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Exercise 1.1.14 In each case either show that the state-
ment is true, or give an example2 showing it is false.

a. If a linear system has n variables and m equations,
then the augmented matrix has n rows.

b. A consistent linear system must have infinitely
many solutions.

c. If a row operation is done to a consistent linear
system, the resulting system must be consistent.

d. If a series of row operations on a linear system re-
sults in an inconsistent system, the original system
is inconsistent.

Exercise 1.1.15 Find a quadratic a+bx+ cx2 such that
the graph of y = a+bx+ cx2 contains each of the points
(−1, 6), (2, 0), and (3, 2).

Exercise 1.1.16 Solve the system

{
3x + 2y= 5
7x + 5y= 1

by

changing variables

{
x = 5x′ − 2y′

y=−7x′ + 3y′
and solving the re-

sulting equations for x′ and y′.

Exercise 1.1.17 Find a, b, and c such that

x2−x+3
(x2+2)(2x−1) =

ax+b
x2+2 +

c
2x−1

[Hint: Multiply through by (x2 + 2)(2x− 1) and equate
coefficients of powers of x.]

Exercise 1.1.18 A zookeeper wants to give an animal 42
mg of vitamin A and 65 mg of vitamin D per day. He has
two supplements: the first contains 10% vitamin A and
25% vitamin D; the second contains 20% vitamin A and
25% vitamin D. How much of each supplement should
he give the animal each day?

Exercise 1.1.19 Workmen John and Joe earn a total of
$24.60 when John works 2 hours and Joe works 3 hours.
If John works 3 hours and Joe works 2 hours, they get
$23.90. Find their hourly rates.

Exercise 1.1.20 A biologist wants to create a diet from
fish and meal containing 183 grams of protein and 93
grams of carbohydrate per day. If fish contains 70% pro-
tein and 10% carbohydrate, and meal contains 30% pro-
tein and 60% carbohydrate, how much of each food is
required each day?

1.2 Gaussian Elimination

The algebraic method introduced in the preceding section can be summarized as follows: Given a system
of linear equations, use a sequence of elementary row operations to carry the augmented matrix to a “nice”
matrix (meaning that the corresponding equations are easy to solve). In Example 1.1.3, this nice matrix
took the form 


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗




The following definitions identify the nice matrices that arise in this process.

2Such an example is called a counterexample. For example, if the statement is that “all philosophers have beards”, the
existence of a non-bearded philosopher would be a counterexample proving that the statement is false. This is discussed again
in Appendix B.
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Definition 1.3 Row-Echelon Form (Reduced)

A matrix is said to be in row-echelon form (and will be called a row-echelon matrix) if it
satisfies the following three conditions:

1. All zero rows (consisting entirely of zeros) are at the bottom.

2. The first nonzero entry from the left in each nonzero row is a 1, called the leading 1 for that
row.

3. Each leading 1 is to the right of all leading 1s in the rows above it.

A row-echelon matrix is said to be in reduced row-echelon form (and will be called a reduced

row-echelon matrix) if, in addition, it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.

The row-echelon matrices have a “staircase” form, as indicated by the following example (the asterisks
indicate arbitrary numbers). 



0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 1
0 0 0 0 0 0 0




The leading 1s proceed “down and to the right” through the matrix. Entries above and to the right of the
leading 1s are arbitrary, but all entries below and to the left of them are zero. Hence, a matrix in row-
echelon form is in reduced form if, in addition, the entries directly above each leading 1 are all zero. Note
that a matrix in row-echelon form can, with a few more row operations, be carried to reduced form (use
row operations to create zeros above each leading one in succession, beginning from the right).

Example 1.2.1

The following matrices are in row-echelon form (for any choice of numbers in ∗-positions).

[
1 ∗ ∗
0 0 1

]


0 1 ∗ ∗
0 0 1 ∗
0 0 0 0






1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1






1 ∗ ∗
0 1 ∗
0 0 1




The following, on the other hand, are in reduced row-echelon form.

