:

AQ =
[

Aq1 · · · Aqr Aqr+1 · · · Aqn

] (iv)
=
[

σ1p1 · · · σrpr 0 · · · 0
]

(xii)

Then we compute:

PΣA =
[

p1 · · · pr pr+1 · · · pm

]




σ1 · · · 0
...

. . .
...

0 · · · σr

0 · · · 0
...

...
0 · · · 0

0 · · · 0
...

...
0 · · · 0

0 · · · 0
...

...
0 · · · 0




=
[

σ1p1 · · · σrpr 0 · · · 0
]

(xii)
= AQ

Finally, as Q−1 = QT it follows that A = PΣAQT .

With this we can state the main theorem of this Section.
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Theorem 8.6.1

Let A be a real m×n matrix, and let σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 be the positive singular values of A.
Then r is the rank of A and we have the factorization

A = PΣAQT where P and Q are orthogonal matrices

The factorization A = PΣAQT in Theorem 8.6.1, where P and Q are orthogonal matrices, is called a
Singular Value Decomposition (SVD) of A. This decomposition is not unique. For example if r < m then
the vectors pr+1, . . . , pm can be any extension of {p1, . . . , pr} to an orthonormal basis of Rm, and each
will lead to a different matrix P in the decomposition. For a more dramatic example, if A = In then ΣA = In,
and A = PΣAPT is a SVD of A for any orthogonal n×n matrix P.

Example 8.6.1

Find a singular value decomposition for A =

[
1 0 1
−1 1 0

]
.

Solution. We have AT A =




2 −1 1
−1 1 0

1 0 1


, so the characteristic polynomial is

cAT A(x) = det




x−2 1 −1
1 x−1 0
−1 0 x−1


= (x−3)(x−1)x

Hence the eigenvalues of AT A (in descending order) are λ1 = 3, λ2 = 1 and λ3 = 0 with,
respectively, unit eigenvectors

q1 =
1√
6




2
−1

1


 , q2 =

1√
2




0
1
1


 , and q3 =

1√
3



−1
−1

1




It follows that the orthogonal matrix Q in Theorem 8.6.1 is

Q =
[

q1 q2 q3

]
= 1√

6




2 0 −
√

2
−1

√
3 −

√
2

1
√

3
√

2




The singular values here are σ1 =
√

3, σ2 = 1 and σ3 = 0, so rank (A) = 2—clear in this
case—and the singular matrix is

ΣA =

[
σ1 0 0
0 σ2 0

]
=

[ √
3 0 0

0 1 0

]

So it remains to find the 2×2 orthogonal matrix P in Theorem 8.6.1. This involves the vectors

Aq1 =
√

6
2

[
1
−1

]
, Aq2 =

√
2

2

[
1
1

]
, and Aq3 =

[
0
0

]
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Normalize Aq1 and Aq2 to get

p1 =
1√
2

[
1
−1

]
and p2 =

1√
2

[
1
1

]

In this case, {p1, p2} is already a basis of R2 (so the Gram-Schmidt algorithm is not needed), and
we have the 2×2 orthogonal matrix

P =
[

p1 p2
]
= 1√

2

[
1 1
−1 1

]

Finally (by Theorem 8.6.1) the singular value decomposition for A is

A = PΣAQT = 1√
2

[
1 1
−1 1

][ √
3 0 0

0 1 0

]
1√
6




2 −1 1
0

√
3
√

3
−
√

2 −
√

2
√

2




Of course this can be confirmed by direct matrix multiplication.

Thus, computing an SVD for a real matrix A is a routine matter, and we now describe a systematic
procedure for doing so.

SVD Algorithm

Given a real m×n matrix A, find an SVD A = PΣAQT as follows:

1. Use the Diagonalization Algorithm (see page 181) to find the (real and non-negative)
eigenvalues λ1, λ2, . . . , λn of AT A with corresponding (orthonormal) eigenvectors
q1, q2, . . . , qn. Reorder the qi (if necessary) to ensure that the nonzero eigenvalues are
λ1 ≥ λ2 ≥ ·· · ≥ λr > 0 and λi = 0 if i > r.

2. The integer r is the rank of the matrix A.

3. The n×n orthogonal matrix Q in the SVD is Q =
[

q1 q2 · · · qn

]
.

4. Define pi =
1
‖Aqi‖Aqi for i = 1, 2, . . . , r (where r is as in step 1). Then {p1, p2, . . . , pr} is

orthonormal in Rm so (using Gram-Schmidt or otherwise) extend it to an orthonormal basis
{p1, . . . , pr, . . . , pm} in Rm.

5. The m×m orthogonal matrix P in the SVD is P =
[

p1 · · · pr · · · pm

]
.

6. The singular values for A are σ1, σ2, . . . , σn where σi =
√

λi for each i. Hence the nonzero
singular values are σ1 ≥ σ2 ≥ ·· · ≥ σr > 0, and so the singular matrix of A in the SVD is

ΣA =

[
diag (σ1, . . . , σr) 0

0 0

]

m×n

.

7. Thus A = PΣQT is a SVD for A.

In practise the singular values σi, the matrices P and Q, and even the rank of an m×n matrix are not
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calculated this way. There are sophisticated numerical algorithms for calculating them to a high degree of
accuracy. The reader is referred to books on numerical linear algebra.

So the main virtue of Theorem 8.6.1 is that it provides a way of constructing an SVD for every real
matrix A. In particular it shows that every real matrix A has a singular value decomposition9 in the
following, more general, sense:

Definition 8.9

A Singular Value Decomposition (SVD) of an m×n matrix A of rank r is a factorization

A =UΣV T where U and V are orthogonal and Σ =

[
D 0
0 0

]

m×n

in block form where

D = diag (d1, d2, . . . , dr) where each di > 0, and r ≤ m and r ≤ n.

Note that for any SVD A =UΣV T we immediately obtain some information about A:

Lemma 8.6.3

If A =UΣV T is any SVD for A as in Definition 8.9, then:

1. r = rank A.

2. The numbers d1, d2, . . . , dr are the singular values of AT A in some order.

Proof. Use the notation of Definition 8.9. We have

AT A = (VΣTUT )(UΣV T ) =V (ΣT Σ)V T

so ΣT Σ and AT A are similar n×n matrices (Definition 5.11). Hence r = rank A by Corollary 5.4.3, proving
(1.). Furthermore, ΣT Σ and AT A have the same eigenvalues by Theorem 5.5.1; that is (using (1.)):

{d2
1 , d2

2 , . . . , d2
r }= {λ1, λ2, . . . , λr} are equal as sets

where λ1, λ2, . . . , λr are the positive eigenvalues of AT A. Hence there is a permutation τ of {1, 2, · · · , r}
such that d2

i = λiτ for each i = 1, 2, . . . , r. Hence di =
√

λiτ = σiτ for each i by Definition 8.7. This
proves (2.).

We note in passing that more is true. Let A be m×n of rank r, and let A =UΣV T be any SVD for A.
Using the proof of Lemma 8.6.3 we have di = σiτ for some permutation τ of {1, 2, . . . , r}. In fact, it can
be shown that there exist orthogonal matrices U1 and V1 obtained from U and V by τ-permuting columns
and rows respectively, such that A =U1ΣAV T

1 is an SVD of A.

9In fact every complex matrix has an SVD [J.T. Scheick, Linear Algebra with Applications, McGraw-Hill, 1997]
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8.6.2. Fundamental Subspaces

It turns out that any singular value decomposition contains a great deal of information about an m×
n matrix A and the subspaces associated with A. For example, in addition to Lemma 8.6.3, the set
{p1, p2, . . . , pr} of vectors constructed in the proof of Theorem 8.6.1 is an orthonormal basis of col A

(by (v) and (viii) in the proof). There are more such examples, which is the thrust of this subsection.
In particular, there are four subspaces associated to a real m× n matrix A that have come to be called
fundamental:

Definition 8.10

The fundamental subspaces of an m×n matrix A are:

row A = span{x | x is a row of A}

col A = span{x | x is a column of A}

null A = {x ∈ Rn | Ax = 0}

null AT = {x ∈ Rn | AT x = 0}

If A =UΣV T is any SVD for the real m×n matrix A, any orthonormal bases of U and V provide orthonor-
mal bases for each of these fundamental subspaces. We are going to prove this, but first we need three
properties related to the orthogonal complement U⊥ of a subspace U of Rn, where (Definition 8.1):

U⊥ = {x ∈ Rn | u ·x = 0 for all u ∈U}

The orthogonal complement plays an important role in the Projection Theorem (Theorem 8.1.3), and we
return to it in Section 10.2. For now we need:

Lemma 8.6.4

If A is any matrix then:

1. ( row A)⊥ = null A and (col A)⊥ = null AT .

2. If U is any subspace of Rn then U⊥⊥ =U .

3. Let {f1, . . . , fm} be an orthonormal basis of Rm. If U = span{f1, . . . , fk}, then

U⊥ = span{fk+1, . . . , fm}

Proof.

1. Assume A is m×n, and let b1, . . . , bm be the rows of A. If x is a column in Rn, then entry i of Ax is
bi ·x, so Ax = 0 if and only if bi ·x = 0 for each i. Thus:

x ∈ null A ⇔ bi ·x = 0 for each i ⇔ x ∈ (span{b1, . . . , bm})⊥ = ( row A)⊥
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Hence null A = ( row A)⊥. Now replace A by AT to get null AT = ( row AT )⊥ = (col A)⊥, which is
the other identity in (1).

2. If x ∈U then y ·x = 0 for all y ∈U⊥, that is x ∈U⊥⊥. This proves that U ⊆U⊥⊥, so it is enough to
show that dim U = dim U⊥⊥. By Theorem 8.1.4 we see that dim V⊥ = n− dim V for any subspace
V ⊆ Rn. Hence

dim U⊥⊥ = n− dim U⊥ = n− (n− dim U) = dim U , as required

3. We have span{fk+1, . . . , fm} ⊆U⊥ because {f1, . . . , fm} is orthogonal. For the other inclusion, let
x ∈U⊥ so fi ·x = 0 for i = 1, 2, . . . , k. By the Expansion Theorem 5.3.6:

x = (f1 ·x)f1 + · · · + (fk ·x)fk + (fk+1 ·x)fk+1 + · · · + (fm ·x)fm

= 0 + · · · + 0 + (fk+1 ·x)fk+1 + · · · + (fm ·x)fm

Hence U⊥ ⊆ span{fk+1, . . . , fm}.

With this we can see how any SVD for a matrix A provides orthonormal bases for each of the four
fundamental subspaces of A.

Theorem 8.6.2

Let A be an m×n real matrix, let A =UΣV T be any SVD for A where U and V are orthogonal of
size m×m and n×n respectively, and let

Σ =

[
D 0
0 0

]

m×n

where D = diag (λ1, λ2, . . . , λr), with each λi > 0

Write U =
[

u1 · · · ur · · · um

]
and V =

[
v1 · · · vr · · · vn

]
, so {u1, . . . , ur, . . . , um}

and {v1, . . . , vr, . . . , vn} are orthonormal bases of Rm and Rn respectively. Then

1. r = rank A, and the singular values of A are
√

λ1,
√

λ2, . . . ,
√

λr.

2. The fundamental spaces are described as follows:

a. {u1, . . . , ur} is an orthonormal basis of col A.

b. {ur+1, . . . , um} is an orthonormal basis of null AT .

c. {vr+1, . . . , vn} is an orthonormal basis of null A.

d. {v1, . . . , vr} is an orthonormal basis of row A.

Proof.

1. This is Lemma 8.6.3.
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2. a. As col A = col (AV ) by Lemma 5.4.3 and AV =UΣ, (a.) follows from

UΣ=
[

u1 · · · ur · · · um

][ diag (λ1, λ2, . . . , λr) 0
0 0

]
=
[

λ1u1 · · · λrur 0 · · · 0
]

b. We have (col A)⊥
(a.)
= (span{u1, . . . , ur})⊥ = span{ur+1, . . . , um} by Lemma 8.6.4(3). This

proves (b.) because (col A)⊥ = null AT by Lemma 8.6.4(1).

c. We have dim (null A)+ dim ( im A) = n by the Dimension Theorem 7.2.4, applied to
T : Rn→ Rm where T (x) = Ax. Since also im A = col A by Lemma 8.6.1, we obtain

dim (null A) = n− dim (col A) = n− r = dim (span{vr+1, . . . , vn})

So to prove (c.) it is enough to show that v j ∈ null A whenever j > r. To this end write

λr+1 = · · ·= λn = 0, so ET E = diag (λ 2
1 , . . . , λ 2

r , λ 2
r+1, . . . , λ 2

n )

Observe that each λ j is an eigenvalue of ΣT Σ with eigenvector e j = column j of In. Thus
v j =V e j for each j. As AT A =V ΣT ΣV T (proof of Lemma 8.6.3), we obtain

(AT A)v j = (VΣT ΣV T )(Ve j) =V (ΣT Σe j) =V
(
λ 2

j e j

)
= λ 2

j V e j = λ 2
j v j

for 1≤ j ≤ n. Thus each v j is an eigenvector of AT A corresponding to λ 2
j . But then

‖Av j‖2 = (Av j)
T Av j = vT

j (A
T Av j) = vT

j (λ
2
j v j) = λ 2

j ‖v j‖2 = λ 2
j for i = 1, . . . , n

In particular, Av j = 0 whenever j > r, so v j ∈ null A if j > r, as desired. This proves (c).

d. Observe that span{vr+1, . . . , vn}
(c.)
= null A = ( row A)⊥ by Lemma 8.6.4(1). But then parts

(2) and (3) of Lemma 8.6.4 show

row A =
(
( row A)⊥

)⊥
= (span{vr+1, . . . , vn})⊥ = span{v1, . . . , vr}

This proves (d.), and hence Theorem 8.6.2.

Example 8.6.2

Consider the homogeneous linear system

Ax = 0 of m equations in n variables

Then the set of all solutions is null A. Hence if A =UΣV T is any SVD for A then (in the notation
of Theorem 8.6.2) {vr+1, . . . , vn} is an orthonormal basis of the set of solutions for the system. As
such they are a set of basic solutions for the system, the most basic notion in Chapter 1.
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8.6.3. The Polar Decomposition of a Real Square Matrix

If A is real and n×n the factorization in the title is related to the polar decomposition A. Unlike the SVD,
in this case the decomposition is uniquely determined by A.

Recall (Section 8.3) that a symmetric matrix A is called positive definite if and only if xT Ax > 0 for
every column x 6= 0 ∈ Rn. Before proceeding, we must explore the following weaker notion:

Definition 8.11

A real n×n matrix G is called positive10if it is symmetric and

xT Gx≥ 0 for all x ∈ Rn

Clearly every positive definite matrix is positive, but the converse fails. Indeed, A =

[
1 1
1 1

]
is positive

because, if x =
[

a b
]T

in R2, then xT Ax = (a+b)2 ≥ 0. But yT Ay = 0 if y =
[

1 −1
]T

, so A is not
positive definite.

Lemma 8.6.5

Let G denote an n×n positive matrix.

1. If A is any m×n matrix and G is positive, then AT GA is positive (and m×m).

2. If G = diag (d1, d2, · · · , dn) and each di ≥ 0 then G is positive.

Proof.

1. xT (AT GA)x = (Ax)T G(Ax)≥ 0 because G is positive.

2. If x =
[

x1 x2 · · · xn

]T
, then

xT Gx = d1x2
1 +d2x2

2 + · · ·+dnx2
n ≥ 0

because di ≥ 0 for each i.

