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Exercise 3.3.30 Let A =

[
B 0
0 C

]
where B and C are

square matrices.

a. Show that cA(x) = cB(x)cC(x).

b. If x and y are eigenvectors of B and C, respec-

tively, show that

[
x

0

]
and

[
0
y

]
are eigenvec-

tors of A, and show how every eigenvector of A

arises from such eigenvectors.

Exercise 3.3.31 Referring to the model in Exam-
ple 3.3.1, determine if the population stabilizes, becomes
extinct, or becomes large in each case. Denote the adult
and juvenile survival rates as A and J, and the reproduc-
tion rate as R.

R A J

a. 2 1
2

1
2

b. 3 1
4

1
4

c. 2 1
4

1
3

d. 3 3
5

1
5

Exercise 3.3.32 In the model of Example 3.3.1, does the
final outcome depend on the initial population of adult
and juvenile females? Support your answer.

Exercise 3.3.33 In Example 3.3.1, keep the same repro-
duction rate of 2 and the same adult survival rate of 1

2 ,
but suppose that the juvenile survival rate is ρ . Deter-
mine which values of ρ cause the population to become
extinct or to become large.

Exercise 3.3.34 In Example 3.3.1, let the juvenile sur-
vival rate be 2

5 and let the reproduction rate be 2. What
values of the adult survival rate α will ensure that the
population stabilizes?

3.4 An Application to Linear Recurrences

It often happens that a problem can be solved by finding a sequence of numbers x0, x1, x2, . . . where the
first few are known, and subsequent numbers are given in terms of earlier ones. Here is a combinatorial
example where the object is to count the number of ways to do something.

Example 3.4.1

An urban planner wants to determine the number xk of ways that a row of k parking spaces can be
filled with cars and trucks if trucks take up two spaces each. Find the first few values of xk.

Solution. Clearly, x0 = 1 and x1 = 1, while x2 = 2 since there can be two cars or one truck. We
have x3 = 3 (the 3 configurations are ccc, cT, and Tc) and x4 = 5 (cccc, ccT, cTc, Tcc, and TT). The
key to this method is to find a way to express each subsequent xk in terms of earlier values. In this
case we claim that

xk+2 = xk + xk+1 for every k ≥ 0 (3.11)

Indeed, every way to fill k+2 spaces falls into one of two categories: Either a car is parked in the
first space (and the remaining k+1 spaces are filled in xk+1 ways), or a truck is parked in the first
two spaces (with the other k spaces filled in xk ways). Hence, there are xk+1 + xk ways to fill the
k+2 spaces. This is Equation 3.11.
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The recurrence in Equation 3.11 determines xk for every k ≥ 2 since x0 and x1 are given. In fact,
the first few values are

x0 = 1
x1 = 1
x2 = x0 + x1 = 2
x3 = x1 + x2 = 3
x4 = x2 + x3 = 5
x5 = x3 + x4 = 8
...

...
...

Clearly, we can find xk for any value of k, but one wishes for a “formula” for xk as a function of k.
It turns out that such a formula can be found using diagonalization. We will return to this example
later.

A sequence x0, x1, x2, . . . of numbers is said to be given recursively if each number in the sequence is
completely determined by those that come before it. Such sequences arise frequently in mathematics and
computer science, and also occur in other parts of science. The formula xk+2 = xk+1+xk in Example 3.4.1
is an example of a linear recurrence relation of length 2 because xk+2 is the sum of the two preceding
terms xk+1 and xk; in general, the length is m if xk+m is a sum of multiples of xk, xk+1, . . . , xk+m−1.

The simplest linear recursive sequences are of length 1, that is xk+1 is a fixed multiple of xk for each k,
say xk+1 = axk. If x0 is specified, then x1 = ax0, x2 = ax1 = a2x0, and x3 = ax2 = a3x0, . . . . Continuing,
we obtain xk = akx0 for each k≥ 0, which is an explicit formula for xk as a function of k (when x0 is given).

Such formulas are not always so easy to find for all choices of the initial values. Here is an example
where diagonalization helps.

Example 3.4.2

Suppose the numbers x0, x1, x2, . . . are given by the linear recurrence relation

xk+2 = xk+1 +6xk for k ≥ 0

where x0 and x1 are specified. Find a formula for xk when x0 = 1 and x1 = 3, and also when x0 = 1
and x1 = 1.