[
1 ∗ 0
0 0 1

]


0 1 0 ∗
0 0 1 ∗
0 0 0 0






1 0 ∗ 0
0 1 ∗ 0
0 0 0 1






1 0 0
0 1 0
0 0 1




The choice of the positions for the leading 1s determines the (reduced) row-echelon form (apart
from the numbers in ∗-positions).

The importance of row-echelon matrices comes from the following theorem.
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Theorem 1.2.1

Every matrix can be brought to (reduced) row-echelon form by a sequence of elementary row
operations.

In fact we can give a step-by-step procedure for actually finding a row-echelon matrix. Observe that
while there are many sequences of row operations that will bring a matrix to row-echelon form, the one
we use is systematic and is easy to program on a computer. Note that the algorithm deals with matrices in
general, possibly with columns of zeros.

Gaussian3Algorithm4

Step 1. If the matrix consists entirely of zeros, stop—it is already in row-echelon form.

Step 2. Otherwise, find the first column from the left containing a nonzero entry (call it a),
and move the row containing that entry to the top position.

Step 3. Now multiply the new top row by 1/a to create a leading 1.

Step 4. By subtracting multiples of that row from rows below it, make each entry below the
leading 1 zero.

This completes the first row, and all further row operations are carried out on the remaining rows.

Step 5. Repeat steps 1–4 on the matrix consisting of the remaining rows.

The process stops when either no rows remain at step 5 or the remaining rows consist entirely of
zeros.

Observe that the gaussian algorithm is recursive: When the first leading 1 has been obtained, the
procedure is repeated on the remaining rows of the matrix. This makes the algorithm easy to use on a
computer. Note that the solution to Example 1.1.3 did not use the gaussian algorithm as written because
the first leading 1 was not created by dividing row 1 by 3. The reason for this is that it avoids fractions.
However, the general pattern is clear: Create the leading 1s from left to right, using each of them in turn
to create zeros below it. Here are two more examples.

3Carl Friedrich Gauss (1777–1855) ranks with Archimedes and Newton as one of the three greatest mathematicians of all
time. He was a child prodigy and, at the age of 21, he gave the first proof that every polynomial has a complex root. In
1801 he published a timeless masterpiece, Disquisitiones Arithmeticae, in which he founded modern number theory. He went
on to make ground-breaking contributions to nearly every branch of mathematics, often well before others rediscovered and
published the results.

4The algorithm was known to the ancient Chinese.



12 Systems of Linear Equations

Example 1.2.2

Solve the following system of equations.

3x+ y− 4z=−1
x + 10z= 5

4x+ y+ 6z= 1

Solution. The corresponding augmented matrix is



3 1 −4 −1
1 0 10 5
4 1 6 1




Create the first leading one by interchanging rows 1 and 2



1 0 10 5
3 1 −4 −1
4 1 6 1




Now subtract 3 times row 1 from row 2, and subtract 4 times row 1 from row 3. The result is



1 0 10 5
0 1 −34 −16
0 1 −34 −19




Now subtract row 2 from row 3 to obtain



1 0 10 5
0 1 −34 −16
0 0 0 −3




This means that the following reduced system of equations

x + 10z= 5
y− 34z=−16

0= −3

is equivalent to the original system. In other words, the two have the same solutions. But this last
system clearly has no solution (the last equation requires that x, y and z satisfy 0x+0y+0z =−3,
and no such numbers exist). Hence the original system has no solution.
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Example 1.2.3

Solve the following system of equations.

