
1. Systems of Linear Equations

1.1 Solutions and Elementary Operations

Practical problems in many fields of study—such as biology, business, chemistry, computer science, eco-
nomics, electronics, engineering, physics and the social sciences—can often be reduced to solving a sys-
tem of linear equations. Linear algebra arose from attempts to find systematic methods for solving these
systems, so it is natural to begin this book by studying linear equations.

If a, b, and c are real numbers, the graph of an equation of the form

ax+by = c

is a straight line (if a and b are not both zero), so such an equation is called a linear equation in the
variables x and y. However, it is often convenient to write the variables as x1, x2, . . . , xn, particularly
when more than two variables are involved. An equation of the form

a1x1 +a2x2 + · · ·+anxn = b

is called a linear equation in the n variables x1, x2, . . . , xn. Here a1, a2, . . . , an denote real numbers
(called the coefficients of x1, x2, . . . , xn, respectively) and b is also a number (called the constant term

of the equation). A finite collection of linear equations in the variables x1, x2, . . . , xn is called a system of

linear equations in these variables. Hence,

2x1−3x2 +5x3 = 7

is a linear equation; the coefficients of x1, x2, and x3 are 2,−3, and 5, and the constant term is 7. Note that
each variable in a linear equation occurs to the first power only.

Given a linear equation a1x1 +a2x2 + · · ·+anxn = b, a sequence s1, s2, . . . , sn of n numbers is called
a solution to the equation if

a1s1 +a2s2 + · · ·+ansn = b

that is, if the equation is satisfied when the substitutions x1 = s1, x2 = s2, . . . , xn = sn are made. A
sequence of numbers is called a solution to a system of equations if it is a solution to every equation in
the system.

For example, x =−2, y = 5, z = 0 and x = 0, y = 4, z =−1 are both solutions to the system

x+ y+ z= 3
2x+ y+ 3z= 1

A system may have no solution at all, or it may have a unique solution, or it may have an infinite family of
solutions. For instance, the system x+ y = 2, x+ y = 3 has no solution because the sum of two numbers
cannot be 2 and 3 simultaneously. A system that has no solution is called inconsistent; a system with at
least one solution is called consistent. The system in the following example has infinitely many solutions.
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Example 1.1.1

Show that, for arbitrary values of s and t,

x1 = t− s+1

x2 = t + s+2

x3 = s

x4 = t

is a solution to the system
x1− 2x2 +3x3 +x4 =−3

2x1− x2 +3x3−x4 = 0

Solution. Simply substitute these values of x1, x2, x3, and x4 in each equation.

x1−2x2 +3x3 + x4 = (t− s+1)−2(t + s+2)+3s+ t =−3

2x1− x2 +3x3− x4 = 2(t− s+1)− (t + s+2)+3s− t = 0

Because both equations are satisfied, it is a solution for all choices of s and t.

The quantities s and t in Example 1.1.1 are called parameters, and the set of solutions, described in
this way, is said to be given in parametric form and is called the general solution to the system. It turns
out that the solutions to every system of equations (if there are solutions) can be given in parametric form
(that is, the variables x1, x2, . . . are given in terms of new independent variables s, t, etc.). The following
example shows how this happens in the simplest systems where only one equation is present.

Example 1.1.2

Describe all solutions to 3x− y+2z = 6 in parametric form.

Solution. Solving the equation for y in terms of x and z, we get y = 3x+2z−6. If s and t are
arbitrary then, setting x = s, z = t, we get solutions

x = s

y = 3s+2t−6 s and t arbitrary

z = t

Of course we could have solved for x: x = 1
3(y−2z+6). Then, if we take y = p, z = q, the

solutions are represented as follows:

x = 1
3(p−2q+6)

y = p p and q arbitrary
z = q

The same family of solutions can “look” quite different!
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Figure 1.1.1

When only two variables are involved, the solutions to systems of lin-
ear equations can be described geometrically because the graph of a lin-
ear equation ax+ by = c is a straight line if a and b are not both zero.
Moreover, a point P(s, t) with coordinates s and t lies on the line if and
only if as+ bt = c—that is when x = s, y = t is a solution to the equa-
tion. Hence the solutions to a system of linear equations correspond to the
points P(s, t) that lie on all the lines in question.

