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Exercise 3.2.28 If A−1 =




3 0 1
0 2 3
3 1 −1


 find adj A.

Exercise 3.2.29 If A is 3 × 3 and det A = 2, find
det (A−1 +4 adj A).

Exercise 3.2.30 Show that det

[
0 A

B X

]
= det A det B

when A and B are 2×2. What if A and B are 3×3?

[Hint: Block multiply by

[
0 I

I 0

]
.]

Exercise 3.2.31 Let A be n×n, n ≥ 2, and assume one
column of A consists of zeros. Find the possible values
of rank (adj A).

Exercise 3.2.32 If A is 3× 3 and invertible, compute
det (−A2(adj A)−1).

Exercise 3.2.33 Show that adj (uA) = un−1 adj A for all
n×n matrices A.

Exercise 3.2.34 Let A and B denote invertible n×n ma-
trices. Show that:

a. adj (adj A) = (det A)n−2A (here n≥ 2) [Hint: See
Example 3.2.8.]

b. adj (A−1) = (adj A)−1

c. adj (AT ) = (adj A)T

d. adj (AB) = (adj B)(adj A) [Hint: Show that
AB adj (AB) = AB adj B adj A.]

3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the weather in a region, the economy
of a nation, the diversity of an ecosystem, etc. Describing such systems is difficult in general and various
methods have been developed in special cases. In this section we describe one such method, called diag-

onalization, which is one of the most important techniques in linear algebra. A very fertile example of
this procedure is in modelling the growth of the population of an animal species. This has attracted more
attention in recent years with the ever increasing awareness that many species are endangered. To motivate
the technique, we begin by setting up a simple model of a bird population in which we make assumptions
about survival and reproduction rates.

Example 3.3.1

Consider the evolution of the population of a species of birds. Because the number of males and
females are nearly equal, we count only females. We assume that each female remains a juvenile
for one year and then becomes an adult, and that only adults have offspring. We make three
assumptions about reproduction and survival rates:

1. The number of juvenile females hatched in any year is twice the number of adult females
alive the year before (we say the reproduction rate is 2).

2. Half of the adult females in any year survive to the next year (the adult survival rate is 1
2).

3. One quarter of the juvenile females in any year survive into adulthood (the juvenile survival

rate is 1
4).

If there were 100 adult females and 40 juvenile females alive initially, compute the population of
females k years later.
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Solution. Let ak and jk denote, respectively, the number of adult and juvenile females after k years,
so that the total female population is the sum ak + jk. Assumption 1 shows that jk+1 = 2ak, while
assumptions 2 and 3 show that ak+1 =

1
2ak +

1
4 jk. Hence the numbers ak and jk in successive years

are related by the following equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write vk =

[
ak

jk

]
and A =

[
1
2

1
4

2 0

]
these equations take the matrix form

vk+1 = Avk, for each k = 0, 1, 2, . . .

Taking k = 0 gives v1 = Av0, then taking k = 1 gives v2 = Av1 = A2v0, and taking k = 2 gives
v3 = Av2 = A3v0. Continuing in this way, we get

vk = Akv0, for each k = 0, 1, 2, . . .

Since v0 =

[
a0

j0

]
=

[
100
40

]
is known, finding the population profile vk amounts to computing Ak

for all k ≥ 0. We will complete this calculation in Example 3.3.12 after some new techniques have
been developed.

Let A be a fixed n× n matrix. A sequence v0, v1, v2, . . . of column vectors in Rn is called a linear

dynamical system8 if v0 is known and the other vk are determined (as in Example 3.3.1) by the conditions

vk+1 = Avk for each k = 0, 1, 2, . . .

These conditions are called a matrix recurrence for the vectors vk. As in Example 3.3.1, they imply that

vk = Akv0 for all k ≥ 0

so finding the columns vk amounts to calculating Ak for k ≥ 0.

Direct computation of the powers Ak of a square matrix A can be time-consuming, so we adopt an
indirect method that is commonly used. The idea is to first diagonalize the matrix A, that is, to find an
invertible matrix P such that

P−1AP = D is a diagonal matrix (3.8)

This works because the powers Dk of the diagonal matrix D are easy to compute, and Equation 3.8 enables
us to compute powers Ak of the matrix A in terms of powers Dk of D. Indeed, we can solve Equation 3.8
for A to get A = PDP−1. Squaring this gives

A2 = (PDP−1)(PDP−1) = PD2P−1

Using this we can compute A3 as follows:

A3 = AA2 = (PDP−1)(PD2P−1) = PD3P−1

8More precisely, this is a linear discrete dynamical system. Many models regard vt as a continuous function of the time t,
and replace our condition between bk+1 and Avk with a differential relationship viewed as functions of time.
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Continuing in this way we obtain Theorem 3.3.1 (even if D is not diagonal).

Theorem 3.3.1

If A = PDP−1 then Ak = PDkP−1 for each k = 1, 2, . . . .

Hence computing Ak comes down to finding an invertible matrix P as in equation Equation 3.8. To do
this it is necessary to first compute certain numbers (called eigenvalues) associated with the matrix A.

Eigenvalues and Eigenvectors

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If A is an n×n matrix, a number λ is called an eigenvalue of A if

Ax = λx for some column x 6= 0 in Rn

In this case, x is called an eigenvector of A corresponding to the eigenvalue λ , or a λ -eigenvector

for short.

Example 3.3.2

If A =

[
3 5
1 −1

]
and x =

[
5
1

]
then Ax = 4x so λ = 4 is an eigenvalue of A with corresponding

eigenvector x.

The matrix A in Example 3.3.2 has another eigenvalue in addition to λ = 4. To find it, we develop a
general procedure for any n×n matrix A.