Solution. If x0 = 1 and x1 = 3, then

x2 = x1 +6x0 = 9, x3 = x2 +6x1 = 27, x4 = x3 +6x2 = 81

and it is apparent that
xk = 3k for k = 0, 1, 2, 3, and 4

This formula holds for all k because it is true for k = 0 and k = 1, and it satisfies the recurrence
xk+2 = xk+1 +6xk for each k as is readily checked.
However, if we begin instead with x0 = 1 and x1 = 1, the sequence continues

x2 = 7, x3 = 13, x4 = 55, x5 = 133, . . .

In this case, the sequence is uniquely determined but no formula is apparent. Nonetheless, a simple
device transforms the recurrence into a matrix recurrence to which our diagonalization techniques
apply.
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The idea is to compute the sequence v0, v1, v2, . . . of columns instead of the numbers
x0, x1, x2, . . . , where

vk =

[
xk

xk+1

]
for each k ≥ 0

Then v0 =

[
x0

x1

]
=

[
1
1

]
is specified, and the numerical recurrence xk+2 = xk+1 +6xk transforms

into a matrix recurrence as follows:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

6xk + xk+1

]
=

[
0 1
6 1

][
xk

xk+1

]
= Avk

where A =

[
0 1
6 1

]
. Thus these columns vk are a linear dynamical system, so Theorem 3.3.7

applies provided the matrix A is diagonalizable.
We have cA(x) = (x−3)(x+2) so the eigenvalues are λ1 = 3 and λ2 =−2 with corresponding

eigenvectors x1 =

[
1
3

]
and x2 =

[
−1

2

]
as the reader can check. Since

P =
[

x1 x2
]
=

[
1 −1
3 2

]
is invertible, it is a diagonalizing matrix for A. The coefficients bi in

Theorem 3.3.7 are given by

[
b1

b2

]
= P−1v0 =

[
3
5
−2
5

]
, so that the theorem gives

[
xk

xk+1

]
= vk = b1λ k

1 x1 +b2λ k
2 x2 =

3
53k

[
1
3

]
+ −2

5 (−2)k

[
−1

2

]

Equating top entries yields

xk =
1
5

[
3k+1− (−2)k+1

]
for k ≥ 0

This gives x0 = 1 = x1, and it satisfies the recurrence xk+2 = xk+1 +6xk as is easily verified.
Hence, it is the desired formula for the xk.

Returning to Example 3.4.1, these methods give an exact formula and a good approximation for the num-
bers xk in that problem.

Example 3.4.3

In Example 3.4.1, an urban planner wants to determine xk, the number of ways that a row of k

parking spaces can be filled with cars and trucks if trucks take up two spaces each. Find a formula
for xk and estimate it for large k.

Solution. We saw in Example 3.4.1 that the numbers xk satisfy a linear recurrence

xk+2 = xk + xk+1 for every k ≥ 0
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If we write vk =

[
xk

xk+1

]
as before, this recurrence becomes a matrix recurrence for the vk:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

xk + xk+1

]
=

[
0 1
1 1

][
xk

xk+1

]
= Avk

for all k ≥ 0 where A =

[
0 1
1 1

]
. Moreover, A is diagonalizable here. The characteristic

polynomial is cA(x) = x2− x−1 with roots 1
2

[
1±
√

5
]

by the quadratic formula, so A has

eigenvalues

λ1 =
1
2

(
1+
√

5
)

and λ2 =
1
2

(
1−
√

5
)

Corresponding eigenvectors are x1 =

[
1
λ1

]
and x2 =

[
1
λ2

]
respectively as the reader can verify.

As the matrix P =
[

x1 x2
]
=

[
1 1
λ1 λ2

]
is invertible, it is a diagonalizing matrix for A. We

compute the coefficients b1 and b2 (in Theorem 3.3.7) as follows:
[

b1

b2

]
= P−1v0 =

1
−
√

5

[
λ2 −1
−λ1 1

][
1
1

]
= 1√

5

[
λ1

−λ2

]

where we used the fact that λ1 +λ2 = 1. Thus Theorem 3.3.7 gives
[

xk

xk+1

]
= vk = b1λ k

1 x1 +b2λ k
2 x2 =

λ1√
5
λ k

1

[
1
λ1

]
− λ2√

5
λ k

2

[
1
λ2

]

Comparing top entries gives an exact formula for the numbers xk:

xk =
1√
5

[
λ k+1

1 −λ k+1
2

]
for k ≥ 0

Finally, observe that λ1 is dominant here (in fact, λ1 = 1.618 and λ2 =−0.618 to three decimal
places) so λ k+1

2 is negligible compared with λ k+1
1 is large. Thus,

xk ≈ 1√
5
λ k+1

1 for each k ≥ 0.