In particular, if the system consists of just one equation, there must
be infinitely many solutions because there are infinitely many points on a
line. If the system has two equations, there are three possibilities for the
corresponding straight lines:

1. The lines intersect at a single point. Then the system has a unique
solution corresponding to that point.

2. The lines are parallel (and distinct) and so do not intersect. Then

the system has no solution.

3. The lines are identical. Then the system has infinitely many
solutions—one for each point on the (common) line.

These three situations are illustrated in Figure 1.1.1. In each case the
graphs of two specific lines are plotted and the corresponding equations are
indicated. In the last case, the equations are 3x−y= 4 and−6x+2y =−8,
which have identical graphs.

With three variables, the graph of an equation ax+by+ cz = d can be
shown to be a plane (see Section 4.2) and so again provides a “picture”
of the set of solutions. However, this graphical method has its limitations:
When more than three variables are involved, no physical image of the
graphs (called hyperplanes) is possible. It is necessary to turn to a more
“algebraic” method of solution.

Before describing the method, we introduce a concept that simplifies
the computations involved. Consider the following system

3x1 + 2x2− x3 + x4 =−1
2x1 − x3 + 2x4 = 0
3x1 + x2 + 2x3 + 5x4 = 2

of three equations in four variables. The array of numbers1




3 2 −1 1 −1
2 0 −1 2 0
3 1 2 5 2




occurring in the system is called the augmented matrix of the system. Each row of the matrix consists
of the coefficients of the variables (in order) from the corresponding equation, together with the constant

1A rectangular array of numbers is called a matrix. Matrices will be discussed in more detail in Chapter 2.
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term. For clarity, the constants are separated by a vertical line. The augmented matrix is just a different
way of describing the system of equations. The array of coefficients of the variables




3 2 −1 1
2 0 −1 2
3 1 2 5




is called the coefficient matrix of the system and



−1

0
2


 is called the constant matrix of the system.

Elementary Operations

The algebraic method for solving systems of linear equations is described as follows. Two such systems
are said to be equivalent if they have the same set of solutions. A system is solved by writing a series of
systems, one after the other, each equivalent to the previous system. Each of these systems has the same
set of solutions as the original one; the aim is to end up with a system that is easy to solve. Each system
in the series is obtained from the preceding system by a simple manipulation chosen so that it does not
change the set of solutions.

As an illustration, we solve the system x+ 2y = −2, 2x+ y = 7 in this manner. At each stage, the
corresponding augmented matrix is displayed. The original system is

x+ 2y=−2
2x+ y= 7

[
1 2 −2
2 1 7

]

First, subtract twice the first equation from the second. The resulting system is

x+ 2y=−2
− 3y= 11

[
1 2 −2
0 −3 11

]

which is equivalent to the original (see Theorem 1.1.1). At this stage we obtain y = −11
3 by multiplying

the second equation by −1
3 . The result is the equivalent system

x+2y= −2
y=−11

3

[
1 2 −2
0 1 −11

3

]

Finally, we subtract twice the second equation from the first to get another equivalent system.

x= 16
3

y=−11
3


 1 0 16

3

0 1 −11
3




Now this system is easy to solve! And because it is equivalent to the original system, it provides the
solution to that system.

Observe that, at each stage, a certain operation is performed on the system (and thus on the augmented
matrix) to produce an equivalent system.
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Definition 1.1 Elementary Operations

The following operations, called elementary operations, can routinely be performed on systems
of linear equations to produce equivalent systems.

I. Interchange two equations.

II. Multiply one equation by a nonzero number.

III. Add a multiple of one equation to a different equation.

Theorem 1.1.1

Suppose that a sequence of elementary operations is performed on a system of linear equations.
Then the resulting system has the same set of solutions as the original, so the two systems are
equivalent.

The proof is given at the end of this section.

Elementary operations performed on a system of equations produce corresponding manipulations of
the rows of the augmented matrix. Thus, multiplying a row of a matrix by a number k means multiplying
every entry of the row by k. Adding one row to another row means adding each entry of that row to the
corresponding entry of the other row. Subtracting two rows is done similarly. Note that we regard two
rows as equal when corresponding entries are the same.

In hand calculations (and in computer programs) we manipulate the rows of the augmented matrix
rather than the equations. For this reason we restate these elementary operations for matrices.

Definition 1.2 Elementary Row Operations

The following are called elementary row operations on a matrix.