x1− 2x2− x3 + 3x4 = 1
2x1− 4x2 + x3 = 5

x1− 2x2 + 2x3− 3x4 = 4

Solution. The augmented matrix is



1 −2 −1 3 1
2 −4 1 0 5
1 −2 2 −3 4




Subtracting twice row 1 from row 2 and subtracting row 1 from row 3 gives



1 −2 −1 3 1
0 0 3 −6 3
0 0 3 −6 3




Now subtract row 2 from row 3 and multiply row 2 by 1
3 to get




1 −2 −1 3 1
0 0 1 −2 1
0 0 0 0 0




This is in row-echelon form, and we take it to reduced form by adding row 2 to row 1:



1 −2 0 1 2
0 0 1 −2 1
0 0 0 0 0




The corresponding reduced system of equations is

x1− 2x2 + x4 = 2
x3− 2x4 = 1

0= 0

The leading ones are in columns 1 and 3 here, so the corresponding variables x1 and x3 are called
leading variables. Because the matrix is in reduced row-echelon form, these equations can be used
to solve for the leading variables in terms of the nonleading variables x2 and x4. More precisely, in
the present example we set x2 = s and x4 = t where s and t are arbitrary, so these equations become

x1−2s+ t = 2 and x3−2t = 1

Finally the solutions are given by

x1 = 2+2s− t

x2 = s

x3 = 1+2t

x4 = t

where s and t are arbitrary.
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The solution of Example 1.2.3 is typical of the general case. To solve a linear system, the augmented
matrix is carried to reduced row-echelon form, and the variables corresponding to the leading ones are
called leading variables. Because the matrix is in reduced form, each leading variable occurs in exactly
one equation, so that equation can be solved to give a formula for the leading variable in terms of the
nonleading variables. It is customary to call the nonleading variables “free” variables, and to label them
by new variables s, t, . . . , called parameters. Hence, as in Example 1.2.3, every variable xi is given by a
formula in terms of the parameters s and t. Moreover, every choice of these parameters leads to a solution
to the system, and every solution arises in this way. This procedure works in general, and has come to be
called

Gaussian Elimination

To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix to a reduced row-echelon matrix using elementary row
operations.

2. If a row
[

0 0 0 · · · 0 1
]

occurs, the system is inconsistent.

3. Otherwise, assign the nonleading variables (if any) as parameters, and use the equations
corresponding to the reduced row-echelon matrix to solve for the leading variables in terms
of the parameters.

There is a variant of this procedure, wherein the augmented matrix is carried only to row-echelon form.
The nonleading variables are assigned as parameters as before. Then the last equation (corresponding to
the row-echelon form) is used to solve for the last leading variable in terms of the parameters. This last
leading variable is then substituted into all the preceding equations. Then, the second last equation yields
the second last leading variable, which is also substituted back. The process continues to give the general
solution. This procedure is called back-substitution. This procedure can be shown to be numerically
more efficient and so is important when solving very large systems.5

Example 1.2.4

Find a condition on the numbers a, b, and c such that the following system of equations is
consistent. When that condition is satisfied, find all solutions (in terms of a, b, and c).

x1 + 3x2 + x3 = a

−x1− 2x2 + x3 = b

3x1 + 7x2− x3 = c

Solution. We use gaussian elimination except that now the augmented matrix



1 3 1 a

−1 −2 1 b

3 7 −1 c




5With n equations where n is large, gaussian elimination requires roughly n3/2 multiplications and divisions, whereas this
number is roughly n3/3 if back substitution is used.
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has entries a, b, and c as well as known numbers. The first leading one is in place, so we create
zeros below it in column 1: 


1 3 1 a

0 1 2 a+b

0 −2 −4 c−3a




The second leading 1 has appeared, so use it to create zeros in the rest of column 2:



1 0 −5 −2a−3b

0 1 2 a+b

0 0 0 c−a+2b




Now the whole solution depends on the number c−a+2b = c− (a−2b). The last row
corresponds to an equation 0 = c− (a−2b). If c 6= a−2b, there is no solution (just as in Example
1.2.2). Hence:

The system is consistent if and only if c = a−2b.

