
2. Matrix Algebra

In the study of systems of linear equations in Chapter 1, we found it convenient to manipulate the aug-
mented matrix of the system. Our aim was to reduce it to row-echelon form (using elementary row oper-
ations) and hence to write down all solutions to the system. In the present chapter we consider matrices
for their own sake. While some of the motivation comes from linear equations, it turns out that matrices
can be multiplied and added and so form an algebraic system somewhat analogous to the real numbers.
This “matrix algebra” is useful in ways that are quite different from the study of linear equations. For
example, the geometrical transformations obtained by rotating the euclidean plane about the origin can be
viewed as multiplications by certain 2×2 matrices. These “matrix transformations” are an important tool
in geometry and, in turn, the geometry provides a “picture” of the matrices. Furthermore, matrix algebra
has many other applications, some of which will be explored in this chapter. This subject is quite old and
was first studied systematically in 1858 by Arthur Cayley.1

2.1 Matrix Addition, Scalar Multiplication, and

Transposition

A rectangular array of numbers is called a matrix (the plural is matrices), and the numbers are called the
entries of the matrix. Matrices are usually denoted by uppercase letters: A, B, C, and so on. Hence,

A =

[
1 2 −1
0 5 6

]
B =

[
1 −1
0 2

]
C =




1
3
2




are matrices. Clearly matrices come in various shapes depending on the number of rows and columns.
For example, the matrix A shown has 2 rows and 3 columns. In general, a matrix with m rows and n

columns is referred to as an mmm×nnn matrix or as having size mmm×nnn. Thus matrices A, B, and C above have
sizes 2×3, 2×2, and 3×1, respectively. A matrix of size 1×n is called a row matrix, whereas one of
size m×1 is called a column matrix. Matrices of size n×n for some n are called square matrices.

Each entry of a matrix is identified by the row and column in which it lies. The rows are numbered
from the top down, and the columns are numbered from left to right. Then the (((iii,,, jjj)))-entry of a matrix is

1Arthur Cayley (1821-1895) showed his mathematical talent early and graduated from Cambridge in 1842 as senior wran-
gler. With no employment in mathematics in view, he took legal training and worked as a lawyer while continuing to do
mathematics, publishing nearly 300 papers in fourteen years. Finally, in 1863, he accepted the Sadlerian professorship in Cam-
bridge and remained there for the rest of his life, valued for his administrative and teaching skills as well as for his scholarship.
His mathematical achievements were of the first rank. In addition to originating matrix theory and the theory of determinants,
he did fundamental work in group theory, in higher-dimensional geometry, and in the theory of invariants. He was one of the
most prolific mathematicians of all time and produced 966 papers.
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the number lying simultaneously in row i and column j. For example,

The (1, 2)-entry of

[
1 −1
0 1

]
is −1.

The (2, 3)-entry of

[
1 2 −1
0 5 6

]
is 6.

A special notation is commonly used for the entries of a matrix. If A is an m× n matrix, and if the
(i, j)-entry of A is denoted as ai j, then A is displayed as follows:

A =




a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

...
am1 am2 am3 · · · amn




This is usually denoted simply as A =
[
ai j

]
. Thus ai j is the entry in row i and column j of A. For example,

a 3×4 matrix in this notation is written

A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34




It is worth pointing out a convention regarding rows and columns: Rows are mentioned before columns.
For example:

• If a matrix has size m×n, it has m rows and n columns.

• If we speak of the (i, j)-entry of a matrix, it lies in row i and column j.

• If an entry is denoted ai j, the first subscript i refers to the row and the second subscript j to the

column in which ai j lies.

Two points (x1, y1) and (x2, y2) in the plane are equal if and only if2 they have the same coordinates,
that is x1 = x2 and y1 = y2. Similarly, two matrices A and B are called equal (written A = B) if and only if:

1. They have the same size.

2. Corresponding entries are equal.

If the entries of A and B are written in the form A =
[
ai j

]
, B =

[
bi j

]
, described earlier, then the second

condition takes the following form:

A =
[
ai j

]
=
[
bi j

]
means ai j = bi j for all i and j

2If p and q are statements, we say that p implies q if q is true whenever p is true. Then “p if and only if q” means that both
p implies q and q implies p. See Appendix B for more on this.
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Example 2.1.1

Given A =

[
a b

c d

]
, B =

[
1 2 −1
3 0 1

]
and C =

[
1 0
−1 2

]
discuss the possibility that A = B,

B =C, A =C.