Definition 8.12

If A is a real n×n matrix, a factorization

A = GQ where G is positive and Q is orthogonal

is called a polar decomposition for A.

10Also called positive semi-definite.
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Any SVD for a real square matrix A yields a polar form for A.

Theorem 8.6.3

Every square real matrix has a polar form.

Proof. Let A = UΣV T be a SVD for A with Σ as in Definition 8.9 and m = n. Since UTU = In here we
have

A =UΣV T = (UΣ)(UTU)V T = (UΣUT )(UV T )

So if we write G =UΣUT and Q =UV T , then Q is orthogonal, and it remains to show that G is positive.
But this follows from Lemma 8.6.5.

The SVD for a square matrix A is not unique (In = PInPT for any orthogonal matrix P). But given the
proof of Theorem 8.6.3 it is surprising that the polar decomposition is unique.11 We omit the proof.

The name “polar form” is reminiscent of the same form for complex numbers (see Appendix A). This
is no coincidence. To see why, we represent the complex numbers as real 2×2 matrices. Write M2(R) for
the set of all real 2×2 matrices, and define

σ : C→M2(R) by σ(a+bi) =

[
a −b

b a

]
for all a+bi in C

One verifies that σ preserves addition and multiplication in the sense that

σ(zw) = σ(z)σ(w) and σ(z+w) = σ(z)+σ(w)

for all complex numbers z and w. Since θ is one-to-one we may identify each complex number a+bi with
the matrix θ(a+bi), that is we write

a+bi =

[
a −b

b a

]
for all a+bi in C

Thus 0 =

[
0 0
0 0

]
, 1 =

[
1 0
0 1

]
= I2, i =

[
0 −1
1 0

]
, and r =

[
r 0
0 r

]
if r is real.

If z = a+bi is nonzero then the absolute value r = |z|=
√

a2 +b2 6= 0. If θ is the angle of z in standard
position, then cosθ = a/r and sinθ = b/r. Observe:

[
a −b

b a

]
=

[
r 0
0 r

][
a/r −b/r

b/r a/r

]
=

[
r 0
0 r

][
cosθ −sinθ
sinθ cosθ

]
= GQ (xiii)

where G =

[
r 0
0 r

]
is positive and Q =

[
cosθ −sinθ
sinθ cosθ

]
is orthogonal. But in C we have G = r and

Q = cosθ + isinθ so (xiii) reads z = r(cosθ + isinθ) = reiθ which is the classical polar form for the

complex number a+ bi. This is why (xiii) is called the polar form of the matrix

[
a −b

b a

]
; Definition

8.12 simply adopts the terminology for n×n matrices.

11See J.T. Scheick, Linear Algebra with Applications, McGraw-Hill, 1997, page 379.
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8.6.4. The Pseudoinverse of a Matrix

It is impossible for a non-square matrix A to have an inverse (see the footnote to Definition 2.11). Nonethe-
less, one candidate for an “inverse” of A is an m×n matrix B such that

ABA = A and BAB = B

Such a matrix B is called a middle inverse for A. If A is invertible then A−1 is the unique middle inverse for

A, but a middle inverse is not unique in general, even for square matrices. For example, if A =




1 0
0 0
0 0




then B =

[
1 0 0
b 0 0

]
is a middle inverse for A for any b.

If ABA = A and BAB = B it is easy to see that AB and BA are both idempotent matrices. In 1955 Roger
Penrose observed that the middle inverse is unique if both AB and BA are symmetric. We omit the proof.

Theorem 8.6.4: Penrose’ Theorem12

Given any real m×n matrix A, there is exactly one n×m matrix B such that A and B satisfy the
following conditions:

P1 ABA = A and BAB = B.

P2 Both AB and BA are symmetric.

Definition 8.13

Let A be a real m×n matrix. The pseudoinverse of A is the unique n×m matrix A+ such that A

and A+ satisfy P1 and P2, that is:

AA+A = A, A+AA+ = A+, and both AA+ and A+A are symmetric13

If A is invertible then A+ = A−1 as expected. In general, the symmetry in conditions P1 and P2 shows
that A is the pseudoinverse of A+, that is A++ = A.

12R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 5l (1955), 406-413.
In fact Penrose proved this for any complex matrix, where AB and BA are both required to be hermitian (see Definition 8.18 in
the following section).

13Penrose called the matrix A+ the generalized inverse of A, but the term pseudoinverse is now commonly used. The matrix
A+ is also called the Moore-Penrose inverse after E.H. Moore who had the idea in 1935 as part of a larger work on “General
Analysis”. Penrose independently re-discovered it 20 years later.
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Theorem 8.6.5

Let A be an m×n matrix.

1. If rank A = m then AAT is invertible and A+ = AT (AAT )−1.

2. If rank A = n then AT A is invertible and A+ = (AT A)−1AT .

Proof. Here AAT (respectively AT A) is invertible by Theorem 5.4.4 (respectively Theorem 5.4.3). The rest
is a routine verification.

In general, given an m×n matrix A, the pseudoinverse A+ can be computed from any SVD for A. To
see how, we need some notation. Let A = UΣV T be an SVD for A (as in Definition 8.9) where U and V

are orthogonal and Σ =

[
D 0
0 0

]

m×n

in block form where D = diag (d1, d2, . . . , dr) where each di > 0.

Hence D is invertible, so we make:

Definition 8.14

Σ′ =

[
D−1 0

0 0

]

n×m

.

A routine calculation gives:

Lemma 8.6.6

• ΣΣ′Σ = Σ

• Σ′ΣΣ′ = Σ′

• ΣΣ′ =

[
Ir 0
0 0

]

m×m

• Σ′Σ =

[
Ir 0
0 0

]

n×n

That is, Σ′ is the pseudoinverse of Σ.

Now given A =UΣV T , define B =VΣ′UT . Then

ABA = (UΣV T )(VΣ′UT )(UΣV T ) =U(ΣΣ′Σ)V T =UΣV T = A

by Lemma 8.6.6. Similarly BAB= B. Moreover AB=U(ΣΣ′)UT and BA=V (Σ′Σ)V T are both symmetric
again by Lemma 8.6.6. This proves

Theorem 8.6.6

Let A be real and m×n, and let A =UΣV T is any SVD for A as in Definition 8.9. Then
A+ =VΣ′UT .
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Of course we can always use the SVD constructed in Theorem 8.6.1 to find the pseudoinverse. If

A =




1 0
0 0
0 0


, we observed above that B =

[
1 0 0
b 0 0

]
is a middle inverse for A for any b. Furthermore

AB is symmetric but BA is not, so B 6= A+.

Example 8.6.3

Find A+ if A =




1 0
0 0
0 0


.

Solution. AT A =

[
1 0
0 0

]
with eigenvalues λ1 = 1 and λ2 = 0 and corresponding eigenvectors

q1 =

[
1
0

]
and q2 =

[
0
1

]
. Hence Q =

[
q1 q2

]
= I2. Also A has rank 1 with singular values

σ1 = 1 and σ2 = 0, so ΣA =




1 0
0 0
0 0


= A and Σ′A =

[
1 0 0
0 0 0

]
= AT in this case.

Since Aq1 =




1
0
0


 and Aq2 =




0
0
0


, we have p1 =




1
0
0


 which extends to an orthonormal

basis {p1, p2, p3} of R3 where (say) p2 =




0
1
0


 and p3 =




0
0
1


. Hence

P =
[

p1 p2 p3

]
= I, so the SVD for A is A = PΣAQT . Finally, the pseudoinverse of A is

A+ = QΣ′APT = Σ′A =

[
1 0 0
0 0 0

]
. Note that A+ = AT in this case.

The following Lemma collects some properties of the pseudoinverse that mimic those of the inverse.
The verifications are left as exercises.

Lemma 8.6.7

Let A be an m×n matrix of rank r.

1. A++ = A.

2. If A is invertible then A+ = A−1.

3. (AT )+ = (A+)T .

4. (kA)+ = kA+ for any real k.

5. (UAV)+ =UT (A+)V T whenever U and V are orthogonal.
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Exercises for 8.6

Exercise 8.6.1 If ACA = A show that B =CAC is a mid-
dle inverse for A.

Exercise 8.6.2 For any matrix A show that

ΣAT = (ΣA)
T

Exercise 8.6.3 If A is m×n with all singular values pos-
itive, what is rank A?

Exercise 8.6.4 If A has singular values σ1, . . . , σr, what
are the singular values of:

ATa. tA where t > 0 is realb.

A−1 assuming A is invertible.c.

Exercise 8.6.5 If A is square show that det A is the prod-
uct of the singular values of A.

Exercise 8.6.6 If A is square and real, show that A = 0
if and only if every eigenvalue of A is 0.

Exercise 8.6.7 Given a SVD for an invertible matrix A,
find one for A−1. How are ΣA and ΣA−1 related?

Exercise 8.6.8 Let A−1 = A = AT where A is n× n.
Given any orthogonal n×n matrix U , find an orthogonal
matrix V such that A =UΣAV T is an SVD for A.

If A =

[
0 1
1 0

]
do this for:

U = 1
5

[
3 −4
4 3

]
a. U = 1√

2

[
1 −1
1 1

]
b.

Exercise 8.6.9 Find a SVD for the following matrices:

A =




1 −1
0 1
1 0


a.




1 1 1
−1 0 −2

1 2 0


b.

Exercise 8.6.10 Find an SVD for A =

[
0 1
−1 0

]
.

Exercise 8.6.11 If A =UΣV T is an SVD for A, find an
SVD for AT .

Exercise 8.6.12 Let A be a real, m×n matrix with pos-
itive singular values σ1, σ2, . . . , σr, and write

s(x) = (x−σ1)(x−σ2) · · · (x−σr)

a. Show that cAT A(x) = s(x)xn−r and
cAT A(c) = s(x)xm−r .

b. If m≤ n conclude that cAT A(x) = s(x)xn−m.

Exercise 8.6.13 If G is positive show that:

a. rG is positive if r ≥ 0

b. G+H is positive for any positive H .

Exercise 8.6.14 If G is positive and λ is an eigenvalue,
show that λ ≥ 0.

Exercise 8.6.15 If G is positive show that G = H2 for
some positive matrix H . [Hint: Preceding exercise and
Lemma 8.6.5]

Exercise 8.6.16 If A is n× n show that AAT and AT A

are similar. [Hint: Start with an SVD for A.]

Exercise 8.6.17 Find A+ if:

a. A =

[
1 2
−1 −2

]

b. A =




1 −1
0 0
1 −1




Exercise 8.6.18 Show that (A+)T = (AT )+.
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8.7 Complex Matrices

If A is an n×n matrix, the characteristic polynomial cA(x) is a polynomial of degree n and the eigenvalues
of A are just the roots of cA(x). In most of our examples these roots have been real numbers (in fact,
the examples have been carefully chosen so this will be the case!); but it need not happen, even when

the characteristic polynomial has real coefficients. For example, if A =

[
0 1
−1 0

]
then cA(x) = x2 + 1

has roots i and −i, where i is a complex number satisfying i2 = −1. Therefore, we have to deal with the
possibility that the eigenvalues of a (real) square matrix might be complex numbers.

In fact, nearly everything in this book would remain true if the phrase real number were replaced by
complex number wherever it occurs. Then we would deal with matrices with complex entries, systems
of linear equations with complex coefficients (and complex solutions), determinants of complex matrices,
and vector spaces with scalar multiplication by any complex number allowed. Moreover, the proofs of
most theorems about (the real version of) these concepts extend easily to the complex case. It is not our
intention here to give a full treatment of complex linear algebra. However, we will carry the theory far
enough to give another proof that the eigenvalues of a real symmetric matrix A are real (Theorem 5.5.7)
and to prove the spectral theorem, an extension of the principal axes theorem (Theorem 8.2.2).

The set of complex numbers is denoted C . We will use only the most basic properties of these numbers
(mainly conjugation and absolute values), and the reader can find this material in Appendix A.

If n≥ 1, we denote the set of all n-tuples of complex numbers by Cn. As with Rn, these n-tuples will
be written either as row or column matrices and will be referred to as vectors. We define vector operations
on Cn as follows:

(v1, v2, . . . , vn)+(w1, w2, . . . , wn) = (v1 +w1, v2 +w2, . . . , vn +wn)

u(v1, v2, . . . , vn) = (uv1, uv2, . . . , uvn) for u in C

With these definitions, Cn satisfies the axioms for a vector space (with complex scalars) given in Chapter 6.
Thus we can speak of spanning sets for Cn, of linearly independent subsets, and of bases. In all cases,
the definitions are identical to the real case, except that the scalars are allowed to be complex numbers. In
particular, the standard basis of Rn remains a basis of Cn, called the standard basis of Cn.

A matrix A =
[
ai j

]
is called a complex matrix if every entry ai j is a complex number. The notion of

conjugation for complex numbers extends to matrices as follows: Define the conjugate of A =
[
ai j

]
to be

the matrix
A =

[
ai j

]

obtained from A by conjugating every entry. Then (using Appendix A)

A+B = A+B and AB = A B

holds for all (complex) matrices of appropriate size.
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The Standard Inner Product

There is a natural generalization to Cn of the dot product in Rn.

Definition 8.15 Standard Inner Product in Rn

Given z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) in Cn, define their standard inner product

〈z, w〉 by
〈z, w〉= z1w1 + z2w2 + · · ·+ znwn = z ·w

where w is the conjugate of the complex number w.

Clearly, if z and w actually lie in Rn, then 〈z, w〉= z ·w is the usual dot product.

Example 8.7.1

If z = (2, 1− i, 2i, 3− i) and w = (1− i, −1, −i, 3+2i), then

〈z, w〉= 2(1+ i)+(1− i)(−1)+(2i)(i)+(3− i)(3−2i)= 6−6i

〈z, z〉= 2 ·2+(1− i)(1+ i)+(2i)(−2i)+(3− i)(3+ i)= 20

Note that 〈z, w〉 is a complex number in general. However, if w = z = (z1, z2, . . . , zn), the definition
gives 〈z, z〉 = |z1|2 + · · ·+ |zn|2 which is a nonnegative real number, equal to 0 if and only if z = 0. This
explains the conjugation in the definition of 〈z, w〉, and it gives (4) of the following theorem.

Theorem 8.7.1

Let z, z1, w, and w1 denote vectors in Cn, and let λ denote a complex number.

1. 〈z+ z1, w〉= 〈z, w〉+ 〈z1, w〉 and 〈z, w+w1〉= 〈z, w〉+ 〈z, w1〉.

2. 〈λz, w〉= λ 〈z, w〉 and 〈z, λw〉= λ 〈z, w〉.

3. 〈z, w〉= 〈w, z〉.

4. 〈z, z〉 ≥ 0, and 〈z, z〉= 0 if and only if z = 0.

Proof. We leave (1) and (2) to the reader (Exercise 8.7.10), and (4) has already been proved. To prove (3),
write z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn). Then

〈w, z〉= (w1z1 + · · ·+wnzn) = w1z1 + · · ·+wnzn

= z1w1 + · · ·+ znwn = 〈z, w〉
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Definition 8.16 Norm and Length in Cn

As for the dot product on Rn, property (4) enables us to define the norm or length ‖z‖ of a vector
z = (z1, z2, . . . , zn) in Cn:

‖z‖=
√
〈z, z〉=

√
|z1|2 + |z2|2 + · · ·+ |zn|2

The only properties of the norm function we will need are the following (the proofs are left to the reader):

Theorem 8.7.2

If z is any vector in Cn, then

1. ‖z‖ ≥ 0 and ‖z‖= 0 if and only if z = 0.

2. ‖λz‖= |λ |‖z‖ for all complex numbers λ .