I. Interchange two rows.

II. Multiply one row by a nonzero number.

III. Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix of the form
[

1 0 ∗
0 1 ∗

]

where the asterisks represent arbitrary numbers. In the case of three equations in three variables, the goal
is to produce a matrix of the form 


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗



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This does not always happen, as we will see in the next section. Here is an example in which it does
happen.

Example 1.1.3

Find all solutions to the following system of equations.

3x+ 4y+ z= 1
2x+ 3y = 0
4x+ 3y− z=−2

Solution. The augmented matrix of the original system is



3 4 1 1
2 3 0 0
4 3 −1 −2




To create a 1 in the upper left corner we could multiply row 1 through by 1
3 . However, the 1 can be

obtained without introducing fractions by subtracting row 2 from row 1. The result is



1 1 1 1
2 3 0 0
4 3 −1 −2




The upper left 1 is now used to “clean up” the first column, that is create zeros in the other
positions in that column. First subtract 2 times row 1 from row 2 to obtain




1 1 1 1
0 1 −2 −2
4 3 −1 −2




Next subtract 4 times row 1 from row 3. The result is



1 1 1 1
0 1 −2 −2
0 −1 −5 −6




This completes the work on column 1. We now use the 1 in the second position of the second row
to clean up the second column by subtracting row 2 from row 1 and then adding row 2 to row 3.
For convenience, both row operations are done in one step. The result is




1 0 3 3
0 1 −2 −2
0 0 −7 −8




Note that the last two manipulations did not affect the first column (the second row has a zero
there), so our previous effort there has not been undermined. Finally we clean up the third column.
Begin by multiplying row 3 by −1

7 to obtain



1 0 3 3
0 1 −2 −2
0 0 1 8

7



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Now subtract 3 times row 3 from row 1, and then add 2 times row 3 to row 2 to get



1 0 0 −3
7

0 1 0 2
7

0 0 1 8
7




The corresponding equations are x =−3
7 , y = 2

7 , and z = 8
7 , which give the (unique) solution.

Every elementary row operation can be reversed by another elementary row operation of the same
type (called its inverse). To see how, we look at types I, II, and III separately:

Type I Interchanging two rows is reversed by interchanging them again.

Type II Multiplying a row by a nonzero number k is reversed by multiplying by 1/k.

Type III Adding k times row p to a different row q is reversed by adding −k times row p to row q

(in the new matrix). Note that p 6= q is essential here.

To illustrate the Type III situation, suppose there are four rows in the original matrix, denoted R1, R2,
R3, and R4, and that k times R2 is added to R3. Then the reverse operation adds −k times R2, to R3. The
following diagram illustrates the effect of doing the operation first and then the reverse:




R1

R2

R3

R4


→




R1

R2

R3 + kR2

R4


→




R1

R2

(R3+ kR2)− kR2

R4


=




R1

R2

R3

R4




The existence of inverses for elementary row operations and hence for elementary operations on a system
of equations, gives:

Proof of Theorem 1.1.1. Suppose that a system of linear equations is transformed into a new system
by a sequence of elementary operations. Then every solution of the original system is automatically a
solution of the new system because adding equations, or multiplying an equation by a nonzero number,
always results in a valid equation. In the same way, each solution of the new system must be a solution
to the original system because the original system can be obtained from the new one by another series of
elementary operations (the inverses of the originals). It follows that the original and new systems have the
same solutions. This proves Theorem 1.1.1.
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Exercises for 1.1

Exercise 1.1.1 In each case verify that the following are
solutions for all values of s and t.

a. x= 19t−35
y= 25−13t

z= t

is a solution of

2x + 3y + z= 5
5x + 7y− 4z= 0

b. x1 = 2s+12t +13
x2 = s

x3 =−s−3t−3
x4 = t

is a solution of

2x1 + 5x2 + 9x3 + 3x4 =−1
x1 + 2x2 + 4x3 = 1

Exercise 1.1.2 Find all solutions to the following in
parametric form in two ways.

3x+ y = 2a. 2x+3y = 1b.

3x− y+2z = 5c. x−2y+5z = 1d.

Exercise 1.1.3 Regarding 2x = 5 as the equation
2x+ 0y = 5 in two variables, find all solutions in para-
metric form.

Exercise 1.1.4 Regarding 4x− 2y = 3 as the equation
4x− 2y+ 0z = 3 in three variables, find all solutions in
parametric form.

Exercise 1.1.5 Find all solutions to the general system
ax = b of one equation in one variable (a) when a = 0
and (b) when a 6= 0.