Solution. A = B is impossible because A and B are of different sizes: A is 2×2 whereas B is 2×3.
Similarly, B =C is impossible. But A =C is possible provided that corresponding entries are

equal:

[
a b

c d

]
=

[
1 0
−1 2

]
means a = 1, b = 0, c =−1, and d = 2.

Matrix Addition

Definition 2.1 Matrix Addition

If A and B are matrices of the same size, their sum A+B is the matrix formed by adding
corresponding entries.

If A =
[
ai j

]
and B =

[
bi j

]
, this takes the form

A+B =
[
ai j +bi j

]

Note that addition is not defined for matrices of different sizes.

Example 2.1.2

If A =

[
2 1 3
−1 2 0

]
and B =

[
1 1 −1
2 0 6

]
, compute A+B.

Solution.

A+B =

[
2+1 1+1 3−1
−1+2 2+0 0+6

]
=

[
3 2 2
1 2 6

]

Example 2.1.3

Find a, b, and c if
[

a b c
]
+
[

c a b
]
=
[

3 2 −1
]
.

Solution. Add the matrices on the left side to obtain

[
a+ c b+a c+b

]
=
[

3 2 −1
]

Because corresponding entries must be equal, this gives three equations: a+ c = 3, b+a = 2, and
c+b =−1. Solving these yields a = 3, b =−1, c = 0.
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If A, B, and C are any matrices of the same size, then

A+B = B+A (commutative law)

A+(B+C) = (A+B)+C (associative law)

In fact, if A =
[
ai j

]
and B =

[
bi j

]
, then the (i, j)-entries of A+B and B+A are, respectively, ai j +bi j and

bi j +ai j. Since these are equal for all i and j, we get

A+B =
[

ai j +bi j

]
=
[

bi j +ai j

]
= B+A

The associative law is verified similarly.

The m×n matrix in which every entry is zero is called the m×n zero matrix and is denoted as 0 (or
0mn if it is important to emphasize the size). Hence,

0+X = X

holds for all m×n matrices X . The negative of an m×n matrix A (written −A) is defined to be the m×n

matrix obtained by multiplying each entry of A by −1. If A =
[
ai j

]
, this becomes −A =

[
−ai j

]
. Hence,

A+(−A) = 0

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A.

A closely related notion is that of subtracting matrices. If A and B are two m× n matrices, their
difference A−B is defined by

A−B = A+(−B)

Note that if A =
[
ai j

]
and B =

[
bi j

]
, then

A−B =
[
ai j

]
+
[
−bi j

]
=
[
ai j−bi j

]

is the m×n matrix formed by subtracting corresponding entries.

Example 2.1.4

Let A =

[
3 −1 0
1 2 −4

]
, B =

[
1 −1 1
−2 0 6

]
, C =

[
1 0 −2
3 1 1

]
. Compute −A, A−B, and

A+B−C.

Solution.

−A =

[
−3 1 0
−1 −2 4

]

A−B =

[
3−1 −1− (−1) 0−1
1− (−2) 2−0 −4−6

]
=

[
2 0 −1
3 2 −10

]

A+B−C =

[
3+1−1 −1−1−0 0+1− (−2)
1−2−3 2+0−1 −4+6−1

]
=

[
3 −2 3
−4 1 1

]
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Example 2.1.5

Solve

[
3 2
−1 1

]
+X =

[
1 0
−1 2

]
where X is a matrix.

Solution. We solve a numerical equation a+ x = b by subtracting the number a from both sides to

obtain x = b−a. This also works for matrices. To solve

[
3 2
−1 1

]
+X =

[
1 0
−1 2

]
simply

subtract the matrix

[
3 2
−1 1

]
from both sides to get

X =

[
1 0
−1 2

]
−
[

3 2
−1 1

]
=

[
1−3 0−2

−1− (−1) 2−1

]
=

[
−2 −2

0 1

]

The reader should verify that this matrix X does indeed satisfy the original equation.

The solution in Example 2.1.5 solves the single matrix equation A+X = B directly via matrix subtrac-
tion: X = B−A. This ability to work with matrices as entities lies at the heart of matrix algebra.

It is important to note that the sizes of matrices involved in some calculations are often determined by
the context. For example, if

A+C =

[
1 3 −1
2 0 1

]

then A and C must be the same size (so that A+C makes sense), and that size must be 2×3 (so that the
sum is 2× 3). For simplicity we shall often omit reference to such facts when they are clear from the
context.

Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number k means multiplying every entry of
that row by k.