A vector u in Cn is called a unit vector if ‖u‖= 1. Property (2) in Theorem 8.7.2 then shows that if
z 6= 0 is any nonzero vector in Cn, then u = 1

‖z‖z is a unit vector.

Example 8.7.2

In C4, find a unit vector u that is a positive real multiple of z = (1− i, i, 2, 3+4i).

Solution. ‖z‖=
√

2+1+4+25 =
√

32 = 4
√

2, so take u = 1
4
√

2
z.

Transposition of complex matrices is defined just as in the real case, and the following notion is fun-
damental.

Definition 8.17 Conjugate Transpose in Cn

The conjugate transpose AH of a complex matrix A is defined by

AH = (A)T = (AT )

Observe that AH = AT when A is real.14

Example 8.7.3

[
3 1− i 2+ i

2i 5+2i −i

]H

=




3 −2i

1+ i 5−2i

2− i i




14Other notations for AH are A∗ and A†.
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The following properties of AH follow easily from the rules for transposition of real matrices and
extend these rules to complex matrices. Note the conjugate in property (3).

Theorem 8.7.3

Let A and B denote complex matrices, and let λ be a complex number.

1. (AH)H = A.

2. (A+B)H = AH +BH .

3. (λA)H = λAH .

4. (AB)H = BHAH .

Hermitian and Unitary Matrices

If A is a real symmetric matrix, it is clear that AH = A. The complex matrices that satisfy this condition
turn out to be the most natural generalization of the real symmetric matrices:

Definition 8.18 Hermitian Matrices

A square complex matrix A is called hermitian15if AH = A, equivalently if A = AT .

Hermitian matrices are easy to recognize because the entries on the main diagonal must be real, and the
“reflection” of each nondiagonal entry in the main diagonal must be the conjugate of that entry.

Example 8.7.4



3 i 2+ i

−i −2 −7
2− i −7 1


 is hermitian, whereas

[
1 i

i −2

]
and

[
1 i

−i i

]
are not.

The following Theorem extends Theorem 8.2.3, and gives a very useful characterization of hermitian
matrices in terms of the standard inner product in Cn.

Theorem 8.7.4

An n×n complex matrix A is hermitian if and only if

〈Az, w〉= 〈z, Aw〉
for all n-tuples z and w in Cn.

15The name hermitian honours Charles Hermite (1822–1901), a French mathematician who worked primarily in analysis and
is remembered as the first to show that the number e from calculus is transcendental—that is, e is not a root of any polynomial
with integer coefficients.
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Proof. If A is hermitian, we have AT = A. If z and w are columns in Cn, then 〈z, w〉= zT w, so

〈Az, w〉= (Az)T w = zT AT w = zT Aw = zT (Aw) = 〈z, Aw〉
To prove the converse, let e j denote column j of the identity matrix. If A =

[
ai j

]
, the condition gives

ai j = 〈ei, Ae j〉= 〈Aei, e j〉= ai j

Hence A = AT , so A is hermitian.

Let A be an n×n complex matrix. As in the real case, a complex number λ is called an eigenvalue of A

if Ax = λx holds for some column x 6= 0 in Cn. In this case x is called an eigenvector of A corresponding
to λ . The characteristic polynomial cA(x) is defined by

cA(x) = det (xI−A)

This polynomial has complex coefficients (possibly nonreal). However, the proof of Theorem 3.3.2 goes
through to show that the eigenvalues of A are the roots (possibly complex) of cA(x).

It is at this point that the advantage of working with complex numbers becomes apparent. The real
numbers are incomplete in the sense that the characteristic polynomial of a real matrix may fail to have
all its roots real. However, this difficulty does not occur for the complex numbers. The so-called funda-
mental theorem of algebra ensures that every polynomial of positive degree with complex coefficients has
a complex root. Hence every square complex matrix A has a (complex) eigenvalue. Indeed (Appendix A),
cA(x) factors completely as follows:

cA(x) = (x−λ1)(x−λ2) · · ·(x−λn)

where λ1, λ2, . . . , λn are the eigenvalues of A (with possible repetitions due to multiple roots).

The next result shows that, for hermitian matrices, the eigenvalues are actually real. Because symmet-
ric real matrices are hermitian, this re-proves Theorem 5.5.7. It also extends Theorem 8.2.4, which asserts
that eigenvectors of a symmetric real matrix corresponding to distinct eigenvalues are actually orthogonal.
In the complex context, two n-tuples z and w in Cn are said to be orthogonal if 〈z, w〉= 0.

Theorem 8.7.5

Let A denote a hermitian matrix.

1. The eigenvalues of A are real.

2. Eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof. Let λ and µ be eigenvalues of A with (nonzero) eigenvectors z and w. Then Az= λz and Aw= µw,
so Theorem 8.7.4 gives

λ 〈z, w〉= 〈λz, w〉= 〈Az, w〉= 〈z, Aw〉= 〈z, µw〉= µ〈z, w〉 (8.6)

If µ = λ and w = z, this becomes λ 〈z, z〉 = λ 〈z, z〉. Because 〈z, z〉 = ‖z‖2 6= 0, this implies λ = λ .
Thus λ is real, proving (1). Similarly, µ is real, so equation (8.6) gives λ 〈z, w〉= µ〈z, w〉. If λ 6= µ , this
implies 〈z, w〉= 0, proving (2).

The principal axes theorem (Theorem 8.2.2) asserts that every real symmetric matrix A is orthogonally
diagonalizable—that is PT AP is diagonal where P is an orthogonal matrix (P−1 = PT ). The next theorem
identifies the complex analogs of these orthogonal real matrices.
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Definition 8.19 Orthogonal and Orthonormal Vectors in Cn

As in the real case, a set of nonzero vectors {z1, z2, . . . , zm} in Cn is called orthogonal if
〈zi, z j〉= 0 whenever i 6= j, and it is orthonormal if, in addition, ‖zi‖= 1 for each i.

Theorem 8.7.6

The following are equivalent for an n×n complex matrix A.

1. A is invertible and A−1 = AH .

2. The rows of A are an orthonormal set in Cn.

3. The columns of A are an orthonormal set in Cn.

Proof. If A =
[

c1 c2 · · · cn

]
is a complex matrix with jth column c j, then AT A =

[
〈ci, c j〉

]
, as in

Theorem 8.2.1. Now (1)⇔ (2) follows, and (1)⇔ (3) is proved in the same way.

Definition 8.20 Unitary Matrices

A square complex matrix U is called unitary if U−1 =UH .

Thus a real matrix is unitary if and only if it is orthogonal.

Example 8.7.5

The matrix A =

[
1+ i 1
1− i i

]
has orthogonal columns, but the rows are not orthogonal.

Normalizing the columns gives the unitary matrix 1
2

[
1+ i

√
2

1− i
√

2i

]
.

Given a real symmetric matrix A, the diagonalization algorithm in Section 3.3 leads to a procedure for
finding an orthogonal matrix P such that PT AP is diagonal (see Example 8.2.4). The following example
illustrates Theorem 8.7.5 and shows that the technique works for complex matrices.

Example 8.7.6

Consider the hermitian matrix A =

[
3 2+ i

2− i 7

]
. Find the eigenvalues of A, find two

orthonormal eigenvectors, and so find a unitary matrix U such that UHAU is diagonal.

Solution. The characteristic polynomial of A is

cA(x) = det (xI−A) = det

[
x−3 −2− i

−2+ i x−7

]
= (x−2)(x−8)
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Hence the eigenvalues are 2 and 8 (both real as expected), and corresponding eigenvectors are[
2+ i

−1

]
and

[
1

2− i

]
(orthogonal as expected). Each has length

√
6 so, as in the (real)

diagonalization algorithm, let U = 1√
6

[
2+ i 1
−1 2− i

]
be the unitary matrix with the normalized

eigenvectors as columns.

Then UHAU =

[
2 0
0 8

]
is diagonal.

Unitary Diagonalization

An n× n complex matrix A is called unitarily diagonalizable if UHAU is diagonal for some unitary
matrix U . As Example 8.7.6 suggests, we are going to prove that every hermitian matrix is unitarily
diagonalizable. However, with only a little extra effort, we can get a very important theorem that has this
result as an easy consequence.

A complex matrix is called upper triangular if every entry below the main diagonal is zero. We owe
the following theorem to Issai Schur.16

Theorem 8.7.7: Schur’s Theorem

If A is any n×n complex matrix, there exists a unitary matrix U such that

UHAU = T

is upper triangular. Moreover, the entries on the main diagonal of T are the eigenvalues
λ1, λ2, . . . , λn of A (including multiplicities).

Proof. We use induction on n. If n = 1, A is already upper triangular. If n > 1, assume the theorem is valid
for (n− 1)× (n− 1) complex matrices. Let λ1 be an eigenvalue of A, and let y1 be an eigenvector with
‖y1‖ = 1. Then y1 is part of a basis of Cn (by the analog of Theorem 6.4.1), so the (complex analog of
the) Gram-Schmidt process provides y2, . . . , yn such that {y1, y2, . . . , yn} is an orthonormal basis of Cn.
If U1 =

[
y1 y2 · · · yn

]
is the matrix with these vectors as its columns, then (see Lemma 5.4.3)

UH
1 AU1 =

[
λ1 X1

0 A1

]

in block form. Now apply induction to find a unitary (n−1)× (n−1) matrix W1 such that W H
1 A1W1 = T1

is upper triangular. Then U2 =

[
1 0
0 W1

]
is a unitary n× n matrix. Hence U = U1U2 is unitary (using

Theorem 8.7.6), and

UHAU =UH
2 (UH

1 AU1)U2

16Issai Schur (1875–1941) was a German mathematician who did fundamental work in the theory of representations of
groups as matrices.
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=

[
1 0
0 W H

1

][
λ1 X1

0 A1

][
1 0
0 W1

]
=

[
λ1 X1W1

0 T1

]

is upper triangular. Finally, A and UHAU = T have the same eigenvalues by (the complex version of)
Theorem 5.5.1, and they are the diagonal entries of T because T is upper triangular.

The fact that similar matrices have the same traces and determinants gives the following consequence
of Schur’s theorem.

Corollary 8.7.1

Let A be an n×n complex matrix, and let λ1, λ2, . . . , λn denote the eigenvalues of A, including
multiplicities. Then

det A = λ1λ2 · · ·λn and tr A = λ1 +λ2 + · · ·+λn

Schur’s theorem asserts that every complex matrix can be “unitarily triangularized.” However, we

cannot substitute “unitarily diagonalized” here. In fact, if A =

[
1 1
0 1

]
, there is no invertible complex

matrix U at all such that U−1AU is diagonal. However, the situation is much better for hermitian matrices.

Theorem 8.7.8: Spectral Theorem

If A is hermitian, there is a unitary matrix U such that UHAU is diagonal.

Proof. By Schur’s theorem, let UHAU = T be upper triangular where U is unitary. Since A is hermitian,
this gives

T H = (UHAU)H =UHAHUHH =UHAU = T

This means that T is both upper and lower triangular. Hence T is actually diagonal.

The principal axes theorem asserts that a real matrix A is symmetric if and only if it is orthogonally
diagonalizable (that is, PT AP is diagonal for some real orthogonal matrix P). Theorem 8.7.8 is the complex
analog of half of this result. However, the converse is false for complex matrices: There exist unitarily
diagonalizable matrices that are not hermitian.

Example 8.7.7

Show that the non-hermitian matrix A =

[
0 1
−1 0

]
is unitarily diagonalizable.

Solution. The characteristic polynomial is cA(x) = x2 +1. Hence the eigenvalues are i and −i, and

it is easy to verify that

[
i

−1

]
and

[
−1

i

]
are corresponding eigenvectors. Moreover, these

eigenvectors are orthogonal and both have length
√

2, so U = 1√
2

[
i −1
−1 i

]
is a unitary matrix
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such that UHAU =

[
i 0
0 −i

]
is diagonal.

There is a very simple way to characterize those complex matrices that are unitarily diagonalizable.
To this end, an n×n complex matrix N is called normal if NNH = NHN. It is clear that every hermitian

or unitary matrix is normal, as is the matrix

[
0 1
−1 0

]
in Example 8.7.7. In fact we have the following

result.

Theorem 8.7.9

An n×n complex matrix A is unitarily diagonalizable if and only if A is normal.

Proof. Assume first that UHAU = D, where U is unitary and D is diagonal. Then DDH = DHD as is
easily verified. Because DDH = UH(AAH)U and DHD = UH(AHA)U , it follows by cancellation that
AAH = AHA.

Conversely, assume A is normal—that is, AAH = AHA. By Schur’s theorem, let UHAU = T , where T

is upper triangular and U is unitary. Then T is normal too:

T T H =UH(AAH)U =UH(AHA)U = T HT

Hence it suffices to show that a normal n×n upper triangular matrix T must be diagonal. We induct on n;
it is clear if n = 1. If n > 1 and T =

[
ti j

]
, then equating (1, 1)-entries in T T H and T HT gives

|t11|2 + |t12|2 + · · ·+ |t1n|2 = |t11|2

This implies t12 = t13 = · · · = t1n = 0, so T =

[
t11 0
0 T1

]
in block form. Hence T =

[
t11 0
0 T H

1

]
so

T T H = T HT implies T1T H
1 = T1T H

1 . Thus T1 is diagonal by induction, and the proof is complete.

We conclude this section by using Schur’s theorem (Theorem 8.7.7) to prove a famous theorem about
matrices. Recall that the characteristic polynomial of a square matrix A is defined by cA(x) = det (xI−A),
and that the eigenvalues of A are just the roots of cA(x).

Theorem 8.7.10: Cayley-Hamilton Theorem17

If A is an n×n complex matrix, then cA(A) = 0; that is, A is a root of its characteristic polynomial.

Proof. If p(x) is any polynomial with complex coefficients, then p(P−1AP) = P−1p(A)P for any invertible
complex matrix P. Hence, by Schur’s theorem, we may assume that A is upper triangular. Then the
eigenvalues λ1, λ2, . . . , λn of A appear along the main diagonal, so

cA(x) = (x−λ1)(x−λ2)(x−λ3) · · ·(x−λn)

17Named after the English mathematician Arthur Cayley (1821–1895) and William Rowan Hamilton (1805–1865), an Irish
mathematician famous for his work on physical dynamics.
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Thus
cA(A) = (A−λ1I)(A−λ2I)(A−λ3I) · · ·(A−λnI)

Note that each matrix A−λiI is upper triangular. Now observe:

1. A−λ1I has zero first column because column 1 of A is (λ1, 0, 0, . . . , 0)T .

2. Then (A−λ1I)(A−λ2I) has the first two columns zero because the second column of (A−λ2I) is
(b, 0, 0, . . . , 0)T for some constant b.

3. Next (A−λ1I)(A−λ2I)(A−λ3I) has the first three columns zero because column 3 of (A−λ3I) is
(c, d, 0, . . . , 0)T for some constants c and d.

Continuing in this way we see that (A−λ1I)(A−λ2I)(A−λ3I) · · ·(A−λnI) has all n columns zero; that
is, cA(A) = 0.