By definition a number λ is an eigenvalue of the n×n matrix A if and only if Ax= λx for some column
x 6= 0. This is equivalent to asking that the homogeneous system

(λ I−A)x = 0

of linear equations has a nontrivial solution x 6= 0. By Theorem 2.4.5 this happens if and only if the matrix
λ I−A is not invertible and this, in turn, holds if and only if the determinant of the coefficient matrix is
zero:

det (λ I−A) = 0

This last condition prompts the following definition:

Definition 3.5 Characteristic Polynomial of a Matrix

If A is an n×n matrix, the characteristic polynomial cA(x) of A is defined by

cA(x) = det (xI−A)
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Note that cA(x) is indeed a polynomial in the variable x, and it has degree n when A is an n×n matrix (this
is illustrated in the examples below). The above discussion shows that a number λ is an eigenvalue of A if
and only if cA(λ ) = 0, that is if and only if λ is a root of the characteristic polynomial cA(x). We record
these observations in

Theorem 3.3.2

Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I−A)x = 0

of linear equations with λ I−A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 3.3.2 is a routine application of gaussian elimina-
tion, but finding the eigenvalues can be difficult, often requiring computers (see Section 8.5). For now,
the examples and exercises will be constructed so that the roots of the characteristic polynomials are rela-
tively easy to find (usually integers). However, the reader should not be misled by this into thinking that
eigenvalues are so easily obtained for the matrices that occur in practical applications!

Example 3.3.3

Find the characteristic polynomial of the matrix A =

[
3 5
1 −1

]
discussed in Example 3.3.2, and

then find all the eigenvalues and their eigenvectors.

Solution. Since xI−A =

[
x 0
0 x

]
−
[

3 5
1 −1

]
=

[
x−3 −5
−1 x+1

]
we get

cA(x) = det

[
x−3 −5
−1 x+1

]
= x2−2x−8 = (x−4)(x+2)

Hence, the roots of cA(x) are λ1 = 4 and λ2 =−2, so these are the eigenvalues of A. Note that
λ1 = 4 was the eigenvalue mentioned in Example 3.3.2, but we have found a new one: λ2 =−2.
To find the eigenvectors corresponding to λ2 =−2, observe that in this case

(λ2I−A)x =

[
λ2−3 −5
−1 λ2 +1

]
=

[
−5 −5
−1 −1

]

so the general solution to (λ2I−A)x = 0 is x = t

[
−1

1

]
where t is an arbitrary real number.

Hence, the eigenvectors x corresponding to λ 2 are x = t

[
−1

1

]
where t 6= 0 is arbitrary. Similarly,

λ1 = 4 gives rise to the eigenvectors x = t

[
5
1

]
, t 6= 0 which includes the observation in

Example 3.3.2.
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Note that a square matrix A has many eigenvectors associated with any given eigenvalue λ . In fact
every nonzero solution x of (λ I−A)x = 0 is an eigenvector. Recall that these solutions are all linear com-
binations of certain basic solutions determined by the gaussian algorithm (see Theorem 1.3.2). Observe
that any nonzero multiple of an eigenvector is again an eigenvector,9 and such multiples are often more
convenient.10 Any set of nonzero multiples of the basic solutions of (λ I−A)x = 0 will be called a set of
basic eigenvectors corresponding to λ .

Example 3.3.4

Find the characteristic polynomial, eigenvalues, and basic eigenvectors for

A =




2 0 0
1 2 −1
1 3 −2




Solution. Here the characteristic polynomial is given by

cA(x) = det




x−2 0 0
−1 x−2 1
−1 −3 x+2


= (x−2)(x−1)(x+1)

so the eigenvalues are λ1 = 2, λ2 = 1, and λ3 =−1. To find all eigenvectors for λ1 = 2, compute

λ1I−A =




λ1−2 0 0
−1 λ1−2 1
−1 −3 λ1 +2


=




0 0 0
−1 0 1
−1 −3 4




We want the (nonzero) solutions to (λ1I−A)x = 0. The augmented matrix becomes



0 0 0 0
−1 0 1 0
−1 −3 4 0


→




1 0 −1 0
0 1 −1 0
0 0 0 0




using row operations. Hence, the general solution x to (λ1I−A)x = 0 is x = t




1
1
1


 where t is

arbitrary, so we can use x1 =




1
1
1


 as the basic eigenvector corresponding to λ1 = 2. As the

reader can verify, the gaussian algorithm gives basic eigenvectors x2 =




0
1
1


 and x3 =




0
1
3
1




corresponding to λ2 = 1 and λ3 =−1, respectively. Note that to eliminate fractions, we could

instead use 3x3 =




0
1
3


 as the basic λ3-eigenvector.

9In fact, any nonzero linear combination of λ -eigenvectors is again a λ -eigenvector.
10Allowing nonzero multiples helps eliminate round-off error when the eigenvectors involve fractions.
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Example 3.3.5

If A is a square matrix, show that A and AT have the same characteristic polynomial, and hence the
same eigenvalues.

Solution. We use the fact that xI−AT = (xI−A)T . Then

cAT (x) = det
(
xI−AT

)
= det

[
(xI−A)T

]
= det (xI−A) = cA(x)

by Theorem 3.2.3. Hence cAT (x) and cA(x) have the same roots, and so AT and A have the same
eigenvalues (by Theorem 3.3.2).

The eigenvalues of a matrix need not be distinct. For example, if A =

[
1 1
0 1

]
the characteristic poly-

nomial is (x− 1)2 so the eigenvalue 1 occurs twice. Furthermore, eigenvalues are usually not computed
as the roots of the characteristic polynomial. There are iterative, numerical methods (for example the
QR-algorithm in Section 8.5) that are much more efficient for large matrices.

A-Invariance

If A is a 2×2 matrix, we can describe the eigenvectors of A geometrically using the following concept. A
line L through the origin in R2 is called A-invariant if Ax is in L whenever x is in L. If we think of A as a
linear transformation R2→ R2, this asks that A carries L into itself, that is the image Ax of each vector x

in L is again in L.