In this case the last matrix becomes



1 0 −5 −2a−3b

0 1 2 a+b

0 0 0 0




Thus, if c = a−2b, taking x3 = t where t is a parameter gives the solutions

x1 = 5t− (2a+3b) x2 = (a+b)−2t x3 = t.

Rank

It can be proven that the reduced row-echelon form of a matrix A is uniquely determined by A. That is,
no matter which series of row operations is used to carry A to a reduced row-echelon matrix, the result
will always be the same matrix. (A proof is given at the end of Section 2.5.) By contrast, this is not
true for row-echelon matrices: Different series of row operations can carry the same matrix A to different

row-echelon matrices. Indeed, the matrix A =

[
1 −1 4
2 −1 2

]
can be carried (by one row operation) to

the row-echelon matrix

[
1 −1 4
0 1 −6

]
, and then by another row operation to the (reduced) row-echelon

matrix

[
1 0 −2
0 1 −6

]
. However, it is true that the number r of leading 1s must be the same in each of

these row-echelon matrices (this will be proved in Chapter 5). Hence, the number r depends only on A

and not on the way in which A is carried to row-echelon form.
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Definition 1.4 Rank of a Matrix

The rank of matrix A is the number of leading 1s in any row-echelon matrix to which A can be
carried by row operations.

Example 1.2.5

Compute the rank of A =




1 1 −1 4
2 1 3 0
0 1 −5 8


.

Solution. The reduction of A to row-echelon form is

A =




1 1 −1 4
2 1 3 0
0 1 −5 8


→




1 1 −1 4
0 −1 5 −8
0 1 −5 8


→




1 1 −1 4
0 1 −5 8
0 0 0 0




Because this row-echelon matrix has two leading 1s, rank A = 2.

Suppose that rank A = r, where A is a matrix with m rows and n columns. Then r ≤ m because the
leading 1s lie in different rows, and r ≤ n because the leading 1s lie in different columns. Moreover, the
rank has a useful application to equations. Recall that a system of linear equations is called consistent if it
has at least one solution.

Theorem 1.2.2

Suppose a system of m equations in n variables is consistent, and that the rank of the augmented
matrix is r.

1. The set of solutions involves exactly n− r parameters.

2. If r < n, the system has infinitely many solutions.

3. If r = n, the system has a unique solution.

Proof. The fact that the rank of the augmented matrix is r means there are exactly r leading variables, and
hence exactly n− r nonleading variables. These nonleading variables are all assigned as parameters in the
gaussian algorithm, so the set of solutions involves exactly n− r parameters. Hence if r < n, there is at
least one parameter, and so infinitely many solutions. If r = n, there are no parameters and so a unique
solution.

Theorem 1.2.2 shows that, for any system of linear equations, exactly three possibilities exist:

1. No solution. This occurs when a row
[

0 0 · · · 0 1
]

occurs in the row-echelon form. This is

the case where the system is inconsistent.

2. Unique solution. This occurs when every variable is a leading variable.
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3. Infinitely many solutions. This occurs when the system is consistent and there is at least one

nonleading variable, so at least one parameter is involved.

Example 1.2.6

Suppose the matrix A in Example 1.2.5 is the augmented matrix of a system of m = 3 linear
equations in n = 3 variables. As rank A = r = 2, the set of solutions will have n− r = 1 parameter.
The reader can verify this fact directly.

Many important problems involve linear inequalities rather than linear equations. For example, a
condition on the variables x and y might take the form of an inequality 2x−5y≤ 4 rather than an equality
2x−5y = 4. There is a technique (called the simplex algorithm) for finding solutions to a system of such
inequalities that maximizes a function of the form p = ax+by where a and b are fixed constants.

Exercises for 1.2

Exercise 1.2.1 Which of the following matrices are in
reduced row-echelon form? Which are in row-echelon
form?




1 −1 2
0 0 0
0 0 1


a.

[
2 1 −1 3
0 0 0 0

]
b.