Definition 2.2 Matrix Scalar Multiplication

More generally, if A is any matrix and k is any number, the scalar multiple kA is the matrix
obtained from A by multiplying each entry of A by k.

If A =
[
ai j

]
, this is

kA =
[
kai j

]

Thus 1A = A and (−1)A =−A for any matrix A.

The term scalar arises here because the set of numbers from which the entries are drawn is usually
referred to as the set of scalars. We have been using real numbers as scalars, but we could equally well
have been using complex numbers.
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Example 2.1.6

If A =

[
3 −1 4
2 0 1

]
and B =

[
1 2 −1
0 3 2

]
compute 5A, 1

2B, and 3A−2B.

Solution.

5A =

[
15 −5 20
10 0 30

]
, 1

2B =

[ 1
2 1 −1

2
0 3

2 1

]

3A−2B =

[
9 −3 12
6 0 18

]
−
[

2 4 −2
0 6 4

]
=

[
7 −7 14
6 −6 14

]

If A is any matrix, note that kA is the same size as A for all scalars k. We also have

0A = 0 and k0 = 0

because the zero matrix has every entry zero. In other words, kA = 0 if either k = 0 or A = 0. The converse
of this statement is also true, as Example 2.1.7 shows.

Example 2.1.7

If kA = 0, show that either k = 0 or A = 0.

Solution. Write A =
[
ai j

]
so that kA = 0 means kai j = 0 for all i and j. If k = 0, there is nothing to

do. If k 6= 0, then kai j = 0 implies that ai j = 0 for all i and j; that is, A = 0.

For future reference, the basic properties of matrix addition and scalar multiplication are listed in
Theorem 2.1.1.

Theorem 2.1.1

Let A, B, and C denote arbitrary m×n matrices where m and n are fixed. Let k and p denote
arbitrary real numbers. Then

1. A+B = B+A.

2. A+(B+C) = (A+B)+C.

3. There is an m×n matrix 0, such that 0+A = A for each A.

4. For each A there is an m×n matrix, −A, such that A+(−A) = 0.

5. k(A+B) = kA+ kB.

6. (k+ p)A = kA+ pA.

7. (kp)A = k(pA).

8. 1A = A.
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Proof. Properties 1–4 were given previously. To check Property 5, let A =
[
ai j

]
and B =

[
bi j

]
denote

matrices of the same size. Then A+B =
[
ai j +bi j

]
, as before, so the (i, j)-entry of k(A+B) is

k(ai j +bi j) = kai j + kbi j

But this is just the (i, j)-entry of kA+ kB, and it follows that k(A+B) = kA+ kB. The other Properties
can be similarly verified; the details are left to the reader.

The Properties in Theorem 2.1.1 enable us to do calculations with matrices in much the same way that
numerical calculations are carried out. To begin, Property 2 implies that the sum

(A+B)+C = A+(B+C)

is the same no matter how it is formed and so is written as A+B+C. Similarly, the sum

A+B+C+D

is independent of how it is formed; for example, it equals both (A+B)+ (C+D) and A+[B+(C+D)].
Furthermore, property 1 ensures that, for example,

B+D+A+C = A+B+C+D

In other words, the order in which the matrices are added does not matter. A similar remark applies to
sums of five (or more) matrices.

Properties 5 and 6 in Theorem 2.1.1 are called distributive laws for scalar multiplication, and they
extend to sums of more than two terms. For example,

k(A+B−C) = kA+ kB− kC

(k+ p−m)A = kA+ pA−mA

Similar observations hold for more than three summands. These facts, together with properties 7 and
8, enable us to simplify expressions by collecting like terms, expanding, and taking common factors in
exactly the same way that algebraic expressions involving variables and real numbers are manipulated.
The following example illustrates these techniques.

Example 2.1.8

Simplify 2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)] where A, B, and C are all
matrices of the same size.

Solution. The reduction proceeds as though A, B, and C were variables.

2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)]

= 2A+6C−6C+3B−3 [4A+2B−8C−4A+8C]

= 2A+3B−3 [2B]

= 2A−3B
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Transpose of a Matrix

Many results about a matrix A involve the rows of A, and the corresponding result for columns is derived
in an analogous way, essentially by replacing the word row by the word column throughout. The following
definition is made with such applications in mind.

Definition 2.3 Transpose of a Matrix

If A is an m×n matrix, the transpose of A, written AT , is the n×m matrix whose rows are just the
columns of A in the same order.