Example 3.3.6

The x axis L =

{[
x

0

]
| x in R

}
is A-invariant for any matrix of the form

A =

[
a b

0 c

]
because

[
a b

0 c

][
x

0

]
=

[
ax

0

]
is L for all x =

[
x

0

]
in L

Lx

x

0 x

y

To see the connection with eigenvectors, let x 6= 0 be any nonzero vec-
tor in R2 and let Lx denote the unique line through the origin containing x

(see the diagram). By the definition of scalar multiplication in Section 2.6,
we see that Lx consists of all scalar multiples of x, that is

Lx = Rx = {tx | t in R}
Now suppose that x is an eigenvector of A, say Ax = λx for some λ in R.
Then if tx is in Lx then

A(tx) = t (Ax) = t(λx) = (tλ )x is again in Lx

That is, Lx is A-invariant. On the other hand, if Lx is A-invariant then Ax is in Lx (since x is in Lx). Hence
Ax = tx for some t in R, so x is an eigenvector for A (with eigenvalue t). This proves:



3.3. Diagonalization and Eigenvalues 177

Theorem 3.3.3

Let A be a 2×2 matrix, let x 6= 0 be a vector in R2, and let Lx be the line through the origin in R2

containing x. Then

x is an eigenvector of A if and only if Lx is A-invariant

Example 3.3.7

1. If θ is not a multiple of π , show that A =

[
cosθ −sinθ
sinθ cosθ

]
has no real eigenvalue.

2. If m is real show that B = 1
1+m2

[
1−m2 2m

2m m2−1

]
has a 1 as an eigenvalue.

Solution.

1. A induces rotation about the origin through the angle θ (Theorem 2.6.4). Since θ is not a
multiple of π , this shows that no line through the origin is A-invariant. Hence A has no
eigenvector by Theorem 3.3.3, and so has no eigenvalue.

2. B induces reflection Qm in the line through the origin with slope m by Theorem 2.6.5. If x is
any nonzero point on this line then it is clear that Qmx = x, that is Qmx = 1x. Hence 1 is an
eigenvalue (with eigenvector x).

If θ = π
2 in Example 3.3.7, then A =

[
0 −1
1 0

]
so cA(x) = x2 + 1. This polynomial has no root

in R, so A has no (real) eigenvalue, and hence no eigenvector. In fact its eigenvalues are the complex

numbers i and −i, with corresponding eigenvectors

[
1
−i

]
and

[
1
i

]
In other words, A has eigenvalues

and eigenvectors, just not real ones.

Note that every polynomial has complex roots,11 so every matrix has complex eigenvalues. While
these eigenvalues may very well be real, this suggests that we really should be doing linear algebra over the
complex numbers. Indeed, everything we have done (gaussian elimination, matrix algebra, determinants,
etc.) works if all the scalars are complex.

11This is called the Fundamental Theorem of Algebra and was first proved by Gauss in his doctoral dissertation.
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Diagonalization

An n×n matrix D is called a diagonal matrix if all its entries off the main diagonal are zero, that is if D

has the form

D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


= diag (λ1, λ2, · · · , λn)

where λ1, λ2, . . . , λn are numbers. Calculations with diagonal matrices are very easy. Indeed, if
D = diag (λ1, λ2, . . . , λn) and E = diag (µ1, µ2, . . . , µn) are two diagonal matrices, their product DE and
sum D+E are again diagonal, and are obtained by doing the same operations to corresponding diagonal
elements:

DE = diag (λ1µ1, λ2µ2, . . . , λnµn)

D+E = diag (λ1+µ1, λ2 +µ2, . . . , λn +µn)

Because of the simplicity of these formulas, and with an eye on Theorem 3.3.1 and the discussion preced-
ing it, we make another definition:

Definition 3.6 Diagonalizable Matrices

An n×n matrix A is called diagonalizable if

P−1AP is diagonal for some invertible n×n matrix P

Here the invertible matrix P is called a diagonalizing matrix for A.

To discover when such a matrix P exists, we let x1, x2, . . . , xn denote the columns of P and look
for ways to determine when such xi exist and how to compute them. To this end, write P in terms of its
columns as follows:

P = [x1, x2, · · · , xn]

Observe that P−1AP = D for some diagonal matrix D holds if and only if

AP = PD

If we write D = diag (λ1, λ2, . . . , λn), where the λi are numbers to be determined, the equation AP = PD

becomes

A [x1, x2, · · · , xn] = [x1, x2, · · · , xn]




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




By the definition of matrix multiplication, each side simplifies as follows

[
Ax1 Ax2 · · · Axn

]
=
[

λ1x1 λ2x2 · · · λnxn

]
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Comparing columns shows that Axi = λixi for each i, so

P−1AP = D if and only if Axi = λixi for each i

In other words, P−1AP = D holds if and only if the diagonal entries of D are eigenvalues of A and the
columns of P are corresponding eigenvectors. This proves the following fundamental result.

Theorem 3.3.4

Let A be an n×n matrix.

1. A is diagonalizable if and only if it has eigenvectors x1, x2, . . . , xn such that the matrix
P =

[
x1 x2 . . . xn

]
is invertible.

2. When this is the case, P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the eigenvalue
of A corresponding to xi.

Example 3.3.8

Diagonalize the matrix A =




2 0 0
1 2 −1
1 3 −2


 in Example 3.3.4.

Solution. By Example 3.3.4, the eigenvalues of A are λ1 = 2, λ2 = 1, and λ3 =−1, with

corresponding basic eigenvectors x1 =




1
1
1


 , x2 =




0
1
1


, and x3 =




0
1
3


 respectively. Since

the matrix P =
[

x1 x2 x3
]
=




1 0 0
1 1 1
1 1 3


 is invertible, Theorem 3.3.4 guarantees that

P−1AP =




λ1 0 0
0 λ2 0
0 0 λ3


=




2 0 0
0 1 0
0 0 −1


= D

The reader can verify this directly—easier to check AP = PD.

In Example 3.3.8, suppose we let Q =
[

x2 x1 x3
]

be the matrix formed from the eigenvectors x1,
x2, and x3 of A, but in a different order than that used to form P. Then Q−1AQ = diag (λ2, λ1, λ3) is diag-
onal by Theorem 3.3.4, but the eigenvalues are in the new order. Hence we can choose the diagonalizing
matrix P so that the eigenvalues λi appear in any order we want along the main diagonal of D.