[
1 −2 3 5
0 0 0 1

]
c.




1 0 0 3 1
0 0 0 1 1
0 0 0 0 1


d.

[
1 1
0 1

]
e.




0 0 1
0 0 1
0 0 1


f.

Exercise 1.2.2 Carry each of the following matrices to
reduced row-echelon form.

a.




0 −1 2 1 2 1 −1
0 1 −2 2 7 2 4
0 −2 4 3 7 1 0
0 3 −6 1 6 4 1




b.




0 −1 3 1 3 2 1
0 −2 6 1 −5 0 −1
0 3 −9 2 4 1 −1
0 1 −3 −1 3 0 1




Exercise 1.2.3 The augmented matrix of a system of
linear equations has been carried to the following by row
operations. In each case solve the system.

a.




1 2 0 3 1 0 −1
0 0 1 −1 1 0 2
0 0 0 0 0 1 3
0 0 0 0 0 0 0




b.




1 −2 0 2 0 1 1
0 0 1 5 0 −3 −1
0 0 0 0 1 6 1
0 0 0 0 0 0 0




c.




1 2 1 3 1 1
0 1 −1 0 1 1
0 0 0 1 −1 0
0 0 0 0 0 0




d.




1 −1 2 4 6 2
0 1 2 1 −1 −1
0 0 0 1 0 1
0 0 0 0 0 0




Exercise 1.2.4 Find all solutions (if any) to each of the
following systems of linear equations.

x− 2y= 1
4y− x=−2

a. 3x− y= 0
2x− 3y = 1

b.
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2x + y= 5
3x + 2y= 6

c. 3x− y= 2
2y− 6x=−4

d.

3x− y= 4
2y− 6x= 1

e. 2x− 3y= 5
3y− 2x= 2

f.

Exercise 1.2.5 Find all solutions (if any) to each of the
following systems of linear equations.

x+ y+ 2z = 8
3x− y+ z= 0
−x+ 3y+ 4z =−4

a. −2x+ 3y + 3z= −9
3x− 4y + z= 5
−5x+ 7y + 2z=−14

b.

x+ y− z= 10
−x+ 4y+ 5z =−5

x+ 6y+ 3z = 15

c. x + 2y− z= 2
2x + 5y− 3z = 1
x + 4y− 3z = 3

d.

5x + y = 2
3x− y+ 2z= 1

x+ y− z= 5

e. 3x− 2y+ z=−2
x− y+ 3z= 5
−x+ y+ z=−1

f.

x+ y+ z= 2
x + z= 1

2x + 5y+ 2z = 7

g. x + 2y− 4z = 10
2x− y+ 2z = 5
x + y− 2z = 7

h.

Exercise 1.2.6 Express the last equation of each system
as a sum of multiples of the first two equations. [Hint:
Label the equations, use the gaussian algorithm.]

x1 + x2 + x3 = 1
2x1 − x2 + 3x3 = 3

x1− 2x2 + 2x3 = 2

a. x1 + 2x2 − 3x3 = −3
x1 + 3x2 − 5x3 = 5
x1− 2x2 + 5x3 =−35

b.

Exercise 1.2.7 Find all solutions to the following sys-
tems.

a. 3x1 + 8x2 − 3x3 − 14x4 = 2
2x1 + 3x2 − x3− 2x4 = 1

x1− 2x2 + x3 + 10x4 = 0
x1 + 5x2 − 2x3 − 12x4 = 1

b. x1− x2 + x3− x4 = 0
−x1 + x2 + x3 + x4 = 0

x1 + x2 − x3 + x4 = 0
x1 + x2 + x3 + x4 = 0

c. x1− x2 + x3− 2x4 = 1
−x1 + x2 + x3 + x4 =−1
−x1 + 2x2 + 3x3 − x4 = 2

x1− x2 + 2x3 + x4 = 1

d. x1 + x2 + 2x3 − x4 = 4
3x2 − x3 + 4x4 = 2

x1 + 2x2 − 3x3 + 5x4 = 0
x1 + x2− 5x3 + 6x4 =−3

Exercise 1.2.8 In each of the following, find (if possi-
ble) conditions on a and b such that the system has no
solution, one solution, and infinitely many solutions.

x− 2y= 1
ax + by= 5

a. x+ by =−1
ax + 2y = 5

b.

x− by=−1
x+ ay= 3

c. ax + y= 1
2x + y= b

d.