In other words, the first row of AT is the first column of A (that is it consists of the entries of column 1 in
order). Similarly the second row of AT is the second column of A, and so on.

Example 2.1.9

Write down the transpose of each of the following matrices.

A =




1
3
2


 B =

[
5 2 6

]
C =




1 2
3 4
5 6


 D =




3 1 −1
1 3 2
−1 2 1




Solution.

AT =
[

1 3 2
]

, BT =




5
2
6


 , CT =

[
1 3 5
2 4 6

]
, and DT = D.

If A =
[
ai j

]
is a matrix, write AT =

[
bi j

]
. Then bi j is the jth element of the ith row of AT and so is the

jth element of the ith column of A. This means bi j = a ji, so the definition of AT can be stated as follows:

If A =
[
ai j

]
, then AT =

[
a ji

]
. (2.1)

This is useful in verifying the following properties of transposition.

Theorem 2.1.2

Let A and B denote matrices of the same size, and let k denote a scalar.

1. If A is an m×n matrix, then AT is an n×m matrix.

2. (AT )T = A.

3. (kA)T = kAT .

4. (A+B)T = AT +BT .
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Proof. Property 1 is part of the definition of AT , and Property 2 follows from (2.1). As to Property 3: If
A =

[
ai j

]
, then kA =

[
kai j

]
, so (2.1) gives

(kA)T =
[
ka ji

]
= k
[
a ji

]
= kAT

Finally, if B =
[
bi j

]
, then A+B =

[
ci j

]
where ci j = ai j +bi j Then (2.1) gives Property 4:

(A+B)T =
[
ci j

]T
=
[
c ji

]
=
[
a ji +b ji

]
=
[
a ji

]
+
[
b ji

]
= AT +BT

There is another useful way to think of transposition. If A =
[
ai j

]
is an m× n matrix, the elements

a11, a22, a33, . . . are called the main diagonal of A. Hence the main diagonal extends down and to the
right from the upper left corner of the matrix A; it is shaded in the following examples:




a11 a12

a21 a22

a31 a32



[

a11 a12 a13

a21 a22 a23

]


a11 a12 a13

a21 a22 a23

a31 a32 a33



[

a11

a21

]

Thus forming the transpose of a matrix A can be viewed as “flipping” A about its main diagonal, or
as “rotating” A through 180◦ about the line containing the main diagonal. This makes Property 2 in
Theorem 2.1.2 transparent.

Example 2.1.10

Solve for A if

(
2AT −3

[
1 2
−1 1

])T

=

[
2 3
−1 2

]
.

Solution. Using Theorem 2.1.2, the left side of the equation is

(
2AT −3

[
1 2
−1 1

])T

= 2
(
AT
)T −3

[
1 2
−1 1

]T

= 2A−3

[
1 −1
2 1

]

Hence the equation becomes

2A−3

[
1 −1
2 1

]
=

[
2 3
−1 2

]

Thus 2A =

[
2 3
−1 2

]
+3

[
1 −1
2 1

]
=

[
5 0
5 5

]
, so finally A = 1

2

[
5 0
5 5

]
= 5

2

[
1 0
1 1

]
.

Note that Example 2.1.10 can also be solved by first transposing both sides, then solving for AT , and so
obtaining A = (AT )T . The reader should do this.

The matrix D=

[
1 2
2 5

]
in Example 2.1.9 has the property that D=DT . Such matrices are important;

a matrix A is called symmetric if A = AT . A symmetric matrix A is necessarily square (if A is m×n, then
AT is n×m, so A=AT forces n=m). The name comes from the fact that these matrices exhibit a symmetry
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about the main diagonal. That is, entries that are directly across the main diagonal from each other are
equal.

For example,




a b c

b′ d e

c′ e′ f


 is symmetric when b = b′, c = c′, and e = e′.

Example 2.1.11

If A and B are symmetric n×n matrices, show that A+B is symmetric.

Solution. We have AT = A and BT = B, so, by Theorem 2.1.2, we have
(A+B)T = AT +BT = A+B. Hence A+B is symmetric.

Example 2.1.12

Suppose a square matrix A satisfies A = 2AT . Show that necessarily A = 0.

Solution. If we iterate the given equation, Theorem 2.1.2 gives

A = 2AT = 2
[
2AT

]T
= 2

[
2(AT )T

]
= 4A

Subtracting A from both sides gives 3A = 0, so A = 1
3(0) = 0.

Exercises for 2.1

Exercise 2.1.1 Find a, b, c, and d if

a.