In every example above each eigenvalue has had only one basic eigenvector. Here is a diagonalizable
matrix where this is not the case.
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Example 3.3.9

Diagonalize the matrix A =




0 1 1
1 0 1
1 1 0




Solution. To compute the characteristic polynomial of A first add rows 2 and 3 of xI−A to row 1:

cA(x) = det




x −1 −1
−1 x −1
−1 −1 x


= det




x−2 x−2 x−2
−1 x −1
−1 −1 x




= det




x−2 0 0
−1 x+1 0
−1 0 x+1


= (x−2)(x+1)2

Hence the eigenvalues are λ1 = 2 and λ2 =−1, with λ2 repeated twice (we say that λ2 has
multiplicity two). However, A is diagonalizable. For λ1 = 2, the system of equations

(λ1I−A)x = 0 has general solution x = t




1
1
1


 as the reader can verify, so a basic λ1-eigenvector

is x1 =




1
1
1


.

Turning to the repeated eigenvalue λ2 =−1, we must solve (λ2I−A)x = 0. By gaussian

elimination, the general solution is x = s



−1

1
0


+ t



−1

0
1


 where s and t are arbitrary. Hence

the gaussian algorithm produces two basic λ2-eigenvectors x2 =



−1

1
0


 and y2 =



−1

0
1


 If we

take P =
[

x1 x2 y2

]
=




1 −1 −1
1 1 0
1 0 1


 we find that P is invertible. Hence

P−1AP = diag (2, −1, −1) by Theorem 3.3.4.

Example 3.3.9 typifies every diagonalizable matrix. To describe the general case, we need some ter-
minology.

Definition 3.7 Multiplicity of an Eigenvalue

An eigenvalue λ of a square matrix A is said to have multiplicity m if it occurs m times as a root of
the characteristic polynomial cA(x).

For example, the eigenvalue λ2 = −1 in Example 3.3.9 has multiplicity 2. In that example the gaussian
algorithm yields two basic λ2-eigenvectors, the same number as the multiplicity. This works in general.
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Theorem 3.3.5

A square matrix A is diagonalizable if and only if every eigenvalue λ of multiplicity m yields
exactly m basic eigenvectors; that is, if and only if the general solution of the system (λ I−A)x = 0

has exactly m parameters.

One case of Theorem 3.3.5 deserves mention.

Theorem 3.3.6

An n×n matrix with n distinct eigenvalues is diagonalizable.

The proofs of Theorem 3.3.5 and Theorem 3.3.6 require more advanced techniques and are given in Chap-
ter 5. The following procedure summarizes the method.

Diagonalization Algorithm

To diagonalize an n×n matrix A:

Step 1. Find the distinct eigenvalues λ of A.

Step 2. Compute a set of basic eigenvectors corresponding to each of these eigenvalues λ as
basic solutions of the homogeneous system (λ I−A)x = 0.

Step 3. The matrix A is diagonalizable if and only if there are n basic eigenvectors in all.

Step 4. If A is diagonalizable, the n×n matrix P with these basic eigenvectors as its columns is
a diagonalizing matrix for A, that is, P is invertible and P−1AP is diagonal.

The diagonalization algorithm is valid even if the eigenvalues are nonreal complex numbers. In this case
the eigenvectors will also have complex entries, but we will not pursue this here.

Example 3.3.10

Show that A =

[
1 1
0 1

]
is not diagonalizable.

Solution 1. The characteristic polynomial is cA(x) = (x−1)2, so A has only one eigenvalue λ1 = 1

of multiplicity 2. But the system of equations (λ1I−A)x = 0 has general solution t

[
1
0

]
, so there

is only one parameter, and so only one basic eigenvector

[
1
2

]
. Hence A is not diagonalizable.

Solution 2. We have cA(x) = (x−1)2 so the only eigenvalue of A is λ = 1. Hence, if A were

diagonalizable, Theorem 3.3.4 would give P−1AP =

[
1 0
0 1

]
= I for some invertible matrix P.

But then A = PIP−1 = I, which is not the case. So A cannot be diagonalizable.
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Diagonalizable matrices share many properties of their eigenvalues. The following example illustrates
why.

Example 3.3.11

If λ 3 = 5λ for every eigenvalue of the diagonalizable matrix A, show that A3 = 5A.

Solution. Let P−1AP = D = diag (λ1, . . . , λn). Because λ 3
i = 5λi for each i, we obtain

D3 = diag (λ 3
1 , . . . , λ 3

n ) = diag (5λ1, . . . , 5λn) = 5D

Hence A3 = (PDP−1)3 = PD3P−1 = P(5D)P−1 = 5(PDP−1) = 5A using Theorem 3.3.1. This is
what we wanted.

If p(x) is any polynomial and p(λ ) = 0 for every eigenvalue of the diagonalizable matrix A, an argu-
ment similar to that in Example 3.3.11 shows that p(A) = 0. Thus Example 3.3.11 deals with the case
p(x) = x3− 5x. In general, p(A) is called the evaluation of the polynomial p(x) at the matrix A. For
example, if p(x) = 2x3−3x+5, then p(A) = 2A3−3A+5I—note the use of the identity matrix.

In particular, if cA(x) denotes the characteristic polynomial of A, we certainly have cA(λ ) = 0 for each
eigenvalue λ of A (Theorem 3.3.2). Hence cA(A) = 0 for every diagonalizable matrix A. This is, in fact,
true for any square matrix, diagonalizable or not, and the general result is called the Cayley-Hamilton
theorem. It is proved in Section 8.7 and again in Section 11.1.

Linear Dynamical Systems

We began Section 3.3 with an example from ecology which models the evolution of the population of a
species of birds as time goes on. As promised, we now complete the example—Example 3.3.12 below.

The bird population was described by computing the female population profile vk =

[
ak

jk

]
of the

species, where ak and jk represent the number of adult and juvenile females present k years after the initial
values a0 and j0 were observed. The model assumes that these numbers are related by the following
equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write A =

[
1
2

1
4

2 0

]
the columns vk satisfy vk+1 = Avk for each k = 0, 1, 2, . . . .