Exercise 1.2.9 In each of the following, find (if possi-
ble) conditions on a, b, and c such that the system has no
solution, one solution, or infinitely many solutions.

3x + y− z= a

x− y+ 2z= b

5x + 3y− 4z= c

a. 2x + y− z= a

2y + 3z= b

x − z= c

b.

−x+ 3y + 2z=−8
x + z= 2

3x + 3y + az= b

c. x+ay= 0
y+bz= 0
z+ cx= 0

d.

3x− y+ 2z= 3
x+ y− z= 2

2x− 2y+ 3z= b

e.

x+ ay− z= 1
−x+ (a−2)y + z=−1
2x + 2y + (a−2)z= 1

f.

Exercise 1.2.10 Find the rank of each of the matrices in
Exercise 1.2.1.

Exercise 1.2.11 Find the rank of each of the following
matrices.




1 1 2
3 −1 1
−1 3 4


a.



−2 3 3

3 −4 1
−5 7 2


b.




1 1 −1 3
−1 4 5 −2

1 6 3 4


c.




3 −2 1 −2
1 −1 3 5
−1 1 1 −1


d.




1 2 −1 0
0 a 1−a a2 +1
1 2−a −1 −2a2


e.




1 1 2 a2

1 1−a 2 0
2 2−a 6−a 4


f.



1.2. Gaussian Elimination 19

Exercise 1.2.12 Consider a system of linear equations
with augmented matrix A and coefficient matrix C. In
each case either prove the statement or give an example
showing that it is false.

a. If there is more than one solution, A has a row of
zeros.

b. If A has a row of zeros, there is more than one
solution.

c. If there is no solution, the reduced row-echelon
form of C has a row of zeros.

d. If the row-echelon form of C has a row of zeros,
there is no solution.

e. There is no system that is inconsistent for every
choice of constants.

f. If the system is consistent for some choice of con-
stants, it is consistent for every choice of con-
stants.

Now assume that the augmented matrix A has 3 rows and
5 columns.

g. If the system is consistent, there is more than one
solution.

h. The rank of A is at most 3.

i. If rank A = 3, the system is consistent.

j. If rank C = 3, the system is consistent.

Exercise 1.2.13 Find a sequence of row operations car-
rying



b1 + c1 b2 + c2 b3 + c3

c1 +a1 c2 +a2 c3 +a3

a1 +b1 a2 +b2 a3 +b3


 to




a1 a2 a3

b1 b2 b3

c1 c2 c3




Exercise 1.2.14 In each case, show that the reduced
row-echelon form is as given.

a.




p 0 a

b 0 0
q c r


 with abc 6= 0;




1 0 0
0 1 0
0 0 1




b.




1 a b+ c

1 b c+a

1 c a+b


 where c 6= a or b 6= a;




1 0 ∗
0 1 ∗
0 0 0




Exercise 1.2.15 Show that

{
az+ by+ cz= 0

a1x+ b1y+ c1z= 0
al-

ways has a solution other than x = 0, y = 0, z = 0.

Exercise 1.2.16 Find the circle x2+y2+ax+by+c = 0
passing through the following points.

a. (−2, 1), (5, 0), and (4, 1)

b. (1, 1), (5, −3), and (−3, −3)

Exercise 1.2.17 Three Nissans, two Fords, and four
Chevrolets can be rented for $106 per day. At the same
rates two Nissans, four Fords, and three Chevrolets cost
$107 per day, whereas four Nissans, three Fords, and two
Chevrolets cost $102 per day. Find the rental rates for all
three kinds of cars.