This is a good approximation, even for as small a value as k = 12. Indeed, repeated use of the
recurrence xk+2 = xk + xk+1 gives the exact value x12 = 233, while the approximation is

x12 ≈ (1.618)13
√

5
= 232.94.

The sequence x0, x1, x2, . . . in Example 3.4.3 was first discussed in 1202 by Leonardo Pisano of Pisa,
also known as Fibonacci,15 and is now called the Fibonacci sequence. It is completely determined by
the conditions x0 = 1, x1 = 1 and the recurrence xk+2 = xk + xk+1 for each k ≥ 0. These numbers have

15Fibonacci was born in Italy. As a young man he travelled to India where he encountered the “Fibonacci” sequence. He
returned to Italy and published this in his book Liber Abaci in 1202. In the book he is the first to bring the Hindu decimal
system for representing numbers to Europe.
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been studied for centuries and have many interesting properties (there is even a journal, the Fibonacci

Quarterly, devoted exclusively to them). For example, biologists have discovered that the arrangement of

leaves around the stems of some plants follow a Fibonacci pattern. The formula xk =
1√
5

[
λ k+1

1 −λ k+1
2

]

in Example 3.4.3 is called the Binet formula. It is remarkable in that the xk are integers but λ1 and λ2 are
not. This phenomenon can occur even if the eigenvalues λi are nonreal complex numbers.

We conclude with an example showing that nonlinear recurrences can be very complicated.

Example 3.4.4

Suppose a sequence x0, x1, x2, . . . satisfies the following recurrence:

xk+1 =

{
1
2xk if xk is even
3xk +1 if xk is odd

If x0 = 1, the sequence is 1, 4, 2, 1, 4, 2, 1, . . . and so continues to cycle indefinitely. The same
thing happens if x0 = 7. Then the sequence is

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, . . .

and it again cycles. However, it is not known whether every choice of x0 will lead eventually to 1.
It is quite possible that, for some x0, the sequence will continue to produce different values
indefinitely, or will repeat a value and cycle without reaching 1. No one knows for sure.

Exercises for 3.4

Exercise 3.4.1 Solve the following linear recurrences.

a. xk+2 = 3xk +2xk+1, where x0 = 1 and x1 = 1.

b. xk+2 = 2xk− xk+1, where x0 = 1 and x1 = 2.

c. xk+2 = 2xk + xk+1, where x0 = 0 and x1 = 1.

d. xk+2 = 6xk− xk+1, where x0 = 1 and x1 = 1.

Exercise 3.4.2 Solve the following linear recurrences.

a. xk+3 = 6xk+2−11xk+1+6xk, where x0 = 1, x1 = 0,
and x2 = 1.

b. xk+3 =−2xk+2 +xk+1+2xk, where x0 = 1, x1 = 0,
and x2 = 1.

[Hint: Use vk =




xk

xk+1

xk+2


.]

Exercise 3.4.3 In Example 3.4.1 suppose buses are also
allowed to park, and let xk denote the number of ways a
row of k parking spaces can be filled with cars, trucks,
and buses.

a. If trucks and buses take up 2 and 3 spaces respec-
tively, show that xk+3 = xk + xk+1 + xk+2 for each
k, and use this recurrence to compute x10. [Hint:
The eigenvalues are of little use.]

b. If buses take up 4 spaces, find a recurrence for the
xk and compute x10.
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Exercise 3.4.4 A man must climb a flight of k steps.
He always takes one or two steps at a time. Thus he can
climb 3 steps in the following ways: 1, 1, 1; 1, 2; or 2, 1.
Find sk, the number of ways he can climb the flight of k

steps. [Hint: Fibonacci.]

Exercise 3.4.5 How many “words” of k letters can be
made from the letters {a, b} if there are no adjacent a’s?

Exercise 3.4.6 How many sequences of k flips of a coin
are there with no HH?