[
a b

c d

]
=

[
c−3d −d

2a+d a+b

]

b.

[
a−b b− c

c−d d−a

]
= 2

[
1 1
−3 1

]

c. 3

[
a

b

]
+2

[
b

a

]
=

[
1
2

]

d.

[
a b

c d

]
=

[
b c

d a

]

Exercise 2.1.2 Compute the following:

[
3 2 1
5 1 0

]
−5

[
3 0 −2
1 −1 2

]
a.

3

[
3
−1

]
−5

[
6
2

]
+7

[
1
−1

]
b.

[
−2 1

3 2

]
−4

[
1 −2
0 −1

]
+3

[
2 −3
−1 −2

]
c.

[
3 −1 2

]
−2
[

9 3 4
]
+
[

3 11 −6
]

d.

[
1 −5 4 0
2 1 0 6

]T

e.




0 −1 2
1 0 −4
−2 4 0




T

f.

[
3 −1
2 1

]
−2

[
1 −2
1 1

]T

g.
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3

[
2 1
−1 0

]T

−2

[
1 −1
2 3

]
h.

Exercise 2.1.3 Let A =

[
2 1
0 −1

]
,

B =

[
3 −1 2
0 1 4

]
, C =

[
3 −1
2 0

]
,

D =




1 3
−1 0

1 4


, and E =

[
1 0 1
0 1 0

]
.

Compute the following (where possible).

3A−2Ba. 5Cb.

3ETc. B+Dd.

4AT −3Ce. (A+C)Tf.

2B−3Eg. A−Dh.

(B−2E)Ti.

Exercise 2.1.4 Find A if:

a. 5A−
[

1 0
2 3

]
= 3A−

[
5 2
6 1

]

b. 3A−
[

2
1

]
= 5A−2

[
3
0

]

Exercise 2.1.5 Find A in terms of B if:

A+B = 3A+2Ba. 2A−B = 5(A+2B)b.

Exercise 2.1.6 If X , Y , A, and B are matrices of the same
size, solve the following systems of equations to obtain
X and Y in terms of A and B.

5X +3Y = A

2X +Y = B

a. 4X +3Y = A

5X +4Y = B

b.

Exercise 2.1.7 Find all matrices X and Y such that:

3X−2Y =
[

3 −1
]

a. 2X −5Y =
[

1 2
]

b.

Exercise 2.1.8 Simplify the following expressions
where A, B, and C are matrices.

a. 2 [9(A−B)+7(2B−A)]
−2 [3(2B+A)−2(A+3B)−5(A+B)]

b. 5 [3(A−B+2C)−2(3C−B)−A]
+2 [3(3A−B+C)+2(B−2A)−2C]

Exercise 2.1.9 If A is any 2×2 matrix, show that:

a. A = a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+

d

[
0 0
0 1

]
for some numbers a, b, c, and d.

b. A = p

[
1 0
0 1

]
+ q

[
1 1
0 0

]
+ r

[
1 0
1 0

]
+

s

[
0 1
1 0

]
for some numbers p, q, r, and s.

Exercise 2.1.10 Let A =
[

1 1 −1
]
,

B =
[

0 1 2
]
, and C =

[
3 0 1

]
. If

rA+ sB+ tC = 0 for some scalars r, s, and t, show that
necessarily r = s = t = 0.

Exercise 2.1.11

a. If Q+A = A holds for every m×n matrix A, show
that Q = 0mn.

b. If A is an m×n matrix and A+A′= 0mn, show that
A′ =−A.

Exercise 2.1.12 If A denotes an m×n matrix, show that
A =−A if and only if A = 0.

Exercise 2.1.13 A square matrix is called a diagonal

matrix if all the entries off the main diagonal are zero. If
A and B are diagonal matrices, show that the following
matrices are also diagonal.

A+Ba. A−Bb.

kA for any number kc.

Exercise 2.1.14 In each case determine all s and t such
that the given matrix is symmetric:

[
1 s

−2 t

]
a.

[
s t

st 1

]
b.




s 2s st

t −1 s

t s2 s


c.




2 s t

2s 0 s+ t

3 3 t


d.

Exercise 2.1.15 In each case find the matrix A.

a.

(
A+3

[
1 −1 0
1 2 4

])T

=




2 1
0 5
3 8



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b.

(
3AT +2

[
1 0
0 2

])T

=

[
8 0
3 1

]

c.
(
2A−3

[
1 2 0

])T
= 3AT +

[
2 1 −1

]T

d.