Exercise 1.2.18 A school has three clubs and each stu-
dent is required to belong to exactly one club. One year
the students switched club membership as follows:

Club A. 4
10 remain in A, 1

10 switch to B, 5
10 switch to C.

Club B. 7
10 remain in B, 2

10 switch to A, 1
10 switch to C.

Club C. 6
10 remain in C, 2

10 switch to A, 2
10 switch to B.

If the fraction of the student population in each club
is unchanged, find each of these fractions.

Exercise 1.2.19 Given points (p1, q1), (p2, q2), and
(p3, q3) in the plane with p1, p2, and p3 distinct, show
that they lie on some curve with equation y = a+ bx+
cx2. [Hint: Solve for a, b, and c.]

Exercise 1.2.20 The scores of three players in a tour-
nament have been lost. The only information available
is the total of the scores for players 1 and 2, the total for
players 2 and 3, and the total for players 3 and 1.

a. Show that the individual scores can be rediscov-
ered.

b. Is this possible with four players (knowing the to-
tals for players 1 and 2, 2 and 3, 3 and 4, and 4 and
1)?

Exercise 1.2.21 A boy finds $1.05 in dimes, nickels,
and pennies. If there are 17 coins in all, how many coins
of each type can he have?

Exercise 1.2.22 If a consistent system has more vari-
ables than equations, show that it has infinitely many so-
lutions. [Hint: Use Theorem 1.2.2.]



20 Systems of Linear Equations

1.3 Homogeneous Equations

A system of equations in the variables x1, x2, . . . , xn is called homogeneous if all the constant terms are
zero—that is, if each equation of the system has the form

a1x1 +a2x2 + · · ·+anxn = 0

Clearly x1 = 0, x2 = 0, . . . , xn = 0 is a solution to such a system; it is called the trivial solution. Any
solution in which at least one variable has a nonzero value is called a nontrivial solution. Our chief goal
in this section is to give a useful condition for a homogeneous system to have nontrivial solutions. The
following example is instructive.

Example 1.3.1

Show that the following homogeneous system has nontrivial solutions.

x1− x2 + 2x3− x4 = 0
2x1 + 2x2 + x4 = 0
3x1 + x2 + 2x3− x4 = 0

Solution. The reduction of the augmented matrix to reduced row-echelon form is outlined below.



1 −1 2 −1 0
2 2 0 1 0
3 1 2 −1 0


→




1 −1 2 −1 0
0 4 −4 3 0
0 4 −4 2 0


→




1 0 1 0 0
0 1 −1 0 0
0 0 0 1 0




The leading variables are x1, x2, and x4, so x3 is assigned as a parameter—say x3 = t. Then the
general solution is x1 =−t, x2 = t, x3 = t, x4 = 0. Hence, taking t = 1 (say), we get a nontrivial
solution: x1 =−1, x2 = 1, x3 = 1, x4 = 0.

The existence of a nontrivial solution in Example 1.3.1 is ensured by the presence of a parameter in the
solution. This is due to the fact that there is a nonleading variable (x3 in this case). But there must be
a nonleading variable here because there are four variables and only three equations (and hence at most

three leading variables). This discussion generalizes to a proof of the following fundamental theorem.

Theorem 1.3.1

If a homogeneous system of linear equations has more variables than equations, then it has a
nontrivial solution (in fact, infinitely many).

Proof. Suppose there are m equations in n variables where n>m, and let R denote the reduced row-echelon
form of the augmented matrix. If there are r leading variables, there are n−r nonleading variables, and so
n− r parameters. Hence, it suffices to show that r < n. But r ≤ m because R has r leading 1s and m rows,
and m < n by hypothesis. So r ≤ m < n, which gives r < n.