Exercise 3.4.7 Find xk, the number of ways to make
a stack of k poker chips if only red, blue, and gold chips
are used and no two gold chips are adjacent. [Hint: Show
that xk+2 = 2xk+1 +2xk by considering how many stacks
have a red, blue, or gold chip on top.]

Exercise 3.4.8 A nuclear reactor contains α- and β -
particles. In every second each α-particle splits into three
β -particles, and each β -particle splits into an α-particle
and two β -particles. If there is a single α-particle in the
reactor at time t = 0, how many α-particles are there at
t = 20 seconds? [Hint: Let xk and yk denote the number
of α- and β -particles at time t = k seconds. Find xk+1

and yk+1 in terms of xk and yk.]

Exercise 3.4.9 The annual yield of wheat in a certain
country has been found to equal the average of the yield
in the previous two years. If the yields in 1990 and 1991
were 10 and 12 million tons respectively, find a formula
for the yield k years after 1990. What is the long-term
average yield?

Exercise 3.4.10 Find the general solution to the recur-
rence xk+1 = rxk + c where r and c are constants. [Hint:
Consider the cases r = 1 and r 6= 1 separately. If r 6= 1,
you will need the identity 1+ r+ r2 + · · ·+ rn−1 = 1−rn

1−r

for n≥ 1.]

Exercise 3.4.11 Consider the length 3 recurrence
xk+3 = axk +bxk+1 + cxk+2.

a. If vk =




xk

xk+1

xk+2


 and A=




0 1 0
0 0 1
a b c


 show that

vk+1 = Avk.

b. If λ is any eigenvalue of A, show that x =




1
λ

λ 2




is a λ -eigenvector.

[Hint: Show directly that Ax = λx.]

c. Generalize (a) and (b) to a recurrence

xk+4 = axk +bxk+1 + cxk+2 +dxk+3

of length 4.

Exercise 3.4.12 Consider the recurrence

xk+2 = axk+1 +bxk + c

where c may not be zero.

a. If a+ b 6= 1 show that p can be found such that,
if we set yk = xk + p, then yk+2 = ayk+1 + byk.
[Hence, the sequence xk can be found provided yk

can be found by the methods of this section (or
otherwise).]

b. Use (a) to solve xk+2 = xk+1+6xk+5 where x0 = 1
and x1 = 1.

Exercise 3.4.13 Consider the recurrence

xk+2 = axk+1 +bxk + c(k) (3.12)

where c(k) is a function of k, and consider the related
recurrence

xk+2 = axk+1 +bxk (3.13)

Suppose that xk = pk is a particular solution of Equation
3.12.

a. If qk is any solution of Equation 3.13, show that
qk + pk is a solution of Equation 3.12.

b. Show that every solution of Equation 3.12 arises
as in (a) as the sum of a solution of Equation 3.13
plus the particular solution pk of Equation 3.12.
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3.5 An Application to Systems of Differential Equations

A function f of a real variable is said to be differentiable if its derivative exists and, in this case, we let f ′

denote the derivative. If f and g are differentiable functions, a system

f ′ = 3 f +5g

g′ =− f +2g

is called a system of first order differential equations, or a differential system for short. Solving many
practical problems often comes down to finding sets of functions that satisfy such a system (often in-
volving more than two functions). In this section we show how diagonalization can help. Of course an
acquaintance with calculus is required.

The Exponential Function

The simplest differential system is the following single equation:

f ′ = a f where a is constant (3.14)

It is easily verified that f (x) = eax is one solution; in fact, Equation 3.14 is simple enough for us to find
all solutions. Suppose that f is any solution, so that f ′(x) = a f (x) for all x. Consider the new function g

given by g(x) = f (x)e−ax. Then the product rule of differentiation gives

g′(x) = f (x)
[
−ae−ax

]
+ f ′(x)e−ax

=−a f (x)e−ax +[a f (x)]e−ax

= 0

for all x. Hence the function g(x) has zero derivative and so must be a constant, say g(x) = c. Thus
c = g(x) = f (x)e−ax, that is

f (x) = ceax

In other words, every solution f (x) of Equation 3.14 is just a scalar multiple of eax. Since every such
scalar multiple is easily seen to be a solution of Equation 3.14, we have proved

Theorem 3.5.1

The set of solutions to f ′ = a f is {ceax | c any constant}= Reax.

Remarkably, this result together with diagonalization enables us to solve a wide variety of differential
systems.