(
2AT −5

[
1 0
−1 2

])T

= 4A−9

[
1 1
−1 0

]

Exercise 2.1.16 Let A and B be symmetric (of the same
size). Show that each of the following is symmetric.

(A−B)a. kA for any scalar kb.

Exercise 2.1.17 Show that A+AT and AAT are symmet-
ric for any square matrix A.

Exercise 2.1.18 If A is a square matrix and A = kAT

where k 6=±1, show that A = 0.

Exercise 2.1.19 In each case either show that the state-
ment is true or give an example showing it is false.

a. If A+B= A+C, then B and C have the same size.

b. If A+B = 0, then B = 0.

c. If the (3, 1)-entry of A is 5, then the (1, 3)-entry
of AT is −5.

d. A and AT have the same main diagonal for every
matrix A.

e. If B is symmetric and AT = 3B, then A = 3B.

f. If A and B are symmetric, then kA+mB is sym-
metric for any scalars k and m.

Exercise 2.1.20 A square matrix W is called skew-

symmetric if W T =−W . Let A be any square matrix.

a. Show that A−AT is skew-symmetric.

b. Find a symmetric matrix S and a skew-symmetric
matrix W such that A = S+W .

c. Show that S and W in part (b) are uniquely deter-
mined by A.

Exercise 2.1.21 If W is skew-symmetric (Exer-
cise 2.1.20), show that the entries on the main diagonal
are zero.

Exercise 2.1.22 Prove the following parts of Theo-
rem 2.1.1.

(k+ p)A = kA+ pAa. (kp)A = k(pA)b.

Exercise 2.1.23 Let A, A1, A2, . . . , An denote matrices
of the same size. Use induction on n to verify the follow-
ing extensions of properties 5 and 6 of Theorem 2.1.1.

a. k(A1 +A2 + · · ·+An) = kA1 + kA2 + · · ·+ kAn for
any number k

b. (k1 + k2 + · · ·+ kn)A = k1A+ k2A+ · · ·+ knA for
any numbers k1, k2, . . . , kn

Exercise 2.1.24 Let A be a square matrix. If A = pBT

and B = qAT for some matrix B and numbers p and q,
show that either A = 0 = B or pq = 1.
[Hint: Example 2.1.7.]
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2.2 Matrix-Vector Multiplication

Up to now we have used matrices to solve systems of linear equations by manipulating the rows of the
augmented matrix. In this section we introduce a different way of describing linear systems that makes
more use of the coefficient matrix of the system and leads to a useful way of “multiplying” matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the plane with coordinates (a1, a2) and
(b1, b2) are equal if and only if a1 = b1 and a2 = b2. Moreover, a similar condition applies to points
(a1, a2, a3) in space. We extend this idea as follows.

An ordered sequence (a1, a2, . . . , an) of real numbers is called an ordered nnn-tuple. The word “or-
dered” here reflects our insistence that two ordered n-tuples are equal if and only if corresponding entries
are the same. In other words,

(a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if a1 = b1, a2 = b2, . . . , and an = bn.

Thus the ordered 2-tuples and 3-tuples are just the ordered pairs and triples familiar from geometry.

Definition 2.4 The set Rn of ordered n-tuples of real numbers

Let R denote the set of all real numbers. The set of all ordered n-tuples from R has a special
notation:

Rn denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the n-tuples in Rn: As rows (r1, r2, . . . , rn) or columns


r1

r2
...

rn


; the notation we use depends on the context. In any event they are called vectors or n-vectors and

will be denoted using bold type such as x or v. For example, an m×n matrix A will be written as a row of
columns:

A =
[

a1 a2 · · · an

]
where a j denotes column j of A for each j.

If x and y are two n-vectors in Rn, it is clear that their matrix sum x+ y is also in Rn as is the scalar
multiple kx for any real number k. We express this observation by saying that Rn is closed under addition
and scalar multiplication. In particular, all the basic properties in Theorem 2.1.1 are true of these n-vectors.
These properties are fundamental and will be used frequently below without comment. As for matrices in
general, the n×1 zero matrix is called the zero nnn-vector in Rn and, if x is an n-vector, the n-vector −x is
called the negative x.

Of course, we have already encountered these n-vectors in Section 1.3 as the solutions to systems of
linear equations with n variables. In particular we defined the notion of a linear combination of vectors
and showed that a linear combination of solutions to a homogeneous system is again a solution. Clearly, a
linear combination of n-vectors in Rn is again in Rn, a fact that we will be using.