Exercises for 8.7

Exercise 8.7.1 In each case, compute the norm of the
complex vector.

a. (1, 1− i, −2, i)

b. (1− i, 1+ i, 1, −1)

c. (2+ i, 1− i, 2, 0, −i)

d. (−2, −i, 1+ i, 1− i, 2i)

Exercise 8.7.2 In each case, determine whether the two
vectors are orthogonal.

a. (4, −3i, 2+ i), (i, 2, 2−4i)

b. (i, −i, 2+ i), (i, i, 2− i)

c. (1, 1, i, i), (1, i, −i, 1)

d. (4+4i, 2+ i, 2i), (−1+ i, 2, 3−2i)

Exercise 8.7.3 A subset U of Cn is called a complex

subspace of Cn if it contains 0 and if, given v and w in
U , both v+w and zv lie in U (z any complex number).
In each case, determine whether U is a complex subspace
of C3.

a. U = {(w, w, 0) | w in C}

b. U = {(w, 2w, a) | w in C, a in R}

c. U = R3

d. U = {(v+w, v−2w, v) | v, w in C}

Exercise 8.7.4 In each case, find a basis over C, and
determine the dimension of the complex subspace U of
C3 (see the previous exercise).

a. U = {(w, v+w, v− iw) | v, w in C}

b. U = {(iv+w, 0, 2v−w) | v, w in C}

c. U = {(u, v, w) | iu−3v+(1− i)w = 0;
u, v, w in C}

d. U = {(u, v, w) | 2u+(1+ i)v− iw = 0;
u, v, w in C}

Exercise 8.7.5 In each case, determine whether the
given matrix is hermitian, unitary, or normal.

[
1 −i

i i

]
a.

[
2 3
−3 2

]
b.

[
1 i

−i 2

]
c.

[
1 −i

i −1

]
d.

1√
2

[
1 −1
1 1

]
e.

[
1 1+ i

1+ i i

]
f.
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[
1+ i 1
−i −1+ i

]
g. 1√

2|z|

[
z z

z −z

]
, z 6= 0h.

Exercise 8.7.6 Show that a matrix N is normal if and
only if NNT = NT N.

Exercise 8.7.7 Let A =

[
z v

v w

]
where v, w, and z are

complex numbers. Characterize in terms of v, w, and z

when A is

hermitiana. unitaryb.

normal.c.

Exercise 8.7.8 In each case, find a unitary matrix U

such that UHAU is diagonal.

a. A =

[
1 i

−i 1

]

b. A =

[
4 3− i

3+ i 1

]

c. A =

[
a b

−b a

]
; a, b, real

d. A =

[
2 1+ i

1− i 3

]

e. A =




1 0 1+ i

0 2 0
1− i 0 0




f. A =




1 0 0
0 1 1+ i

0 1− i 2




Exercise 8.7.9 Show that 〈Ax, y〉= 〈x, AHy〉 holds for
all n×n matrices A and for all n-tuples x and y in Cn.

Exercise 8.7.10

a. Prove (1) and (2) of Theorem 8.7.1.

b. Prove Theorem 8.7.2.

c. Prove Theorem 8.7.3.

Exercise 8.7.11

a. Show that A is hermitian if and only if A = AT .

b. Show that the diagonal entries of any hermitian
matrix are real.

Exercise 8.7.12

a. Show that every complex matrix Z can be written
uniquely in the form Z = A+ iB, where A and B

are real matrices.

b. If Z = A + iB as in (a), show that Z is hermi-
tian if and only if A is symmetric, and B is skew-
symmetric (that is, BT =−B).

Exercise 8.7.13 If Z is any complex n×n matrix, show
that ZZH and Z +ZH are hermitian.

Exercise 8.7.14 A complex matrix B is called skew-

hermitian if BH =−B.

a. Show that Z−ZH is skew-hermitian for any square
complex matrix Z.

b. If B is skew-hermitian, show that B2 and iB are
hermitian.

c. If B is skew-hermitian, show that the eigenvalues
of B are pure imaginary (iλ for real λ ).

d. Show that every n× n complex matrix Z can be
written uniquely as Z = A+B, where A is hermi-
tian and B is skew-hermitian.

Exercise 8.7.15 Let U be a unitary matrix. Show that:

a. ‖Ux‖= ‖x‖ for all columns x in Cn.

b. |λ |= 1 for every eigenvalue λ of U .
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Exercise 8.7.16

a. If Z is an invertible complex matrix, show that ZH

is invertible and that (ZH)−1 = (Z−1)H .

b. Show that the inverse of a unitary matrix is again
unitary.

c. If U is unitary, show that UH is unitary.

Exercise 8.7.17 Let Z be an m× n matrix such that
ZHZ = In (for example, Z is a unit column in Cn).

a. Show that V = ZZH is hermitian and satisfies
V 2 =V .

b. Show that U = I− 2ZZH is both unitary and her-
mitian (so U−1 =UH =U ).

Exercise 8.7.18

a. If N is normal, show that zN is also normal for all
complex numbers z.

b. Show that (a) fails if normal is replaced by hermi-

tian.

Exercise 8.7.19 Show that a real 2×2 normal matrix is

either symmetric or has the form

[
a b

−b a

]
.

Exercise 8.7.20 If A is hermitian, show that all the co-
efficients of cA(x) are real numbers.

Exercise 8.7.21

a. If A=

[
1 1
0 1

]
, show that U−1AU is not diagonal

for any invertible complex matrix U .

b. If A =

[
0 1
−1 0

]
, show that U−1AU is not upper

triangular for any real invertible matrix U .

Exercise 8.7.22 If A is any n× n matrix, show that
UHAU is lower triangular for some unitary matrix U .

Exercise 8.7.23 If A is a 3 × 3 matrix, show that
A2 = 0 if and only if there exists a unitary matrix U

such that UHAU has the form




0 0 u

0 0 v

0 0 0


 or the form




0 u v

0 0 0
0 0 0


.

Exercise 8.7.24 If A2 = A, show that rank A = tr A.
[Hint: Use Schur’s theorem.]

Exercise 8.7.25 Let A be any n× n complex matrix
with eigenvalues λ1, . . . , λn. Show that A = P + N

where Nn = 0 and P = UDUT where U is unitary and
D = diag (λ1, . . . , λn). [Hint: Schur’s theorem]

8.8 An Application to Linear Codes over Finite Fields

For centuries mankind has been using codes to transmit messages. In many cases, for example transmit-
ting financial, medical, or military information, the message is disguised in such a way that it cannot be
understood by an intruder who intercepts it, but can be easily “decoded” by the intended receiver. This
subject is called cryptography and, while intriguing, is not our focus here. Instead, we investigate methods
for detecting and correcting errors in the transmission of the message.

The stunning photos of the planet Saturn sent by the space probe are a very good example of how
successful these methods can be. These messages are subject to “noise” such as solar interference which
causes errors in the message. The signal is received on Earth with errors that must be detected and cor-
rected before the high-quality pictures can be printed. This is done using error-correcting codes. To see
how, we first discuss a system of adding and multiplying integers while ignoring multiples of a fixed
integer.
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Modular Arithmetic

We work in the set Z= {0, ±1, ±2, ±3, . . .} of integers, that is the set of whole numbers. Everyone is
familiar with the process of “long division” from arithmetic. For example, we can divide an integer a by 5
and leave a remainder “modulo 5” in the set {0, 1, 2, 3, 4}. As an illustration

19 = 3 ·5+4

so the remainder of 19 modulo 5 is 4. Similarly, the remainder of 137 modulo 5 is 2 because we have
137 = 27 ·5+2. This works even for negative integers: For example,

−17 = (−4) ·5+3

so the remainder of −17 modulo 5 is 3.

This process is called the division algorithm. More formally, let n≥ 2 denote an integer. Then every
integer a can be written uniquely in the form

a = qn+ r where q and r are integers and 0≤ r ≤ n−1

Here q is called the quotient of a modulo n, and r is called the remainder of a modulo n. We refer to n

as the modulus. Thus, if n = 6, the fact that 134 = 22 ·6+2 means that 134 has quotient 22 and remainder
2 modulo 6.

Our interest here is in the set of all possible remainders modulo n. This set is denoted

Zn = {0, 1, 2, 3, . . . , n−1}

and is called the set of integers modulo n. Thus every integer is uniquely represented in Zn by its remain-
der modulo n.

We are going to show how to do arithmetic in Zn by adding and multiplying modulo n. That is, we
add or multiply two numbers in Zn by calculating the usual sum or product in Z and taking the remainder
modulo n. It is proved in books on abstract algebra that the usual laws of arithmetic hold in Zn for any
modulus n ≥ 2. This seems remarkable until we remember that these laws are true for ordinary addition
and multiplication and all we are doing is reducing modulo n.

To illustrate, consider the case n = 6, so that Z6 = {0, 1, 2, 3, 4, 5}. Then 2+5 = 1 in Z6 because 7
leaves a remainder of 1 when divided by 6. Similarly, 2 · 5 = 4 in Z6, while 3+5 = 2, and 3+3 = 0. In
this way we can fill in the addition and multiplication tables for Z6; the result is:

Tables for Z6

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1
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Calculations in Z6 are carried out much as in Z . As an illustration, consider the familiar “distributive law”
a(b+ c) = ab+ ac from ordinary arithmetic. This holds for all a, b, and c in Z6; we verify a particular
case:

3(5+4) = 3 ·5+3 ·4 in Z6

In fact, the left side is 3(5+ 4) = 3 · 3 = 3, and the right side is (3 · 5)+ (3 · 4) = 3+ 0 = 3 too. Hence
doing arithmetic in Z6 is familiar. However, there are differences. For example, 3 ·4 = 0 in Z6, in contrast
to the fact that a ·b = 0 in Z can only happen when either a = 0 or b = 0. Similarly, 32 = 3 in Z6, unlike
Z.

Note that we will make statements like −30 = 19 in Z7; it means that −30 and 19 leave the same
remainder 5 when divided by 7, and so are equal in Z7 because they both equal 5. In general, if n ≥ 2 is
any modulus, the operative fact is that

a = b in Zn if and only if a−b is a multiple of n

In this case we say that a and b are equal modulo n, and write a = b(mod n).

Arithmetic in Zn is, in a sense, simpler than that for the integers. For example, consider negatives.
Given the element 8 in Z17, what is −8? The answer lies in the observation that 8+ 9 = 0 in Z17, so
−8 = 9 (and −9 = 8). In the same way, finding negatives is not difficult in Zn for any modulus n.

Finite Fields

In our study of linear algebra so far the scalars have been real (possibly complex) numbers. The set R
of real numbers has the property that it is closed under addition and multiplication, that the usual laws of
arithmetic hold, and that every nonzero real number has an inverse in R. Such a system is called a field.
Hence the real numbers R form a field, as does the set C of complex numbers. Another example is the set
Q of all rational numbers (fractions); however the set Z of integers is not a field—for example, 2 has no
inverse in the set Z because 2 · x = 1 has no solution x in Z .

Our motivation for isolating the concept of a field is that nearly everything we have done remains valid
if the scalars are restricted to some field: The gaussian algorithm can be used to solve systems of linear
equations with coefficients in the field; a square matrix with entries from the field is invertible if and only
if its determinant is nonzero; the matrix inversion algorithm works in the same way; and so on. The reason
is that the field has all the properties used in the proofs of these results for the field R, so all the theorems
remain valid.

It turns out that there are finite fields—that is, finite sets that satisfy the usual laws of arithmetic and in
which every nonzero element a has an inverse, that is an element b in the field such that ab = 1. If n≥ 2 is
an integer, the modular system Zn certainly satisfies the basic laws of arithmetic, but it need not be a field.
For example we have 2 · 3 = 0 in Z6 so 3 has no inverse in Z6 (if 3a = 1 then 2 = 2 · 1 = 2(3a) = 0a = 0
in Z6, a contradiction). The problem is that 6 = 2 ·3 can be properly factored in Z.

An integer p≥ 2 is called a prime if p cannot be factored as p = ab where a and b are positive integers
and neither a nor b equals 1. Thus the first few primes are 2, 3, 5, 7, 11, 13, 17, . . . . If n ≥ 2 is not a
prime and n = ab where 2 ≤ a, b ≤ n− 1, then ab = 0 in Zn and it follows (as above in the case n = 6)
that b cannot have an inverse in Zn, and hence that Zn is not a field. In other words, if Zn is a field, then n

must be a prime. Surprisingly, the converse is true:
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Theorem 8.8.1

If p is a prime, then Zp is a field using addition and multiplication modulo p.

The proof can be found in books on abstract algebra.18 If p is a prime, the field Zp is called the field of

integers modulo p.

For example, consider the case n = 5. Then Z5 = {0, 1, 2, 3, 4} and the addition and multiplication
tables are:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Hence 1 and 4 are self-inverse in Z5, and 2 and 3 are inverses of each other, so Z5 is indeed a field. Here
is another important example.

Example 8.8.1

If p = 2, then Z2 = {0, 1} is a field with addition and multiplication modulo 2 given by the tables

+ 0 1
0 0 1
1 1 0

and
× 0 1
0 0 0
1 0 1

This is binary arithmetic, the basic algebra of computers.

While it is routine to find negatives of elements of Zp, it is a bit more difficult to find inverses in Zp.
For example, how does one find 14−1 in Z17? Since we want 14−1 · 14 = 1 in Z17, we are looking for an
integer a with the property that a ·14= 1 modulo 17. Of course we can try all possibilities in Z17 (there are
only 17 of them!), and the result is a = 11 (verify). However this method is of little use for large primes
p, and it is a comfort to know that there is a systematic procedure (called the euclidean algorithm) for
finding inverses in Zp for any prime p. Furthermore, this algorithm is easy to program for a computer. To
illustrate the method, let us once again find the inverse of 14 in Z17.

Example 8.8.2

Find the inverse of 14 in Z17.

Solution. The idea is to first divide p = 17 by 14:

17 = 1 ·14+3

Now divide (the previous divisor) 14 by the new remainder 3 to get

14 = 4 ·3+2

18See, for example, W. Keith Nicholson, Introduction to Abstract Algebra, 4th ed., (New York: Wiley, 2012).
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and then divide (the previous divisor) 3 by the new remainder 2 to get

3 = 1 ·2+1

It is a theorem of number theory that, because 17 is a prime, this procedure will always lead to a
remainder of 1. At this point we eliminate remainders in these equations from the bottom up:

1 = 3−1 ·2 since 3 = 1 ·2+1

= 3−1 · (14−4 ·3) = 5 ·3−1 ·14 since 2 = 14−4 ·3
= 5 · (17−1 ·14)−1 ·14= 5 ·17−6 ·14 since 3 = 17−1 ·14

Hence (−6) ·14 = 1 in Z17, that is, 11 ·14 = 1. So 14−1 = 11 in Z17.

As mentioned above, nearly everything we have done with matrices over the field of real numbers can
be done in the same way for matrices with entries from Zp. We illustrate this with one example. Again
the reader is referred to books on abstract algebra.

Example 8.8.3

Determine if the matrix A =

[
1 4
6 5

]
from Z7 is invertible and, if so, find its inverse.

Solution. Working in Z7 we have det A = 1 ·5−6 ·4 = 5−3 = 2 6= 0 in Z7, so A is invertible.

Hence Example 2.4.4 gives A−1 = 2−1

[
5 −4
−6 1

]
. Note that 2−1 = 4 in Z7 (because 2 ·4 = 1 in

Z7). Note also that −4 = 3 and −6 = 1 in Z7, so finally A−1 = 4

[
5 3
1 1

]
=

[
6 5
4 4

]
. The reader

can verify that indeed

[
1 4
6 5

][
6 5
4 4

]
=

[
1 0
0 1

]
in Z7.

While we shall not use them, there are finite fields other than Zp for the various primes p. Surprisingly,
for every prime p and every integer n ≥ 1, there exists a field with exactly pn elements, and this field is
unique.19 It is called the Galois field of order pn, and is denoted GF(pn).