Exercise 1.1.6 Show that a system consisting of exactly
one linear equation can have no solution, one solution, or
infinitely many solutions. Give examples.

Exercise 1.1.7 Write the augmented matrix for each of
the following systems of linear equations.

x− 3y= 5
2x + y= 1

a. x + 2y= 0
y= 1

b.

x− y+ z= 2
x− z= 1
y+ 2x = 0

c. x + y= 1
y+ z= 0
z− x= 2

d.

Exercise 1.1.8 Write a system of linear equations that
has each of the following augmented matrices.




1 −1 6 0
0 1 0 3
2 −1 0 1


a.




2 −1 0 −1
−3 2 1 0

0 1 1 3


b.

Exercise 1.1.9 Find the solution of each of the following
systems of linear equations using augmented matrices.

x− 3y= 1
2x− 7y= 3

a. x+ 2y = 1
3x + 4y =−1

b.

2x + 3y=−1
3x + 4y= 2

c. 3x + 4y = 1
4x + 5y =−3

d.

Exercise 1.1.10 Find the solution of each of the follow-
ing systems of linear equations using augmented matri-
ces.

x+ y+ 2z=−1
2x + y+ 3z= 0
− 2y+ z= 2

a. 2x + y+ z=−1
x+ 2y + z= 0

3x − 2z= 5

b.

Exercise 1.1.11 Find all solutions (if any) of the follow-
ing systems of linear equations.

3x−2y = 5
−12x+8y =−20

a. 3x−2y = 5
−12x+8y = 16

b.

Exercise 1.1.12 Show that the system




x + 2y − z = a

2x + y + 3z = b

x − 4y + 9z = c

is inconsistent unless c = 2b−3a.

Exercise 1.1.13 By examining the possible positions of
lines in the plane, show that two equations in two vari-
ables can have zero, one, or infinitely many solutions.
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Exercise 1.1.14 In each case either show that the state-
ment is true, or give an example2 showing it is false.

a. If a linear system has n variables and m equations,
then the augmented matrix has n rows.

b. A consistent linear system must have infinitely
many solutions.

c. If a row operation is done to a consistent linear
system, the resulting system must be consistent.

d. If a series of row operations on a linear system re-
sults in an inconsistent system, the original system
is inconsistent.

Exercise 1.1.15 Find a quadratic a+bx+ cx2 such that
the graph of y = a+bx+ cx2 contains each of the points
(−1, 6), (2, 0), and (3, 2).

Exercise 1.1.16 Solve the system

{
3x + 2y= 5
7x + 5y= 1

by

changing variables

{
x = 5x′ − 2y′

y=−7x′ + 3y′
and solving the re-

sulting equations for x′ and y′.

Exercise 1.1.17 Find a, b, and c such that

x2−x+3
(x2+2)(2x−1) =

ax+b
x2+2 +

c
2x−1

[Hint: Multiply through by (x2 + 2)(2x− 1) and equate
coefficients of powers of x.]

Exercise 1.1.18 A zookeeper wants to give an animal 42
mg of vitamin A and 65 mg of vitamin D per day. He has
two supplements: the first contains 10% vitamin A and
25% vitamin D; the second contains 20% vitamin A and
25% vitamin D. How much of each supplement should
he give the animal each day?

Exercise 1.1.19 Workmen John and Joe earn a total of
$24.60 when John works 2 hours and Joe works 3 hours.
If John works 3 hours and Joe works 2 hours, they get
$23.90. Find their hourly rates.

Exercise 1.1.20 A biologist wants to create a diet from
fish and meal containing 183 grams of protein and 93
grams of carbohydrate per day. If fish contains 70% pro-
tein and 10% carbohydrate, and meal contains 30% pro-
tein and 60% carbohydrate, how much of each food is
required each day?

1.2 Gaussian Elimination

The algebraic method introduced in the preceding section can be summarized as follows: Given a system
of linear equations, use a sequence of elementary row operations to carry the augmented matrix to a “nice”
matrix (meaning that the corresponding equations are easy to solve). In Example 1.1.3, this nice matrix
took the form 


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗




The following definitions identify the nice matrices that arise in this process.

2Such an example is called a counterexample. For example, if the statement is that “all philosophers have beards”, the
existence of a non-bearded philosopher would be a counterexample proving that the statement is false. This is discussed again
in Appendix B.