Hence vk = Akv0 for each k = 1, 2, . . . . We can now use our diagonalization techniques to determine the
population profile vk for all values of k in terms of the initial values.

Example 3.3.12

Assuming that the initial values were a0 = 100 adult females and j0 = 40 juvenile females,
compute ak and jk for k = 1, 2, . . . .
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Solution. The characteristic polynomial of the matrix A =

[
1
2

1
4

2 0

]
is

cA(x) = x2− 1
2x− 1

2 = (x−1)(x+ 1
2), so the eigenvalues are λ1 = 1 and λ2 =−1

2 and gaussian

elimination gives corresponding basic eigenvectors

[
1
2
1

]
and

[
−1

4
1

]
. For convenience, we can

use multiples x1 =

[
1
2

]
and x2 =

[
−1

4

]
respectively. Hence a diagonalizing matrix is

P =

[
1 −1
2 4

]
and we obtain

P−1AP = D where D =

[
1 0
0 −1

2

]

This gives A = PDP−1 so, for each k ≥ 0, we can compute Ak explicitly:

Ak = PDkP−1 =

[
1 −1
2 4

][
1 0
0 (−1

2)
k

]
1
6

[
4 1
−2 4

]

= 1
6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

]

Hence we obtain

[
ak

jk

]
= vk = Akv0 =

1
6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

][
100

40

]

= 1
6

[
440+160(−1

2)
k

880−640(−1
2)

k

]

Equating top and bottom entries, we obtain exact formulas for ak and jk:

ak =
220
3 + 80

3

(
−1

2

)k
and jk =

440
3 + 320

3

(
−1

2

)k
for k = 1, 2, · · ·

In practice, the exact values of ak and jk are not usually required. What is needed is a measure of
how these numbers behave for large values of k. This is easy to obtain here. Since (−1

2)
k is nearly

zero for large k, we have the following approximate values

ak ≈ 220
3 and jk ≈ 440

3 if k is large

Hence, in the long term, the female population stabilizes with approximately twice as many
juveniles as adults.
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Definition 3.8 Linear Dynamical System

If A is an n×n matrix, a sequence v0, v1, v2, . . . of columns in Rn is called a linear dynamical

system if v0 is specified and v1, v2, . . . are given by the matrix recurrence vk+1 = Avk for each
k ≥ 0. We call A the migration matrix of the system.

We have v1 = Av0, then v2 = Av1 = A2v0, and continuing we find

vk = Akv0 for each k = 1, 2, · · · (3.9)

Hence the columns vk are determined by the powers Ak of the matrix A and, as we have seen, these powers
can be efficiently computed if A is diagonalizable. In fact Equation 3.9 can be used to give a nice “formula”
for the columns vk in this case.

Assume that A is diagonalizable with eigenvalues λ1, λ2, . . . , λn and corresponding basic eigenvectors
x1, x2, . . . , xn. If P =

[
x1 x2 . . . xn

]
is a diagonalizing matrix with the xi as columns, then P is

invertible and
P−1AP = D = diag (λ1, λ2, · · · , λn)

by Theorem 3.3.4. Hence A = PDP−1 so Equation 3.9 and Theorem 3.3.1 give

vk = Akv0 = (PDP−1)kv0 = (PDkP−1)v0 = PDk(P−1v0)

for each k = 1, 2, . . . . For convenience, we denote the column P−1v0 arising here as follows:

b = P−1v0 =




b1

b2
...

bn




Then matrix multiplication gives

vk = PDk(P−1v0)

=
[

x1 x2 · · · xn

]




λ k
1 0 · · · 0

0 λ k
2 · · · 0

...
...

. . .
...

0 0 · · · λ k
n







b1

b2
...

bn




=
[

x1 x2 · · · xn

]




b1λ k
1

b2λ k
2

...
b3λ k

n




= b1λ k
1 x1 +b2λ k

2 x2 + · · ·+bnλ k
n xn (3.10)

for each k ≥ 0. This is a useful exact formula for the columns vk. Note that, in particular,

v0 = b1x1 +b2x2 + · · ·+bnxn
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However, such an exact formula for vk is often not required in practice; all that is needed is to estimate

vk for large values of k (as was done in Example 3.3.12). This can be easily done if A has a largest
eigenvalue. An eigenvalue λ of a matrix A is called a dominant eigenvalue of A if it has multiplicity 1
and

|λ |> |µ| for all eigenvalues µ 6= λ

where |λ | denotes the absolute value of the number λ . For example, λ1 = 1 is dominant in Example 3.3.12.

Returning to the above discussion, suppose that A has a dominant eigenvalue. By choosing the order
in which the columns xi are placed in P, we may assume that λ1 is dominant among the eigenvalues
λ1, λ2, . . . , λn of A (see the discussion following Example 3.3.8). Now recall the exact expression for vk

in Equation 3.10 above:
vk = b1λ k

1 x1 +b2λ k
2 x2 + · · ·+bnλ k

n xn

Take λ k
1 out as a common factor in this equation to get

vk = λ k
1

[
b1x1 +b2

(
λ2
λ1

)k

x2 + · · ·+bn

(
λn

λ1

)k

xn

]

for each k ≥ 0. Since λ1 is dominant, we have |λi|< |λ1| for each i≥ 2, so each of the numbers (λi/λ1)
k

become small in absolute value as k increases. Hence vk is approximately equal to the first term λ k
1 b1x1,

and we write this as vk ≈ λ k
1 b1x1. These observations are summarized in the following theorem (together

with the above exact formula for vk).

Theorem 3.3.7

Consider the dynamical system v0, v1, v2, . . . with matrix recurrence

vk+1 = Avk for k ≥ 0

where A and v0 are given. Assume that A is a diagonalizable n×n matrix with eigenvalues
λ1, λ2, . . . , λn and corresponding basic eigenvectors x1, x2, . . . , xn, and let
P =

[
x1 x2 . . . xn

]
be the diagonalizing matrix. Then an exact formula for vk is

vk = b1λ k
1 x1 +b2λ k

2 x2 + · · ·+bnλ k
n xn for each k ≥ 0

where the coefficients bi come from

b = P−1v0 =




b1

b2
...

bn




Moreover, if A has dominant12eigenvalue λ1, then vk is approximated by

vk = b1λ k
1 x1 for sufficiently large k.