19See, for example, W. K. Nicholson, Introduction to Abstract Algebra, 4th ed., (New York: Wiley, 2012).
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Error Correcting Codes

Coding theory is concerned with the transmission of information over a channel that is affected by noise.
The noise causes errors, so the aim of the theory is to find ways to detect such errors and correct at least
some of them. General coding theory originated with the work of Claude Shannon (1916–2001) who
showed that information can be transmitted at near optimal rates with arbitrarily small chance of error.

Let F denote a finite field and, if n≥ 1, let

Fn denote the F-vector space of 1×n row matrices over F

with the usual componentwise addition and scalar multiplication. In this context, the rows in Fn are
called words (or n-words) and, as the name implies, will be written as [a b c d] = abcd. The individual
components of a word are called its digits. A nonempty subset C of Fn is called a code (or an n-code),
and the elements in C are called code words. If F = Z2, these are called binary codes.

If a code word w is transmitted and an error occurs, the resulting word v is decoded as the code word
“closest” to v in Fn. To make sense of what “closest” means, we need a distance function on Fn analogous
to that in Rn (see Theorem 5.3.3). The usual definition in Rn does not work in this situation. For example,
if w = 1111 in (Z2)

4 then the square of the distance of w from 0 is

(1−0)2+(1−0)2 +(1−0)2+(1−0)2 = 0

even though w 6= 0.

However there is a satisfactory notion of distance in Fn due to Richard Hamming (1915–1998). Given
a word w = a1a2 · · ·an in Fn, we first define the Hamming weight wt(w) to be the number of nonzero
digits in w:

wt(w) = wt(a1a2 · · ·an) = |{i | ai 6= 0}|
Clearly, 0≤ wt(w) ≤ n for every word w in Fn. Given another word v = b1b2 · · ·bn in Fn, the Hamming

distance d(v, w) between v and w is defined by

d(v, w) = wt(v−w) = |{i | bi 6= ai}|

In other words, d(v, w) is the number of places at which the digits of v and w differ. The next result
justifies using the term distance for this function d.

Theorem 8.8.2

Let u, v, and w denote words in Fn. Then:

1. d(v, w)≥ 0.

2. d(v, w) = 0 if and only if v = w.

3. d(v, w) = d(w, v).

4. d(v, w)≤ d(v, u)+d(u, w)
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Proof. (1) and (3) are clear, and (2) follows because wt(v) = 0 if and only if v = 0. To prove (4), write
x = v−u and y = u−w. Then (4) reads wt(x+y)≤ wt(x)+wt(y). If x = a1a2 · · ·an and y = b1b2 · · ·bn,
this follows because ai +bi 6= 0 implies that either ai 6= 0 or bi 6= 0.

Given a word w in Fn and a real number r > 0, define the ball Br(w) of radius r (or simply the r-ball)
about w as follows:

Br(w) = {x ∈ Fn | d(w, x)≤ r}
Using this we can describe one of the most useful decoding methods.

Nearest Neighbour Decoding

Let C be an n-code, and suppose a word v is transmitted and w is received. Then w is decoded as
the code word in C closest to it. (If there is a tie, choose arbitrarily.)

Using this method, we can describe how to construct a code C that can detect (or correct) t errors.
Suppose a code word c is transmitted and a word w is received with s errors where 1 ≤ s ≤ t. Then s is
the number of places at which the c- and w-digits differ, that is, s = d(c, w). Hence Bt(c) consists of all
possible received words where at most t errors have occurred.

Assume first that C has the property that no code word lies in the t-ball of another code word. Because
w is in Bt(c) and w 6= c, this means that w is not a code word and the error has been detected. If we
strengthen the assumption on C to require that the t-balls about code words are pairwise disjoint, then w

belongs to a unique ball (the one about c), and so w will be correctly decoded as c.

To describe when this happens, let C be an n-code. The minimum distance d of C is defined to be the
smallest distance between two distinct code words in C; that is,

d = min{d(v, w) | v and w in C;v 6= w}

Theorem 8.8.3

Let C be an n-code with minimum distance d. Assume that nearest neighbour decoding is used.
Then:

1. If t < d, then C can detect t errors.20

2. If 2t < d, then C can correct t errors.

Proof.
1. Let c be a code word in C. If w ∈ Bt(c), then d(w, c) ≤ t < d by hypothesis. Thus the t-ball Bt(c)

contains no other code word, so C can detect t errors by the preceding discussion.

2. If 2t < d, it suffices (again by the preceding discussion) to show that the t-balls about distinct code
words are pairwise disjoint. But if c 6= c′ are code words in C and w is in Bt(c

′)∩ Bt(c), then
Theorem 8.8.2 gives

d(c, c′)≤ d(c, w)+d(w, c′)≤ t + t = 2t < d

by hypothesis, contradicting the minimality of d.

20We say that C detects (corrects) t errors if C can detect (or correct) t or fewer errors.
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Example 8.8.4

If F = Z3 = {0, 1, 2}, the 6-code {111111, 111222, 222111} has minimum distance 3 and so can
detect 2 errors and correct 1 error.

Let c be any word in Fn. A word w satisfies d(w, c) = r if and only if w and c differ in exactly r digits.
If |F| = q, there are exactly

(
n
r

)
(q−1)r such words where

(
n
r

)
is the binomial coefficient. Indeed, choose

the r places where they differ in
(

n
r

)
ways, and then fill those places in w in (q−1)r ways. It follows that

the number of words in the t-ball about c is

|Bt(c)|=
(

n
0

)
+
(

n
1

)
(q−1)+

(
n
2

)
(q−1)2 + · · ·+

(
n
t

)
(q−1)t = ∑t

i=0

(
n
i

)
(q−1)i

This leads to a useful bound on the size of error-correcting codes.

Theorem 8.8.4: Hamming Bound

Let C be an n-code over a field F that can correct t errors using nearest neighbour decoding. If
|F|= q, then

|C| ≤ qn

∑t
i=0 (

n
i)(q−1)i

Proof. Write k = ∑t
i=0

(
n
i

)
(q− 1)i. The t-balls centred at distinct code words each contain k words, and

there are |C| of them. Moreover they are pairwise disjoint because the code corrects t errors (see the
discussion preceding Theorem 8.8.3). Hence they contain k · |C| distinct words, and so k · |C| ≤ |Fn|= qn,
proving the theorem.

A code is called perfect if there is equality in the Hamming bound; equivalently, if every word in Fn

lies in exactly one t-ball about a code word. For example, if F = Z2, n = 3, and t = 1, then q = 2 and(3
0

)
+
(3

1

)
= 4, so the Hamming bound is 23

4 = 2. The 3-code C = {000, 111} has minimum distance 3 and
so can correct 1 error by Theorem 8.8.3. Hence C is perfect.

Linear Codes

Up to this point we have been regarding any nonempty subset of the F-vector space Fn as a code. However
many important codes are actually subspaces. A subspace C ⊆ Fn of dimension k ≥ 1 over F is called an
(n, k)-linear code, or simply an (n, k)-code. We do not regard the zero subspace (that is, k = 0) as a code.

Example 8.8.5

If F = Z2 and n≥ 2, the n-parity-check code is constructed as follows: An extra digit is added to
each word in Fn−1 to make the number of 1s in the resulting word even (we say such words have
even parity). The resulting (n, n−1)-code is linear because the sum of two words of even parity
again has even parity.

Many of the properties of general codes take a simpler form for linear codes. The following result gives
a much easier way to find the minimal distance of a linear code, and sharpens the results in Theorem 8.8.3.
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Theorem 8.8.5

Let C be an (n, k)-code with minimum distance d over a finite field F , and use nearest neighbour
decoding.

1. d = min{wt(w) | 0 6= w ∈C}.

2. C can detect t ≥ 1 errors if and only if t < d.

3. C can correct t ≥ 1 errors if and only if 2t < d.

4. If C can correct t ≥ 1 errors and |F|= q, then
(

n
0

)
+
(

n
1

)
(q−1)+

(
n
2

)
(q−1)2+ · · ·+

(
n
t

)
(q−1)t ≤ qn−k

Proof.

1. Write d′ = min{wt(w) | 0 6= w in C}. If v 6= w are words in C, then d(v, w) = wt(v−w) ≥ d′

because v−w is in the subspace C. Hence d ≥ d′. Conversely, given w 6= 0 in C then, since 0 is in
C, we have wt(w) = d(w, 0)≥ d by the definition of d. Hence d′ ≥ d and (1) is proved.

2. Assume that C can detect t errors. Given w 6= 0 in C, the t-ball Bt(w) about w contains no other
code word (see the discussion preceding Theorem 8.8.3). In particular, it does not contain the code
word 0, so t < d(w, 0) = wt(w). Hence t < d by (1). The converse is part of Theorem 8.8.3.

3. We require a result of interest in itself.

Claim. Suppose c in C has wt(c)≤ 2t. Then Bt(0)∩Bt(c) is nonempty.

Proof. If wt(c)≤ t, then c itself is in Bt(0)∩Bt(c). So assume t < wt(c)≤ 2t. Then c has more than
t nonzero digits, so we can form a new word w by changing exactly t of these nonzero digits to zero.
Then d(w, c) = t, so w is in Bt(c). But wt(w) = wt(c)− t ≤ t, so w is also in Bt(0). Hence w is in
Bt(0)∩Bt(c), proving the Claim.

If C corrects t errors, the t-balls about code words are pairwise disjoint (see the discussion preceding
Theorem 8.8.3). Hence the claim shows that wt(c)> 2t for all c 6= 0 in C, from which d > 2t by (1).
The other inequality comes from Theorem 8.8.3.

4. We have |C|= qk because dim F C = k, so this assertion restates Theorem 8.8.4.

Example 8.8.6

If F = Z2, then

C = {0000000, 0101010, 1010101, 1110000, 1011010, 0100101, 0001111, 1111111}

is a (7, 3)-code; in fact C = span{0101010, 1010101, 1110000}. The minimum distance for C is
3, the minimum weight of a nonzero word in C.
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Matrix Generators

Given a linear n-code C over a finite field F , the way encoding works in practice is as follows. A message
stream is blocked off into segments of length k≤ n called messages. Each message u in Fk is encoded as a
code word, the code word is transmitted, the receiver decodes the received word as the nearest code word,
and then re-creates the original message. A fast and convenient method is needed to encode the incoming
messages, to decode the received word after transmission (with or without error), and finally to retrieve
messages from code words. All this can be achieved for any linear code using matrix multiplication.

Let G denote a k×n matrix over a finite field F , and encode each message u in Fk as the word uG in
Fn using matrix multiplication (thinking of words as rows). This amounts to saying that the set of code
words is the subspace C = {uG | u in Fk} of Fn. This subspace need not have dimension k for every
k×n matrix G. But, if {e1, e2, . . . , ek} is the standard basis of Fk, then eiG is row i of G for each I and
{e1G, e2G, . . . , ekG} spans C. Hence dim C = k if and only if the rows of G are independent in Fn, and
these matrices turn out to be exactly the ones we need. For reference, we state their main properties in
Lemma 8.8.1 below (see Theorem 5.4.4).

Lemma 8.8.1

The following are equivalent for a k×n matrix G over a finite field F:

1. rank G = k.

2. The columns of G span Fk.

3. The rows of G are independent in Fn.

4. The system GX = B is consistent for every column B in Rk.

5. GK = Ik for some n× k matrix K.

Proof. (1)⇒ (2). This is because dim (col G) = k by (1).

(2)⇒ (4). G
[

x1 · · · xn

]T
= x1c1 + · · ·+ xncn where c j is column j of G.

(4)⇒ (5). G
[

k1 · · · kk

]
=
[

Gk1 · · · Gkk

]
for columns k j.

(5) ⇒ (3). If a1R1 + · · ·+ akRk = 0 where Ri is row i of G, then
[

a1 · · · ak

]
G = 0, so by (5),[

a1 · · · ak

]
= 0. Hence each ai = 0, proving (3).

(3)⇒ (1). rank G = dim ( row G) = k by (3).

Note that Theorem 5.4.4 asserts that, over the real field R, the properties in Lemma 8.8.1 hold if and only if

GGT is invertible. But this need not be true in general. For example, if F = Z2 and G =

[
1 0 1 0
0 1 0 1

]
,

then GGT = 0. The reason is that the dot product w ·w can be zero for w in Fn even if w 6= 0. However,
even though GGT is not invertible, we do have GK = I2 for some 4×2 matrix K over F as Lemma 8.8.1

asserts (in fact, K =

[
1 0 0 0
0 1 0 0

]T

is one such matrix).
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Let C ⊆ Fn be an (n, k)-code over a finite field F . If {w1, . . . , wk} is a basis of C, let G =




w1
...

wk




be the k×n matrix with the wi as its rows. Let {e1, . . . , ek} is the standard basis of Fk regarded as rows.
Then wi = eiG for each i, so C = span{w1, . . . , wk}= span{e1G, . . . , ekG}. It follows (verify) that

C = {uG | u in Fk}

Because of this, the k×n matrix G is called a generator of the code C, and G has rank k by Lemma 8.8.1
because its rows wi are independent.

In fact, every linear code C in Fn has a generator of a simple, convenient form. If G is a generator
matrix for C, let R be the reduced row-echelon form of G. We claim that C is also generated by R. Since
G→ R by row operations, Theorem 2.5.1 shows that these same row operations

[
G Ik

]
→
[

R W
]
,

performed on
[

G Ik

]
, produce an invertible k×k matrix W such that R=WG. Then C = {uR | u in Fk}.

[In fact, if u is in Fk, then uG = u1R where u1 = uW−1 is in Fk, and uR = u2G where u2 = uW is in Fk].
Thus R is a generator of C, so we may assume that G is in reduced row-echelon form.

In that case, G has no row of zeros (since rank G = k) and so contains all the columns of Ik. Hence a
series of column interchanges will carry G to the block form G′′ =

[
Ik A

]
for some k× (n− k) matrix

A. Hence the code C′′ = {uG′′ | u in Fk} is essentially the same as C; the code words in C′′ are obtained
from those in C by a series of column interchanges. Hence if C is a linear (n, k)-code, we may (and shall)
assume that the generator matrix G has the form

G =
[

Ik A
]

for some k× (n− k) matrix A

Such a matrix is called a standard generator, or a systematic generator, for the code C. In this case,
if u is a message word in Fk, the first k digits of the encoded word uG are just the first k digits of u, so
retrieval of u from uG is very simple indeed. The last n− k digits of uG are called parity digits.

Parity-Check Matrices

We begin with an important theorem about matrices over a finite field.

Theorem 8.8.6

Let F be a finite field, let G be a k×n matrix of rank k, let H be an (n−k)×n matrix of rank n−k,
and let C = {uG | u in Fk} and D = {vH | V in Fn−k} be the codes they generate. Then the
following conditions are equivalent:

1. GHT = 0.

2. HGT = 0.

3. C = {w in Fn | wHT = 0}.

4. D = {w in Fn | wGT = 0}.

Proof. First, (1)⇔ (2) holds because HGT and GHT are transposes of each other.
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(1)⇒ (3) Consider the linear transformation T : Fn→ Fn−k defined by T (w) = wHT for all w in Fn.
To prove (3) we must show that C = ker T . We have C⊆ ker T by (1) because T (uG) = uGHT = 0 for all
u in Fk. Since dim C = rank G = k, it is enough (by Theorem 6.4.2) to show dim (ker T ) = k. However
the dimension theorem (Theorem 7.2.4) shows that dim (ker T ) = n− dim ( im T ), so it is enough to show
that dim ( im T ) = n− k. But if R1, . . . , Rn are the rows of HT , then block multiplication gives

im T = {wHT | w in Rn}= span{R1, . . . , Rn}= row (HT )

Hence dim ( im T ) = rank (HT ) = rank H = n− k, as required. This proves (3).

(3)⇒ (1) If u is in Fk, then uG is in C so, by (3), u(GHT ) = (uG)HT = 0. Since u is arbitrary in Fk,
it follows that GHT = 0.

(2)⇔ (4) The proof is analogous to (1)⇔ (3).

The relationship between the codes C and D in Theorem 8.8.6 will be characterized in another way in the
next subsection.

If C is an (n, k)-code, an (n−k)×n matrix H is called a parity-check matrix for C if C = {w |wHT = 0}
as in Theorem 8.8.6. Such matrices are easy to find for a given code C. If G =

[
Ik A

]
is a standard

generator for C where A is k× (n− k), the (n− k)×n matrix

H =
[
−AT In−k

]

is a parity-check matrix for C. Indeed, rank H = n− k because the rows of H are independent (due to the
presence of In−k), and

GHT =
[

Ik A
][ −A

In−k

]
=−A+A = 0

by block multiplication. Hence H is a parity-check matrix for C and we have C = {w in Fn | wHT = 0}.
Since wHT and HwT are transposes of each other, this shows that C can be characterized as follows:

C = {w in Fn | HwT = 0}

by Theorem 8.8.6.

This is useful in decoding. The reason is that decoding is done as follows: If a code word c is trans-
mitted and v is received, then z = v− c is called the error. Since HcT = 0, we have HzT = HvT and this
word

s = HzT = HvT

is called the syndrome. The receiver knows v and s = HvT , and wants to recover c. Since c = v− z, it is
enough to find z. But the possibilities for z are the solutions of the linear system

HzT = s

where s is known. Now recall that Theorem 2.2.3 shows that these solutions have the form z = x+s where
x is any solution of the homogeneous system HxT = 0, that is, x is any word in C (by Lemma 8.8.1). In
other words, the errors z are the elements of the set

C+ s = {c+ s | c in C}

The set C+ s is called a coset of C. Let |F|= q. Since |C+ s|= |C|= qn−k the search for z is reduced
from qn possibilities in Fn to qn−k possibilities in C+ s. This is called syndrome decoding, and various
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methods for improving efficiency and accuracy have been devised. The reader is referred to books on
coding for more details.21

Orthogonal Codes

Let F be a finite field. Given two words v = a1a2 · · ·an and w = b1b2 · · ·bn in Fn, the dot product v ·w is
defined (as in Rn) by

v ·w = a1b1 +a2b2 + · · ·+anbn

Note that v ·w is an element of F , and it can be computed as a matrix product: v ·w = vwT .

If C ⊆ Fn is an (n, k)-code, the orthogonal complement C⊥ is defined as in Rn:

C⊥ = {v in Fn | v · c = 0 for all c in C}

This is easily seen to be a subspace of Fn, and it turns out to be an (n, n− k)-code. This follows when
F = R because we showed (in the projection theorem) that n = dim U⊥+ dim U for any subspace U of
Rn. However the proofs break down for a finite field F because the dot product in Fn has the property that
w ·w = 0 can happen even if w 6= 0. Nonetheless, the result remains valid.

Theorem 8.8.7

Let C be an (n, k)-code over a finite field F , let G =
[

Ik A
]

be a standard generator for C where
A is k× (n− k), and write H =

[
−AT In−k

]
for the parity-check matrix. Then:

1. H is a generator of C⊥.

2. dim (C⊥) = n− k = rank H.

3. C⊥⊥ =C and dim (C⊥)+ dim C = n.

Proof. As in Theorem 8.8.6, let D = {vH | v in Fn−k} denote the code generated by H. Observe first that,
for all w in Fn and all u in Fk, we have

w · (uG) = w(uG)T = w(GT uT ) = (wGT ) ·u

Since C = {uG | u in Fk}, this shows that w is in C⊥ if and only if (wGT ) ·u = 0 for all u in Fk; if and
only if22 wGT = 0; if and only if w is in D (by Theorem 8.8.6). Thus C⊥ = D and a similar argument
shows that D⊥ =C.

1. H generates C⊥ because C⊥ = D = {vH | v in Fn−k}.

2. This follows from (1) because, as we observed above, rank H = n− k.

3. Since C⊥ = D and D⊥ = C, we have C⊥⊥ = (C⊥)⊥ = D⊥ = C. Finally the second equation in (3)
restates (2) because dim C = k.

21For an elementary introduction, see V. Pless, Introduction to the Theory of Error-Correcting Codes, 3rd ed., (New York:
Wiley, 1998).

22If v ·u = 0 for every u in Fk, then v = 0—let u range over the standard basis of Fk.
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We note in passing that, if C is a subspace of Rk, we have C +C⊥ = Rk by the projection theorem
(Theorem 8.1.3), and C ∩C⊥ = {0} because any vector x in C ∩C⊥ satisfies ‖x‖2 = x · x = 0. How-
ever, this fails in general. For example, if F = Z2 and C = span{1010, 0101} in F4 then C⊥ = C, so
C+C⊥ =C =C∩C⊥.

We conclude with one more example. If F = Z2, consider the standard matrix G below, and the
corresponding parity-check matrix H:

G =




1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1


 and H =




1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1




The code C = {uG | u in F4} generated by G has dimension k = 4, and is called the Hamming (7, 4)-code.
The vectors in C are listed in the first table below. The dual code generated by H has dimension n− k = 3
and is listed in the second table.

u uG

0000 0000000
0001 0001011
0010 0010101
0011 0011110
0100 0100110
0101 0101101
0110 0110011

C : 0111 0111000
1000 1000111
1001 1001100
1010 1010010
1011 1011001
1100 1100001
1101 1101010
1110 1110100
1111 1111111

v vH

000 0000000
001 1011001
010 1101010

C⊥ : 011 0110011
100 1110100
101 0101101
110 0011110
111 1000111

Clearly each nonzero code word in C has weight at least 3, so C has minimum distance d = 3. Hence C

can detect two errors and correct one error by Theorem 8.8.5. The dual code has minimum distance 4 and
so can detect 3 errors and correct 1 error.
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Exercises for 8.8

Exercise 8.8.1 Find all a in Z10 such that:

a. a2 = a.

b. a has an inverse (and find the inverse).

c. ak = 0 for some k ≥ 1.

d. a = 2k for some k ≥ 1.

e. a = b2 for some b in Z10.

Exercise 8.8.2

a. Show that if 3a = 0 in Z10, then necessarily a = 0
in Z10.

b. Show that 2a = 0 in Z10 holds in Z10 if and only
if a = 0 or a = 5.

Exercise 8.8.3 Find the inverse of:

8 in Z13;a. 11 in Z19.b.

Exercise 8.8.4 If ab = 0 in a field F , show that either
a = 0 or b = 0.

Exercise 8.8.5 Show that the entries of the last column
of the multiplication table of Zn are

0, n−1, n−2, . . . , 2, 1

in that order.

Exercise 8.8.6 In each case show that the matrix A is
invertible over the given field, and find A−1.

a. A =

[
1 4
2 1

]
over Z5.

b. A =

[
5 6
4 3

]
over Z7.

Exercise 8.8.7 Consider the linear system
3x + y + 4z = 3
4x + 3y + z = 1

. In each case solve the system by

reducing the augmented matrix to reduced row-echelon
form over the given field:

Z5a. Z7b.

Exercise 8.8.8 Let K be a vector space over Z2 with ba-
sis {1, t}, so K = {a+bt | a, b, in Z2}. It is known that
K becomes a field of four elements if we define t2 = 1+t.
Write down the multiplication table of K.

Exercise 8.8.9 Let K be a vector space over Z3 with ba-
sis {1, t}, so K = {a+bt | a, b, in Z3}. It is known that
K becomes a field of nine elements if we define t2 = −1
in Z3. In each case find the inverse of the element x of K:

x = 1+2ta. x = 1+ tb.

Exercise 8.8.10 How many errors can be detected or
corrected by each of the following binary linear codes?

a. C = {0000000, 0011110, 0100111, 0111001,
1001011, 1010101, 1101100, 1110010}

b. C = {0000000000, 0010011111, 0101100111,
0111111000, 1001110001, 1011101110,
1100010110, 1110001001}

Exercise 8.8.11

a. If a binary linear (n, 2)-code corrects one error,
show that n≥ 5. [Hint: Hamming bound.]

b. Find a (5, 2)-code that corrects one error.

Exercise 8.8.12

a. If a binary linear (n, 3)-code corrects two errors,
show that n≥ 9. [Hint: Hamming bound.]

b. If G =




1 0 0 1 1 1 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 0 1 1 0 1 0 1 1 1


,

show that the binary (10, 3)-code generated by
G corrects two errors. [It can be shown that no
binary (9, 3)-code corrects two errors.]

Exercise 8.8.13

a. Show that no binary linear (4, 2)-code can correct
single errors.
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b. Find a binary linear (5, 2)-code that can correct
one error.

Exercise 8.8.14 Find the standard generator matrix G

and the parity-check matrix H for each of the following
systematic codes:

a. {00000, 11111} over Z2.

b. Any systematic (n, 1)-code where n≥ 2.

c. The code in Exercise 8.8.10(a).

d. The code in Exercise 8.8.10(b).

Exercise 8.8.15 Let c be a word in Fn. Show that
Bt(c) = c+Bt(0), where we write

c+Bt(0) = {c+v | v in Bt(0)}

Exercise 8.8.16 If a (n, k)-code has two standard gen-
erator matrices G and G1, show that G = G1.

Exercise 8.8.17 Let C be a binary linear n-code (over
Z2). Show that either each word in C has even weight, or
half the words in C have even weight and half have odd
weight. [Hint: The dimension theorem.]

8.9 An Application to Quadratic Forms

An expression like x2
1 + x2

2 + x2
3− 2x1x3 + x2x3 is called a quadratic form in the variables x1, x2, and x3.

In this section we show that new variables y1, y2, and y3 can always be found so that the quadratic form,
when expressed in terms of the new variables, has no cross terms y1y2, y1y3, or y2y3. Moreover, we do this
for forms involving any finite number of variables using orthogonal diagonalization. This has far-reaching
applications; quadratic forms arise in such diverse areas as statistics, physics, the theory of functions of
several variables, number theory, and geometry.

Definition 8.21 Quadratic Form

A quadratic form q in the n variables x1, x2, . . . , xn is a linear combination of terms
x2

1, x2
2, . . . , x2

n, and cross terms x1x2, x1x3, x2x3, . . . .

If n = 3, q has the form

q = a11x2
1 +a22x2

2 +a33x2
3 +a12x1x2 +a21x2x1 +a13x1x3 +a31x3x1 +a23x2x3 +a32x3x2

In general
q = a11x2

1 +a22x2
2 + · · ·+annx2

n +a12x1x2 +a13x1x3 + · · ·
This sum can be written compactly as a matrix product

q = q(x) = xT Ax

where x = (x1, x2, . . . , xn) is thought of as a column, and A =
[
ai j

]
is a real n× n matrix. Note that if

i 6= j, two separate terms ai jxix j and a jix jxi are listed, each of which involves xix j, and they can (rather
cleverly) be replaced by

1
2(ai j +a ji)xix j and 1

2(ai j +a ji)x jxi

respectively, without altering the quadratic form. Hence there is no loss of generality in assuming that xix j

and x jxi have the same coefficient in the sum for q. In other words, we may assume that A is symmetric.
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Example 8.9.1

Write q = x2
1 +3x2

3 +2x1x2− x1x3 in the form q(x) = xT Ax, where A is a symmetric 3×3 matrix.

Solution. The cross terms are 2x1x2 = x1x2 + x2x1 and −x1x3 =−1
2x1x3− 1

2x3x1.
Of course, x2x3 and x3x2 both have coefficient zero, as does x2

2. Hence

q(x) =
[

x1 x2 x3
]



1 1 −1
2

1 0 0
−1

2 0 3






x1

x2

x3




is the required form (verify).

We shall assume from now on that all quadratic forms are given by

q(x) = xT Ax

where A is symmetric. Given such a form, the problem is to find new variables y1, y2, . . . , yn, related to
x1, x2, . . . , xn, with the property that when q is expressed in terms of y1, y2, . . . , yn, there are no cross
terms. If we write

y = (y1, y2, . . . , yn)
T

this amounts to asking that q= yT Dy where D is diagonal. It turns out that this can always be accomplished
and, not surprisingly, that D is the matrix obtained when the symmetric matrix A is orthogonally diagonal-
ized. In fact, as Theorem 8.2.2 shows, a matrix P can be found that is orthogonal (that is, P−1 = PT ) and
diagonalizes A:

PT AP = D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn




The diagonal entries λ1, λ2, . . . , λn are the (not necessarily distinct) eigenvalues of A, repeated according
to their multiplicities in cA(x), and the columns of P are corresponding (orthonormal) eigenvectors of A.
As A is symmetric, the λi are real by Theorem 5.5.7.

Now define new variables y by the equations

x = Py equivalently y = PT x

Then substitution in q(x) = xT Ax gives

q = (Py)T A(Py) = yT (PT AP)y = yT Dy = λ1y2
1 +λ2y2

2 + · · ·+λny2
n

Hence this change of variables produces the desired simplification in q.

Theorem 8.9.1: Diagonalization Theorem

Let q = xT Ax be a quadratic form in the variables x1, x2, . . . , xn, where x = (x1, x2, . . . , xn)
T and

A is a symmetric n×n matrix. Let P be an orthogonal matrix such that PT AP is diagonal, and
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define new variables y = (y1, y2, . . . , yn)
T by

x = Py equivalently y = PT x

If q is expressed in terms of these new variables y1, y2, . . . , yn, the result is

q = λ1y2
1 +λ2y2

2 + · · ·+λny2
n

where λ1, λ2, . . . , λn are the eigenvalues of A repeated according to their multiplicities.

Let q = xT Ax be a quadratic form where A is a symmetric matrix and let λ1, . . . , λn be the (real) eigen-
values of A repeated according to their multiplicities. A corresponding set {f1, . . . , fn} of orthonormal
eigenvectors for A is called a set of principal axes for the quadratic form q. (The reason for the name
will become clear later.) The orthogonal matrix P in Theorem 8.9.1 is given as P =

[
f1 · · · fn

]
, so the

variables X and Y are related by

x = Py =
[

f1 f2 · · · fn

]




y1

y2
...

yn


= y1f1 + y2f2 + · · ·+ ynfn

Thus the new variables yi are the coefficients when x is expanded in terms of the orthonormal basis
{f1, . . . , fn} of Rn. In particular, the coefficients yi are given by yi = x · fi by the expansion theorem
(Theorem 5.3.6). Hence q itself is easily computed from the eigenvalues λi and the principal axes fi:

q = q(x) = λ1(x · f1)
2 + · · ·+λn(x · fn)

2

Example 8.9.2

Find new variables y1, y2, y3, and y4 such that

q = 3(x2
1 + x2

2 + x2
3 + x2

4)+2x1x2−10x1x3 +10x1x4 +10x2x3−10x2x4 +2x3x4

has diagonal form, and find the corresponding principal axes.