12Similar results can be found in other situations. If for example, eigenvalues λ1 and λ2 (possibly equal) satisfy |λ1|= |λ2|>
|λi| for all i > 2, then we obtain vk ≈ b1λ k

1 x1 + b2λ k
2 x2 for large k.
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Example 3.3.13

Returning to Example 3.3.12, we see that λ1 = 1 is the dominant eigenvalue, with eigenvector

x1 =

[
1
2

]
. Here P =

[
1 −1
2 4

]
and v0 =

[
100
40

]
so P−1v0 =

1
3

[
220
−80

]
. Hence b1 =

220
3 in

the notation of Theorem 3.3.7, so
[

ak

jk

]
= vk ≈ b1λ k

1 x1 =
220

3 1k

[
1
2

]

where k is large. Hence ak ≈ 220
3 and jk ≈ 440

3 as in Example 3.3.12.

This next example uses Theorem 3.3.7 to solve a “linear recurrence.” See also Section 3.4.

Example 3.3.14

Suppose a sequence x0, x1, x2, . . . is determined by insisting that

x0 = 1, x1 =−1, and xk+2 = 2xk− xk+1 for every k ≥ 0

Find a formula for xk in terms of k.

Solution. Using the linear recurrence xk+2 = 2xk− xk+1 repeatedly gives

x2 = 2x0− x1 = 3, x3 = 2x1− x2 =−5, x4 = 11, x5 =−21, . . .

so the xi are determined but no pattern is apparent. The idea is to find vk =

[
xk

xk+1

]
for each k

instead, and then retrieve xk as the top component of vk. The reason this works is that the linear
recurrence guarantees that these vk are a dynamical system:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

2xk− xk+1

]
= Avk where A =

[
0 1
2 −1

]

The eigenvalues of A are λ1 =−2 and λ2 = 1 with eigenvectors x1 =

[
1
−2

]
and x2 =

[
1
1

]
, so

the diagonalizing matrix is P =

[
1 1
−2 1

]
.

Moreover, b = P−1
0 v0 =

1
3

[
2
1

]
so the exact formula for vk is

[
xk

xk+1

]
= vk = b1λ k

1 x1 +b2λ k
2 x2 =

2
3(−2)k

[
1
−2

]
+ 1

31k

[
1
1

]

Equating top entries gives the desired formula for xk:

xk =
1
3

[
2(−2)k +1

]
for all k = 0, 1, 2, . . .

The reader should check this for the first few values of k.
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Graphical Description of Dynamical Systems

If a dynamical system vk+1 = Avk is given, the sequence v0, v1, v2, . . . is called the trajectory of the

system starting at v0. It is instructive to obtain a graphical plot of the system by writing vk =

[
xk

yk

]
and

plotting the successive values as points in the plane, identifying vk with the point (xk, yk) in the plane. We
give several examples which illustrate properties of dynamical systems. For ease of calculation we assume
that the matrix A is simple, usually diagonal.

Example 3.3.15

O
x

y

Let A =

[ 1
2 0
0 1

3

]
Then the eigenvalues are 1

2 and 1
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
.

The exact formula is

vk = b1
(1

2

)k
[

1
0

]
+b2

(1
3

)k
[

0
1

]

for k = 0, 1, 2, . . . by Theorem 3.3.7, where the coefficients
b1 and b2 depend on the initial point v0. Several trajectories are
plotted in the diagram and, for each choice of v0, the trajectories
converge toward the origin because both eigenvalues are less
than 1 in absolute value. For this reason, the origin is called
an attractor for the system.

Example 3.3.16

O
x

y

Let A =

[ 3
2 0
0 4

3

]
. Here the eigenvalues are 3

2 and 4
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
as before.

The exact formula is

vk = b1
(3

2

)k
[

1
0

]
+b2

(4
3

)k
[

0
1

]

for k = 0, 1, 2, . . . . Since both eigenvalues are greater than
1 in absolute value, the trajectories diverge away from the origin
for every choice of initial point V0. For this reason, the origin
is called a repellor for the system.
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Example 3.3.17

O
x

y

Let A =

[
1 −1

2
−1

2 1

]
. Now the eigenvalues are 3

2 and 1
2 , with

corresponding eigenvectors x1 =

[
−1

1

]
and x2 =

[
1
1

]
The

exact formula is

vk = b1
(3

2

)k
[
−1

1

]
+b2

(1
2

)k
[

1
1

]

for k = 0, 1, 2, . . . . In this case 3
2 is the dominant eigenvalue

so, if b1 6= 0, we have vk ≈ b1
(

3
2

)k
[
−1

1

]
for large k and vk

is approaching the line y =−x.

However, if b1 = 0, then vk = b2
(1

2

)k
[

1
1

]
and so approaches

the origin along the line y = x. In general the trajectories appear
as in the diagram, and the origin is called a saddle point for the

dynamical system in this case.

Example 3.3.18

Let A =

[
0 1

2
−1

2 0

]
. Now the characteristic polynomial is cA(x) = x2 + 1

4 , so the eigenvalues are

the complex numbers i
2 and − i

2 where i2 =−1. Hence A is not diagonalizable as a real matrix.

However, the trajectories are not difficult to describe. If we start with v0 =

[
1
1

]
then the

trajectory begins as

v1 =

[
1
2

−1
2

]
, v2 =

[
−1

4

−1
4

]
, v3 =

[
−1

8
1
8

]
, v4 =

[
1

16
1

16

]
, v5 =

[
1

32

− 1
32

]
, v6 =

[
− 1

64

− 1
64

]
, . . .