Solution. The form can be written as q = xT Ax, where

x =




x1

x2

x3

x4


 and A =




3 1 −5 5
1 3 5 −5
−5 5 3 1

5 −5 1 3




A routine calculation yields

cA(x) = det (xI−A) = (x−12)(x+8)(x−4)2

so the eigenvalues are λ1 = 12, λ2 =−8, and λ3 = λ4 = 4. Corresponding orthonormal
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eigenvectors are the principal axes:

f1 =
1
2




1
−1
−1

1


 f2 =

1
2




1
−1

1
−1


 f3 =

1
2




1
1
1
1


 f4 =

1
2




1
1
−1
−1




The matrix

P =
[

f1 f2 f3 f4
]
= 1

2




1 1 1 1
−1 −1 1 1
−1 1 1 −1

1 −1 1 −1




is thus orthogonal, and P−1AP = PT AP is diagonal. Hence the new variables y and the old
variables x are related by y = PT x and x = Py. Explicitly,

y1 =
1
2(x1− x2− x3 + x4) x1 =

1
2(y1 + y2 + y3 + y4)

y2 =
1
2(x1− x2 + x3− x4) x2 =

1
2(−y1− y2 + y3 + y4)

y3 =
1
2(x1 + x2 + x3 + x4) x3 =

1
2(−y1 + y2 + y3− y4)

y4 =
1
2(x1 + x2− x3− x4) x4 =

1
2(y1− y2 + y3− y4)

If these xi are substituted in the original expression for q, the result is

q = 12y2
1−8y2

2 +4y2
3 +4y2

4

This is the required diagonal form.

It is instructive to look at the case of quadratic forms in two variables x1 and x2. Then the principal
axes can always be found by rotating the x1 and x2 axes counterclockwise about the origin through an
angle θ . This rotation is a linear transformation Rθ : R2→ R2, and it is shown in Theorem 2.6.4 that Rθ

has matrix P =

[
cosθ −sinθ
sinθ cosθ

]
. If {e1, e2} denotes the standard basis of R2, the rotation produces a

new basis {f1, f2} given by

f1 = Rθ (e1) =

[
cosθ
sinθ

]
and f2 = Rθ (e2) =

[
−sinθ

cosθ

]
(8.7)

y1

y2

θ

O x1

x2
p

y1
y2

x1

x2
Given a point p =

[
x1

x2

]
= x1e1 + x2e2 in the original system, let y1

and y2 be the coordinates of p in the new system (see the diagram). That
is, [

x1

x2

]
= p = y1f1 + y2f2 =

[
cosθ −sinθ
sinθ cosθ

][
y1

y2

]
(8.8)

Writing x =

[
x1

x2

]
and y =

[
y1

y2

]
, this reads x = Py so, since P is or-

thogonal, this is the change of variables formula for the rotation as in Theorem 8.9.1.
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If r 6= 0 6= s, the graph of the equation rx2
1 + sx2

2 = 1 is called an ellipse if rs > 0 and a hyperbola if
rs < 0. More generally, given a quadratic form

q = ax2
1 +bx1x2 + cx2

2 where not all of a, b, and c are zero

the graph of the equation q = 1 is called a conic. We can now completely describe this graph. There are
two special cases which we leave to the reader.

1. If exactly one of a and c is zero, then the graph of q = 1 is a parabola.

So we assume that a 6= 0 and c 6= 0. In this case, the description depends on the quantity b2−4ac, called
the discriminant of the quadratic form q.

2. If b2−4ac = 0, then either both a≥ 0 and c≥ 0, or both a≤ 0 and c≤ 0.
Hence q = (

√
ax1 +

√
cx2)

2 or q = (
√
−ax1 +

√
−cx2)

2, so the graph of q = 1 is a pair of straight

lines in either case.

So we also assume that b2− 4ac 6= 0. But then the next theorem asserts that there exists a rotation of
the plane about the origin which transforms the equation ax2

1 +bx1x2 + cx2
2 = 1 into either an ellipse or a

hyperbola, and the theorem also provides a simple way to decide which conic it is.

Theorem 8.9.2

Consider the quadratic form q = ax2
1 +bx1x2 + cx2

2 where a, c, and b2−4ac are all nonzero.

1. There is a counterclockwise rotation of the coordinate axes about the origin such that, in the
new coordinate system, q has no cross term.

2. The graph of the equation
ax2

1 +bx1x2 + cx2
2 = 1

is an ellipse if b2−4ac < 0 and an hyperbola if b2−4ac > 0.

Proof. If b = 0, q already has no cross term and (1) and (2) are clear. So assume b 6= 0. The matrix

A =

[
a 1

2b
1
2b c

]
of q has characteristic polynomial cA(x) = x2 − (a+ c)x− 1

4(b
2− 4ac). If we write

d =
√

b2 +(a− c)2 for convenience; then the quadratic formula gives the eigenvalues

λ1 =
1
2 [a+ c−d] and λ2 =

1
2 [a+ c+d]

with corresponding principal axes

f1 =
1√

b2+(a−c−d)2

[
a− c−d

b

]
and

f2 =
1√

b2+(a−c−d)2

[
−b

a− c−d

]
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as the reader can verify. These agree with equation (8.7) above if θ is an angle such that

cosθ = a−c−d√
b2+(a−c−d)2

and sinθ = b√
b2+(a−c−d)2

Then P =
[

f1 f2
]
=

[
cosθ −sinθ
sinθ cosθ

]
diagonalizes A and equation (8.8) becomes the formula x = Py

in Theorem 8.9.1. This proves (1).

Finally, A is similar to

[
λ1 0
0 λ2

]
so λ1λ2 = det A = 1

4(4ac−b2). Hence the graph of λ1y2
1+λ2y2

2 = 1

is an ellipse if b2 < 4ac and an hyperbola if b2 > 4ac. This proves (2).

Example 8.9.3

Consider the equation x2 + xy+ y2 = 1. Find a rotation so that the equation has no cross term.

Solution.

y1

y2

3π
4

x1

x2 Here a = b = c = 1 in the notation of Theorem 8.9.2, so
cosθ = −1√

2
and sinθ = 1√

2
. Hence θ = 3π

4 will do it. The new

variables are y1 =
1√
2
(x2− x1) and y2 =

−1√
2
(x2 + x1) by (8.8),

and the equation becomes y2
1 +3y2

2 = 2. The angle θ has been
chosen such that the new y1 and y2 axes are the axes of symmetry

of the ellipse (see the diagram). The eigenvectors f1 =
1√
2

[
−1

1

]

and f2 =
1√
2

[
−1
−1

]
point along these axes of symmetry, and

this is the reason for the name principal axes.

The determinant of any orthogonal matrix P is either 1 or −1 (because PPT = I). The orthogonal

matrices

[
cosθ −sinθ
sinθ cosθ

]
arising from rotations all have determinant 1. More generally, given any

quadratic form q = xT Ax, the orthogonal matrix P such that PT AP is diagonal can always be chosen so
that det P = 1 by interchanging two eigenvalues (and hence the corresponding columns of P). It is shown
in Theorem 10.4.4 that orthogonal 2× 2 matrices with determinant 1 correspond to rotations. Similarly,
it can be shown that orthogonal 3× 3 matrices with determinant 1 correspond to rotations about a line
through the origin. This extends Theorem 8.9.2: Every quadratic form in two or three variables can be
diagonalized by a rotation of the coordinate system.
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Congruence

We return to the study of quadratic forms in general.

Theorem 8.9.3

If q(x) = xT Ax is a quadratic form given by a symmetric matrix A, then A is uniquely determined
by q.

Proof. Let q(x) = xT Bx for all x where BT = B. If C = A−B, then CT =C and xTCx = 0 for all x. We
must show that C = 0. Given y in Rn,

0 = (x+y)TC(x+y) = xTCx+xTCy+yTCx+yTCy

= xTCy+yTCx

But yTCx = (xTCy)T = xTCy (it is 1×1). Hence xTCy = 0 for all x and y in Rn. If e j is column j of
In, then the (i, j)-entry of C is eT

i Ce j = 0. Thus C = 0.

Hence we can speak of the symmetric matrix of a quadratic form.

On the other hand, a quadratic form q in variables xi can be written in several ways as a linear combi-
nation of squares of new variables, even if the new variables are required to be linear combinations of the
xi. For example, if q = 2x2

1−4x1x2 + x2
2 then

q = 2(x1− x2)
2− x2

2 and q =−2x2
1 +(2x1− x2)

2

The question arises: How are these changes of variables related, and what properties do they share? To
investigate this, we need a new concept.

Let a quadratic form q = q(x) = xT Ax be given in terms of variables x = (x1, x2, . . . , xn)
T . If the new

variables y = (y1, y2, . . . , yn)
T are to be linear combinations of the xi, then y = Ax for some n×n matrix

A. Moreover, since we want to be able to solve for the xi in terms of the yi, we ask that the matrix A be
invertible. Hence suppose U is an invertible matrix and that the new variables y are given by

y =U−1x, equivalently x =Uy

In terms of these new variables, q takes the form

q = q(x) = (Uy)T A(Uy) = yT (UT AU)y

That is, q has matrix UT AU with respect to the new variables y. Hence, to study changes of variables
in quadratic forms, we study the following relationship on matrices: Two n× n matrices A and B are
called congruent, written A

c∼ B, if B =UT AU for some invertible matrix U . Here are some properties of
congruence:

1. A
c∼ A for all A.

2. If A
c∼ B, then B

c∼ A.
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3. If A
c∼ B and B

c∼C, then A
c∼C.

4. If A
c∼ B, then A is symmetric if and only if B is symmetric.

5. If A
c∼ B, then rank A = rank B.

The converse to (5) can fail even for symmetric matrices.

Example 8.9.4

The symmetric matrices A =

[
1 0
0 1

]
and B =

[
1 0
0 −1

]
have the same rank but are not

congruent. Indeed, if A
c∼ B, an invertible matrix U exists such that B =UT AU =UTU . But then

−1 = det B = (det U)2, a contradiction.

The key distinction between A and B in Example 8.9.4 is that A has two positive eigenvalues (counting
multiplicities) whereas B has only one.

Theorem 8.9.4: Sylvester’s Law of Inertia

If A
c∼ B, then A and B have the same number of positive eigenvalues, counting multiplicities.

The proof is given at the end of this section.

The index of a symmetric matrix A is the number of positive eigenvalues of A. If q = q(x) = xT Ax

is a quadratic form, the index and rank of q are defined to be, respectively, the index and rank of the
matrix A. As we saw before, if the variables expressing a quadratic form q are changed, the new matrix is
congruent to the old one. Hence the index and rank depend only on q and not on the way it is expressed.

Now let q = q(x) = xT Ax be any quadratic form in n variables, of index k and rank r, where A is
symmetric. We claim that new variables z can be found so that q is completely diagonalized—that is,

q(z) = z2
1 + · · ·+ z2

k− z2
k+1−·· ·− z2

r

If k≤ r≤ n, let Dn(k, r) denote the n×n diagonal matrix whose main diagonal consists of k ones, followed
by r− k minus ones, followed by n− r zeros. Then we seek new variables z such that

q(z) = zT Dn(k, r)z

To determine z, first diagonalize A as follows: Find an orthogonal matrix P0 such that

PT
0 AP0 = D = diag (λ1, λ2, . . . , λr, 0, . . . , 0)

is diagonal with the nonzero eigenvalues λ1, λ2, . . . , λr of A on the main diagonal (followed by n− r

zeros). By reordering the columns of P0, if necessary, we may assume that λ1, . . . , λk are positive and
λk+1, . . . , λr are negative. This being the case, let D0 be the n×n diagonal matrix

D0 = diag

(
1√
λ1

, . . . , 1√
λk

, 1√
−λk+1

, . . . , 1√
−λr

, 1, . . . , 1

)
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Then DT
0 DD0 = Dn(k, r), so if new variables z are given by x = (P0D0)z, we obtain

q(z) = zT Dn(k, r)z = z2
1 + · · ·+ z2

k− z2
k+1−·· ·− z2

r

as required. Note that the change-of-variables matrix P0D0 from z to x has orthogonal columns (in fact,
scalar multiples of the columns of P0).

Example 8.9.5

Completely diagonalize the quadratic form q in Example 8.9.2 and find the index and rank .

Solution. In the notation of Example 8.9.2, the eigenvalues of the matrix A of q are 12, −8, 4, 4; so
the index is 3 and the rank is 4. Moreover, the corresponding orthogonal eigenvectors are f1, f2, f3

(see Example 8.9.2), and f4. Hence P0 =
[

f1 f3 f4 f2
]

is orthogonal and

PT
0 AP0 = diag (12, 4, 4, −8)

As before, take D0 = diag ( 1√
12

, 1
2 , 1

2 , 1√
8
) and define the new variables z by x = (P0D0)z. Hence

the new variables are given by z = D−1
0 PT

0 x. The result is

z1 =
√

3(x1− x2− x3 + x4)

z2 = x1 + x2 + x3 + x4

z3 = x1 + x2− x3− x4

z4 =
√

2(x1− x2 + x3− x4)

This discussion gives the following information about symmetric matrices.

Theorem 8.9.5

Let A and B be symmetric n×n matrices, and let 0≤ k ≤ r ≤ n.

1. A has index k and rank r if and only if A
c∼ Dn(k, r).

2. A
c∼ B if and only if they have the same rank and index.

Proof.

1. If A has index k and rank r, take U = P0D0 where P0 and D0 are as described prior to Example 8.9.5.
Then UT AU = Dn(k, r). The converse is true because Dn(k, r) has index k and rank r (using
Theorem 8.9.4).

2. If A and B both have index k and rank r, then A
c∼ Dn(k, r)

c∼ B by (1). The converse was given
earlier.
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Proof of Theorem 8.9.4.

By Theorem 8.9.1, A
c∼ D1 and B

c∼ D2 where D1 and D2 are diagonal and have the same eigenvalues as A

and B, respectively. We have D1
c∼D2, (because A

c∼ B), so we may assume that A and B are both diagonal.
Consider the quadratic form q(x) = xT Ax. If A has k positive eigenvalues, q has the form

q(x) = a1x2
1 + · · ·+akx2

k−ak+1x2
k+1−·· ·−arx

2
r , ai > 0

where r = rank A = rank B. The subspace W1 = {x | xk+1 = · · ·= xr = 0} of Rn has dimension n− r+ k

and satisfies q(x)> 0 for all x 6= 0 in W1.

On the other hand, if B =UT AU , define new variables y by x =Uy. If B has k′ positive eigenvalues, q

has the form
q(x) = b1y2

1 + · · ·+bk′y
2
k′−bk′+1y2

k′+1−·· ·−bry
2
r , bi > 0

Let f1, . . . , fn denote the columns of U . They are a basis of Rn and

x =Uy =
[

f1 · · · fn

]



y1
...

yn


= y1f1 + · · ·+ ynfn

Hence the subspace W2 = span{fk′+1, . . . , fr} satisfies q(x)< 0 for all x 6= 0 in W2. Note dim W2 = r−k′.
It follows that W1 and W2 have only the zero vector in common. Hence, if B1 and B2 are bases of W1 and
W2, respectively, then (Exercise 6.3.33) B1∪B2 is an independent set of (n− r+ k)+(r− k′) = n+ k− k′

vectors in Rn. This implies that k ≤ k′, and a similar argument shows k′ ≤ k.

Exercises for 8.9

Exercise 8.9.1 In each case, find a symmetric matrix A

such that q = xT Bx takes the form q = xT Ax.

[
1 1
0 1

]
a.

[
1 1
−1 2

]
b.




1 0 1
1 1 0
0 1 1


c.




1 2 −1
4 1 0
5 −2 3


d.

Exercise 8.9.2 In each case, find a change of variables
that will diagonalize the quadratic form q. Determine the
index and rank of q.

a. q = x2
1 +2x1x2 + x2

2

b. q = x2
1 +4x1x2 + x2

2

c. q = x2
1 + x2

2 + x2
3−4(x1x2 + x1x3 + x2x3)

d. q = 7x2
1 + x2

2 + x2
3 +8x1x2 +8x1x3−16x2x3

e. q = 2(x2
1 + x2

2 + x2
3− x1x2 + x1x3− x2x3)

f. q = 5x2
1 +8x2

2 +5x2
3−4(x1x2 +2x1x3 + x2x3)

g. q = x2
1− x2

3−4x1x2 +4x2x3

h. q = x2
1 + x2

3−2x1x2 +2x2x3

Exercise 8.9.3 For each of the following, write the equa-
tion in terms of new variables so that it is in standard
position, and identify the curve.

xy = 1a. 3x2−4xy = 2b.

6x2 +6xy−2y2 = 5c. 2x2 +4xy+5y2 = 1d.
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Exercise 8.9.4 Consider the equation ax2 +bxy+ cy2 =
d, where b 6= 0. Introduce new variables x1 and y1 by
rotating the axes counterclockwise through an angle θ .
Show that the resulting equation has no x1y1-term if θ is
given by

cos 2θ = a−c√
b2+(a−c)2

sin2θ = b√
b2+(a−c)2

[Hint: Use equation (8.8) preceding Theorem 8.9.2
to get x and y in terms of x1 and y1, and substitute.]

Exercise 8.9.5 Prove properties (1)–(5) preceding Ex-
ample 8.9.4.

Exercise 8.9.6 If A
c∼ B show that A is invertible if and

only if B is invertible.

Exercise 8.9.7 If x = (x1, . . . , xn)
T is a column of vari-

ables, A = AT is n× n, B is 1× n, and c is a constant,
xT Ax+Bx= c is called a quadratic equation in the vari-
ables xi.

a. Show that new variables y1, . . . , yn can be found
such that the equation takes the form

λ1y2
1 + · · ·+λry

2
r + k1y1 + · · ·+ knyn = c

b. Put x2
1 +3x2

2 +3x2
3+4x1x2−4x1x3+5x1−6x3 = 7

in this form and find variables y1, y2, y3 as in (a).

Exercise 8.9.8 Given a symmetric matrix A, define
qA(x) = xT Ax. Show that B

c∼ A if and only if B is
symmetric and there is an invertible matrix U such that
qB(x) = qA(Ux) for all x. [Hint: Theorem 8.9.3.]

Exercise 8.9.9 Let q(x) = xT Ax be a quadratic form
where A = AT .

a. Show that q(x)> 0 for all x 6= 0, if and only if A is
positive definite (all eigenvalues are positive). In
this case, q is called positive definite.

b. Show that new variables y can be found such that
q = ‖y‖2 and y = Ux where U is upper triangu-
lar with positive diagonal entries. [Hint: Theo-
rem 8.3.3.]

Exercise 8.9.10 A bilinear form β on Rn is a function
that assigns to every pair x, y of columns in Rn a number
β (x, y) in such a way that

β (rx+ sy, z) = rβ (x, z)+ sβ (y, z)

β (x, ry+ sz) = rβ (x, z)+ sβ (x, z)

for all x, y, z in Rn and r, s in R. If β (x, y) = β (y, x) for
all x, y, β is called symmetric.

a. If β is a bilinear form, show that an n× n matrix
A exists such that β (x, y) = xT Ay for all x, y.

b. Show that A is uniquely determined by β .

c. Show that β is symmetric if and only if A = AT .

8.10 An Application to Constrained Optimization

It is a frequent occurrence in applications that a function q = q(x1, x2, . . . , xn) of n variables, called an
objective function, is to be made as large or as small as possible among all vectors x = (x1, x2, . . . , xn)
lying in a certain region of Rn called the feasible region. A wide variety of objective functions q arise in
practice; our primary concern here is to examine one important situation where q is a quadratic form. The
next example gives some indication of how such problems arise.
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Example 8.10.1

O √
3

c = 1

c = 2

5x2
1 +3x2

2 ≤ 15

1 2

1

2

√
5

x1

x2

A politician proposes to spend x1 dollars annually on health
care and x2 dollars annually on education. She is constrained
in her spending by various budget pressures, and one model of this
is that the expenditures x1 and x2 should satisfy a constraint like

5x2
1 +3x2

2 ≤ 15

Since xi ≥ 0 for each i, the feasible region is the shaded area
shown in the diagram. Any choice of feasible point (x1, x2) in this
region will satisfy the budget constraints. However, these choices
have different effects on voters, and the politician wants to choose

x = (x1, x2) to maximize some measure q = q(x1, x2) of voter satisfaction. Thus the assumption is
that, for any value of c, all points on the graph of q(x1, x2) = c have the same appeal to voters.
Hence the goal is to find the largest value of c for which the graph of q(x1, x2) = c contains a
feasible point.
The choice of the function q depends upon many factors; we will show how to solve the problem
for any quadratic form q (even with more than two variables). In the diagram the function q is
given by

q(x1, x2) = x1x2

and the graphs of q(x1, x2) = c are shown for c = 1 and c = 2. As c increases the graph of
q(x1, x2) = c moves up and to the right. From this it is clear that there will be a solution for some
value of c between 1 and 2 (in fact the largest value is c = 1

2

√
15 = 1.94 to two decimal places).

The constraint 5x2
1 +3x2

2 ≤ 15 in Example 8.10.1 can be put in a standard form. If we divide through

by 15, it becomes
(

x1√
3

)2
+
(

x2√
5

)2
≤ 1. This suggests that we introduce new variables y = (y1, y2) where

y1 =
x1√

3
and y2 =

x2√
5
. Then the constraint becomes ‖y‖2 ≤ 1, equivalently ‖y‖ ≤ 1. In terms of these new

variables, the objective function is q =
√

15y1y2, and we want to maximize this subject to ‖y‖ ≤ 1. When
this is done, the maximizing values of x1 and x2 are obtained from x1 =

√
3y1 and x2 =

√
5y2.

Hence, for constraints like that in Example 8.10.1, there is no real loss in generality in assuming that
the constraint takes the form ‖x‖ ≤ 1. In this case the principal axes theorem solves the problem. Recall
that a vector in Rn of length 1 is called a unit vector.

Theorem 8.10.1

Consider the quadratic form q = q(x) = xT Ax where A is an n×n symmetric matrix, and let λ1

and λn denote the largest and smallest eigenvalues of A, respectively. Then:

1. max{q(x) | ‖x‖ ≤ 1}= λ1, and q(f1) = λ1 where f1 is any unit λ1-eigenvector.

2. min{q(x) | ‖x‖ ≤ 1}= λn, and q(fn) = λn where fn is any unit λn-eigenvector.

Proof. Since A is symmetric, let the (real) eigenvalues λi of A be ordered as to size as follows:

λ1 ≥ λ2 ≥ ·· · ≥ λn
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By the principal axes theorem, let P be an orthogonal matrix such that PT AP = D = diag (λ1, λ2, . . . , λn).
Define y= PT x, equivalently x= Py, and note ‖y‖= ‖x‖ because ‖y‖2 = yT y = xT (PPT )x= xT x= ‖x‖2.
If we write y = (y1, y2, . . . , yn)

T , then

q(x) = q(Py) = (Py)T A(Py)

= yT (PT AP)y = yT Dy

= λ1y2
1 +λ2y2

2 + · · ·+λny2
n (8.9)

Now assume that ‖x‖ ≤ 1. Since λi ≤ λ1 for each i, (8.9) gives

q(x) = λ1y2
1 +λ2y2

2 + · · ·+λny2
n ≤ λ1y2

1 +λ1y2
2 + · · ·+λ1y2

n = λ1‖y‖2 ≤ λ1

because ‖y‖= ‖x‖ ≤ 1. This shows that q(x) cannot exceed λ1 when ‖x‖ ≤ 1. To see that this maximum
is actually achieved, let f1 be a unit eigenvector corresponding to λ1. Then

q(f1) = fT
1 Af1 = fT

1 (λ1f1) = λ1(f
T
1 f1) = λ1‖f1‖2 = λ1

Hence λ1 is the maximum value of q(x) when ‖x‖ ≤ 1, proving (1). The proof of (2) is analogous.

The set of all vectors x in Rn such that ‖x‖ ≤ 1 is called the unit ball. If n = 2, it is often called the
unit disk and consists of the unit circle and its interior; if n = 3, it is the unit sphere and its interior. It is
worth noting that the maximum value of a quadratic form q(x) as x ranges throughout the unit ball is (by
Theorem 8.10.1) actually attained for a unit vector x on the boundary of the unit ball.

Theorem 8.10.1 is important for applications involving vibrations in areas as diverse as aerodynamics
and particle physics, and the maximum and minimum values in the theorem are often found using advanced
calculus to minimize the quadratic form on the unit ball. The algebraic approach using the principal axes
theorem gives a geometrical interpretation of the optimal values because they are eigenvalues.

Example 8.10.2

Maximize and minimize the form q(x) = 3x2
1 +14x1x2 +3x2

2 subject to ‖x‖ ≤ 1.

Solution. The matrix of q is A =

[
3 7
7 3

]
, with eigenvalues λ1 = 10 and λ2 =−4, and

corresponding unit eigenvectors f1 =
1√
2
(1, 1) and f2 =

1√
2
(1, −1). Hence, among all unit vectors

x in R2, q(x) takes its maximal value 10 at x = f1, and the minimum value of q(x) is −4 when
x = f2.

As noted above, the objective function in a constrained optimization problem need not be a quadratic
form. We conclude with an example where the objective function is linear, and the feasible region is
determined by linear constraints.
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Example 8.10.3

p
=

430
p
=

500
p
=

570

O

(4, 3)

2000x1+ 1100x2 = 11300

1200x1+ 1300x2 = 8700

x1

x2

A manufacturer makes x1 units of product 1, and x2 units
of product 2, at a profit of $70 and $50 per unit respectively,
and wants to choose x1 and x2 to maximize the total profit
p(x1, x2) = 70x1 +50x2. However x1 and x2 are not arbitrary; for
example, x1 ≥ 0 and x2 ≥ 0. Other conditions also come into play.
Each unit of product 1 costs $1200 to produce and requires 2000
square feet of warehouse space; each unit of product 2 costs $1300
to produce and requires 1100 square feet of space. If the total
warehouse space is 11 300 square feet, and if the total production
budget is $8700, x1 and x2 must also satisfy the conditions

2000x1 +1100x2 ≤ 11300

1200x1 +1300x2 ≤ 8700

The feasible region in the plane satisfying these constraints (and x1 ≥ 0, x2 ≥ 0) is shaded in the
diagram. If the profit equation 70x1 +50x2 = p is plotted for various values of p, the resulting
lines are parallel, with p increasing with distance from the origin. Hence the best choice occurs for
the line 70x1 +50x2 = 430 that touches the shaded region at the point (4, 3). So the profit p has a
maximum of p = 430 for x1 = 4 units and x2 = 3 units.

Example 8.10.3 is a simple case of the general linear programming problem23 which arises in eco-
nomic, management, network, and scheduling applications. Here the objective function is a linear com-
bination q = a1x1 + a2x2 + · · ·+ anxn of the variables, and the feasible region consists of the vectors
x=(x1, x2, . . . , xn)

T in Rn which satisfy a set of linear inequalities of the form b1x1+b2x2+· · ·+bnxn≤ b.
There is a good method (an extension of the gaussian algorithm) called the simplex algorithm for finding
the maximum and minimum values of q when x ranges over such a feasible set. As Example 8.10.3 sug-
gests, the optimal values turn out to be vertices of the feasible set. In particular, they are on the boundary
of the feasible region, as is the case in Theorem 8.10.1.

8.11 An Application to Statistical Principal Component

Analysis

Linear algebra is important in multivariate analysis in statistics, and we conclude with a very short look
at one application of diagonalization in this area. A main feature of probability and statistics is the idea
of a random variable X , that is a real-valued function which takes its values according to a probability
law (called its distribution). Random variables occur in a wide variety of contexts; examples include the
number of meteors falling per square kilometre in a given region, the price of a share of a stock, or the
duration of a long distance telephone call from a certain city.

The values of a random variable X are distributed about a central number µ , called the mean of X .
The mean can be calculated from the distribution as the expectation E(X) = µ of the random variable X .

23More information is available in “Linear Programming and Extensions” by N. Wu and R. Coppins, McGraw-Hill, 1981.
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Functions of a random variable are again random variables. In particular, (X −µ)2 is a random variable,
and the variance of the random variable X , denoted var (X), is defined to be the number

var (X) = E{(X−µ)2} where µ = E(X)

It is not difficult to see that var (X)≥ 0 for every random variable X . The number σ =
√

var (X) is called
the standard deviation of X , and is a measure of how much the values of X are spread about the mean
µ of X . A main goal of statistical inference is finding reliable methods for estimating the mean and the
standard deviation of a random variable X by sampling the values of X .

If two random variables X and Y are given, and their joint distribution is known, then functions of X

and Y are also random variables. In particular, X +Y and aX are random variables for any real number a,
and we have

E(X +Y ) = E(X)+E(Y ) and E(aX) = aE(X).24

An important question is how much the random variables X and Y depend on each other. One measure of
this is the covariance of X and Y , denoted cov (X , Y ), defined by

cov (X , Y ) = E{(X−µ)(Y −υ)} where µ = E(X) and υ = E(Y )

Clearly, cov (X , X) = var (X). If cov (X , Y ) = 0 then X and Y have little relationship to each other and
are said to be uncorrelated.25

Multivariate statistical analysis deals with a family X1, X2, . . . , Xn of random variables with means
µi = E(Xi) and variances σ 2

i = var (Xi) for each i. Let σi j = cov (Xi, X j) denote the covariance of Xi and
X j. Then the covariance matrix of the random variables X1, X2, . . . , Xn is defined to be the n×n matrix

Σ = [σi j]

whose (i, j)-entry is σi j. The matrix Σ is clearly symmetric; in fact it can be shown that Σ is positive

semidefinite in the sense that λ ≥ 0 for every eigenvalue λ of Σ. (In reality, Σ is positive definite in most
cases of interest.) So suppose that the eigenvalues of Σ are λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. The principal axes
theorem (Theorem 8.2.2) shows that an orthogonal matrix P exists such that

PT ΣP = diag (λ1, λ2, . . . , λn)

If we write X = (X1, X2, . . . , Xn), the procedure for diagonalizing a quadratic form gives new variables
Y = (Y1, Y2, . . . , Yn) defined by

Y = PT X

These new random variables Y1, Y2, . . . , Yn are called the principal components of the original random
variables Xi, and are linear combinations of the Xi. Furthermore, it can be shown that

cov (Yi, Yj) = 0 if i 6= j and var (Yi) = λi for each i

Of course the principal components Yi point along the principal axes of the quadratic form q = X
T

ΣX .

24Hence E( ) is a linear transformation from the vector space of all random variables to the space of real numbers.
25If X and Y are independent in the sense of probability theory, then they are uncorrelated; however, the converse is not true

in general.
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The sum of the variances of a set of random variables is called the total variance of the variables, and
determining the source of this total variance is one of the benefits of principal component analysis. The
fact that the matrices Σ and diag (λ1, λ2, . . . , λn) are similar means that they have the same trace, that is,

σ11 +σ22 + · · ·+σnn = λ1 +λ2 + · · ·+λn

This means that the principal components Yi have the same total variance as the original random variables
Xi. Moreover, the fact that λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0 means that most of this variance resides in the first few
Yi. In practice, statisticians find that studying these first few Yi (and ignoring the rest) gives an accurate
analysis of the total system variability. This results in substantial data reduction since often only a few Yi

suffice for all practical purposes. Furthermore, these Yi are easily obtained as linear combinations of the
Xi. Finally, the analysis of the principal components often reveals relationships among the Xi that were not
previously suspected, and so results in interpretations that would not otherwise have been made.