1

1 v0

v1

v2

v3

O
x

y

The first five of these points are plotted in the diagram. Here
each trajectory spirals in toward the origin, so the origin is an
attractor. Note that the two (complex) eigenvalues have absolute
value less than 1 here. If they had absolute value greater than
1, the trajectories would spiral out from the origin.
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Google PageRank

Dominant eigenvalues are useful to the Google search engine for finding information on the Web. If an
information query comes in from a client, Google has a sophisticated method of establishing the “rele-
vance” of each site to that query. When the relevant sites have been determined, they are placed in order of
importance using a ranking of all sites called the PageRank. The relevant sites with the highest PageRank
are the ones presented to the client. It is the construction of the PageRank that is our interest here.

The Web contains many links from one site to another. Google interprets a link from site j to site
i as a “vote” for the importance of site i. Hence if site i has more links to it than does site j, then i is
regarded as more “important” and assigned a higher PageRank. One way to look at this is to view the sites
as vertices in a huge directed graph (see Section 2.2). Then if site j links to site i there is an edge from j

to i, and hence the (i, j)-entry is a 1 in the associated adjacency matrix (called the connectivity matrix in
this context). Thus a large number of 1s in row i of this matrix is a measure of the PageRank of site i.13

However this does not take into account the PageRank of the sites that link to i. Intuitively, the higher
the rank of these sites, the higher the rank of site i. One approach is to compute a dominant eigenvector x

for the connectivity matrix. In most cases the entries of x can be chosen to be positive with sum 1. Each
site corresponds to an entry of x, so the sum of the entries of sites linking to a given site i is a measure of
the rank of site i. In fact, Google chooses the PageRank of a site so that it is proportional to this sum.14

Exercises for 3.3

Exercise 3.3.1 In each case find the characteristic poly-
nomial, eigenvalues, eigenvectors, and (if possible) an in-
vertible matrix P such that P−1AP is diagonal.

A =

[
1 2
3 2

]
a. A =

[
2 −4
−1 −1

]
b.

A =




7 0 −4
0 5 0
5 0 −2


c. A=




1 1 −3
2 0 6
1 −1 5


d.

A=




1 −2 3
2 6 −6
1 2 −1


e. A =




0 1 0
3 0 1
2 0 0


f.

A=




3 1 1
−4 −2 −5

2 2 5


g. A =




2 1 1
0 1 0
1 −1 2


h.

A =




λ 0 0
0 λ 0
0 0 µ


, λ 6= µi.

Exercise 3.3.2 Consider a linear dynamical system
vk+1 = Avk for k ≥ 0. In each case approximate vk us-
ing Theorem 3.3.7.

a. A =

[
2 1
4 −1

]
, v0 =

[
1
2

]

b. A =

[
3 −2
2 −2

]
, v0 =

[
3
−1

]

c. A =




1 0 0
1 2 3
1 4 1


 , v0 =




1
1
1




13For more on PageRank, visit https://en.wikipedia.org/wiki/PageRank.
14See the articles “Searching the web with eigenvectors” by Herbert S. Wilf, UMAP Journal 23(2), 2002, pages 101–103,

and “The worlds largest matrix computation: Google’s PageRank is an eigenvector of a matrix of order 2.7 billion” by Cleve
Moler, Matlab News and Notes, October 2002, pages 12–13.

https://en.wikipedia.org/wiki/PageRank
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d. A =




1 3 2
−1 2 1

4 −1 −1


 , v0 =




2
0
1




Exercise 3.3.3 Show that A has λ = 0 as an eigenvalue
if and only if A is not invertible.

Exercise 3.3.4 Let A denote an n× n matrix and put
A1 = A−αI, α in R. Show that λ is an eigenvalue of
A if and only if λ −α is an eigenvalue of A1. (Hence,
the eigenvalues of A1 are just those of A “shifted” by α .)
How do the eigenvectors compare?

Exercise 3.3.5 Show that the eigenvalues of[
cos θ −sinθ

sinθ cos θ

]
are eiθ and e−iθ .

(See Appendix A)

Exercise 3.3.6 Find the characteristic polynomial of the
n×n identity matrix I. Show that I has exactly one eigen-
value and find the eigenvectors.

Exercise 3.3.7 Given A =

[
a b

c d

]
show that:

a. cA(x) = x2− tr Ax+ det A, where tr A = a+ d is
called the trace of A.

b. The eigenvalues are 1
2

[
(a+d)±

√
(a−b)2 +4bc

]
.

Exercise 3.3.8 In each case, find P−1AP and then com-
pute An.

a. A =

[
6 −5
2 −1

]
, P =

[
1 5
1 2

]

b. A =

[
−7 −12

6 −10

]
, P =

[
−3 4

2 −3

]

[Hint: (PDP−1)n = PDnP−1 for each n =
1, 2, . . . .]

Exercise 3.3.9

a. If A =

[
1 3
0 2

]
and B =

[
2 0
0 1

]
verify that A

and B are diagonalizable, but AB is not.

b. If D =

[
1 0
0 −1

]
find a diagonalizable matrix A

such that D+A is not diagonalizable.

Exercise 3.3.10 If A is an n× n matrix, show that A is
diagonalizable if and only if AT is diagonalizable.

Exercise 3.3.11 If A is diagonalizable, show that each
of the following is also diagonalizable.

a. An, n≥ 1

b. kA, k any scalar.

c. p(A), p(x) any polynomial (Theorem 3.3.1)

d. U−1AU for any invertible matrix U .

e. kI +A for any scalar k.

Exercise 3.3.12 Give an example of two diagonalizable
matrices A and B whose sum A+B is not diagonalizable.

Exercise 3.3.13 If A is diagonalizable and 1 and −1 are
the only eigenvalues, show that A−1 = A.

Exercise 3.3.14 If A is diagonalizable and 0 and 1 are
the only eigenvalues, show that A2 = A.

Exercise 3.3.15 If A is diagonalizable and λ ≥ 0 for
each eigenvalue of A, show that A = B2 for some matrix
B.

Exercise 3.3.16 If P−1AP and P−1BP are both diago-
nal, show that AB = BA. [Hint: Diagonal matrices com-
mute.]

Exercise 3.3.17 A square matrix A is called nilpotent if
An = 0 for some n≥ 1. Find all nilpotent diagonalizable
matrices. [Hint: Theorem 3.3.1.]

Exercise 3.3.18 Let A be any n× n matrix and r 6= 0 a
real number.

a. Show that the eigenvalues of rA are precisely the
numbers rλ , where λ is an eigenvalue of A.

b. Show that crA(x) = rncA

(
x
r

)
.

Exercise 3.3.19

a. If all rows of A have the same sum s, show that s

is an eigenvalue.

b. If all columns of A have the same sum s, show that
s is an eigenvalue.

Exercise 3.3.20 Let A be an invertible n×n matrix.

a. Show that the eigenvalues of A are nonzero.
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b. Show that the eigenvalues of A−1 are precisely the
numbers 1/λ , where λ is an eigenvalue of A.

c. Show that cA−1(x) =
(−x)n

det A
cA

(
1
x

)
.

Exercise 3.3.21 Suppose λ is an eigenvalue of a square
matrix A with eigenvector x 6= 0.

a. Show that λ 2 is an eigenvalue of A2 (with the same
x).

b. Show that λ 3−2λ +3 is an eigenvalue of
A3−2A+3I.

c. Show that p(λ ) is an eigenvalue of p(A) for any
nonzero polynomial p(x).

Exercise 3.3.22 If A is an n× n matrix, show that
cA2(x2) = (−1)ncA(x)cA(−x).

Exercise 3.3.23 An n×n matrix A is called nilpotent if
Am = 0 for some m≥ 1.

a. Show that every triangular matrix with zeros on
the main diagonal is nilpotent.

b. If A is nilpotent, show that λ = 0 is the only eigen-
value (even complex) of A.

c. Deduce that cA(x) = xn, if A is n×n and nilpotent.

Exercise 3.3.24 Let A be diagonalizable with real eigen-
values and assume that Am = I for some m≥ 1.

a. Show that A2 = I.

b. If m is odd, show that A = I.

[Hint: Theorem A.3]

Exercise 3.3.25 Let A2 = I, and assume that A 6= I and
A 6=−I.

a. Show that the only eigenvalues of A are λ = 1 and
λ =−1.

b. Show that A is diagonalizable. [Hint: Verify that
A(A+I)=A+I and A(A−I)=−(A−I), and then
look at nonzero columns of A+ I and of A− I.]

c. If Qm : R2 → R2 is reflection in the line y = mx

where m 6= 0, use (b) to show that the matrix of
Qm is diagonalizable for each m.

d. Now prove (c) geometrically using Theorem 3.3.3.

Exercise 3.3.26 Let A =




2 3 −3
1 0 −1
1 1 −2


 and B =




0 1 0
3 0 1
2 0 0


. Show that cA(x) = cB(x) = (x+ 1)2(x−

2), but A is diagonalizable and B is not.

Exercise 3.3.27

a. Show that the only diagonalizable matrix A that
has only one eigenvalue λ is the scalar matrix
A = λ I.

b. Is

[
3 −2
2 −1

]
diagonalizable?

Exercise 3.3.28 Characterize the diagonalizable n× n

matrices A such that A2− 3A+ 2I = 0 in terms of their
eigenvalues. [Hint: Theorem 3.3.1.]

Exercise 3.3.29 Let A =

[
B 0
0 C

]
where B and C are

square matrices.

a. If B and C are diagonalizable via Q and R (that is,
Q−1BQ and R−1CR are diagonal), show that A is

diagonalizable via

[
Q 0
0 R

]

b. Use (a) to diagonalize A if B =

[
5 3
3 5

]
and

C =

[
7 −1
−1 7

]
.
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Exercise 3.3.30 Let A =

[
B 0
0 C

]
where B and C are

square matrices.

a. Show that cA(x) = cB(x)cC(x).

b. If x and y are eigenvectors of B and C, respec-

tively, show that

[
x

0

]
and

[
0
y

]
are eigenvec-

tors of A, and show how every eigenvector of A

arises from such eigenvectors.

Exercise 3.3.31 Referring to the model in Exam-
ple 3.3.1, determine if the population stabilizes, becomes
extinct, or becomes large in each case. Denote the adult
and juvenile survival rates as A and J, and the reproduc-
tion rate as R.

R A J

a. 2 1
2

1
2

b. 3 1
4

1
4

c. 2 1
4

1
3

d. 3 3
5

1
5

Exercise 3.3.32 In the model of Example 3.3.1, does the
final outcome depend on the initial population of adult
and juvenile females? Support your answer.

Exercise 3.3.33 In Example 3.3.1, keep the same repro-
duction rate of 2 and the same adult survival rate of 1

2 ,
but suppose that the juvenile survival rate is ρ . Deter-
mine which values of ρ cause the population to become
extinct or to become large.

Exercise 3.3.34 In Example 3.3.1, let the juvenile sur-
vival rate be 2

5 and let the reproduction rate be 2. What
values of the adult survival rate α will ensure that the
population stabilizes?

3.4 An Application to Linear Recurrences

It often happens that a problem can be solved by finding a sequence of numbers x0, x1, x2, . . . where the
first few are known, and subsequent numbers are given in terms of earlier ones. Here is a combinatorial
example where the object is to count the number of ways to do something.

Example 3.4.1

An urban planner wants to determine the number xk of ways that a row of k parking spaces can be
filled with cars and trucks if trucks take up two spaces each. Find the first few values of xk.

Solution. Clearly, x0 = 1 and x1 = 1, while x2 = 2 since there can be two cars or one truck. We
have x3 = 3 (the 3 configurations are ccc, cT, and Tc) and x4 = 5 (cccc, ccT, cTc, Tcc, and TT). The
key to this method is to find a way to express each subsequent xk in terms of earlier values. In this
case we claim that

xk+2 = xk + xk+1 for every k ≥ 0 (3.11)

Indeed, every way to fill k+2 spaces falls into one of two categories: Either a car is parked in the
first space (and the remaining k+1 spaces are filled in xk+1 ways), or a truck is parked in the first
two spaces (with the other k spaces filled in xk ways). Hence, there are xk+1 + xk ways to fill the
k+2 spaces. This is Equation 3.11.


