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b. Find the rotation of v =




1
0
3


 about the z axis

through θ = π
6 .

Exercise 4.4.5 Find the matrix of the rotation in R3

about the x axis through the angle θ (from the positive
y axis to the positive z axis).

Exercise 4.4.6 Find the matrix of the rotation about the
y axis through the angle θ (from the positive x axis to the
positive z axis).

Exercise 4.4.7 If A is 3× 3, show that the image of
the line in R3 through p0 with direction vector d is the
line through Ap0 with direction vector Ad, assuming that
Ad 6= 0. What happens if Ad = 0?

Exercise 4.4.8 If A is 3×3 and invertible, show that the
image of the plane through the origin with normal n is
the plane through the origin with normal n1 = Bn where
B = (A−1)T . [Hint: Use the fact that v ·w = vT w to show
that n1 · (Ap) = n ·p for each p in R3.]

Exercise 4.4.9 Let L be the line through the origin in R2

with direction vector d =

[
a

b

]
6= 0.

a. If PL denotes projection on L, show that PL has

matrix 1
a2+b2

[
a2 ab

ab b2

]
.

b. If QL denotes reflection in L, show that QL has ma-

trix 1
a2+b2

[
a2−b2 2ab

2ab b2−a2

]
.

Exercise 4.4.10 Let n be a nonzero vector in R3, let L be
the line through the origin with direction vector n, and let
M be the plane through the origin with normal n. Show
that PL(v) = QL(v)+PM(v) for all v in R3. [In this case,
we say that PL = QL +PM.]

Exercise 4.4.11 If M is the plane through the origin in

R3 with normal n =




a

b

c


, show that QM has matrix

1
a2+b2+c2




b2 + c2− a2 −2ab −2ac

−2ab a2 + c2− b2 −2bc

−2ac −2bc a2 + b2− c2




4.5 An Application to Computer Graphics

Computer graphics deals with images displayed on a computer screen, and so arises in a variety of appli-
cations, ranging from word processors, to Star Wars animations, to video games, to wire-frame images of
an airplane. These images consist of a number of points on the screen, together with instructions on how
to fill in areas bounded by lines and curves. Often curves are approximated by a set of short straight-line
segments, so that the curve is specified by a series of points on the screen at the end of these segments.
Matrix transformations are important here because matrix images of straight line segments are again line
segments.14 Note that a colour image requires that three images are sent, one to each of the red, green,
and blue phosphorus dots on the screen, in varying intensities.

Consider displaying the letter A. In reality, it is depicted on the screen, as in Figure 4.5.1, by specifying
the coordinates of the 11 corners and filling in the interior.

For simplicity, we will disregard the thickness of the letter, so we require only five coordinates as in
Figure 4.5.2.

14If v0 and v1 are vectors, the vector from v0 to v1 is d = v1− v0. So a vector v lies on the line segment between v0 and
v1 if and only if v = v0 + td for some number t in the range 0 ≤ t ≤ 1. Thus the image of this segment is the set of vectors
Av = Av0 + tAd with 0≤ t ≤ 1, that is the image is the segment between Av0 and Av1.
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Figure 4.5.1

Origin
1

4

5

3

2

Figure 4.5.2

Figure 4.5.3

Figure 4.5.4

Figure 4.5.5

This simplified letter can then be stored as a data matrix

Vertex 1 2 3 4 5

D =

[
0 6 5 1 3
0 0 3 3 9

]

where the columns are the coordinates of the vertices in order. Then if we want
to transform the letter by a 2×2 matrix A, we left-multiply this data matrix by
A (the effect is to multiply each column by A and so transform each vertex).

For example, we can slant the letter to the right by multiplying by an x-shear

matrix A=

[
1 0.2
0 1

]
—see Section 2.2. The result is the letter with data matrix

A =

[
1 0.2
0 1

][
0 6 5 1 3
0 0 3 3 9

]
=

[
0 6 5.6 1.6 4.8
0 0 3 3 9

]

which is shown in Figure 4.5.3.

If we want to make this slanted matrix narrower, we can now apply an x-

scale matrix B =

[
0.8 0
0 1

]
that shrinks the x-coordinate by 0.8. The result is

the composite transformation

BAD =

[
0.8 0
0 1

][
1 0.2
0 1

][
0 6 5 1 3
0 0 3 3 9

]

=

[
0 4.8 4.48 1.28 3.84
0 0 3 3 9

]

which is drawn in Figure 4.5.4.

On the other hand, we can rotate the letter about the origin through π
6 (or 30◦)

by multiplying by the matrix Rπ
2
=


 cos(π

6 ) −sin(π
6 )

sin(π
6 ) cos(π

6 )


=

[
0.866 −0.5
0.5 0.866

]
.

This gives

Rπ
2
=

[
0.866 −0.5
0.5 0.866

][
0 6 5 1 3
0 0 3 3 9

]

=

[
0 5.196 2.83 −0.634 −1.902
0 3 5.098 3.098 9.294

]

and is plotted in Figure 4.5.5.

This poses a problem: How do we rotate at a point other than the origin? It
turns out that we can do this when we have solved another more basic problem.
It is clearly important to be able to translate a screen image by a fixed vector
w, that is apply the transformation Tw : R2→R2 given by Tw(v) = v+w for all
v in R2. The problem is that these translations are not matrix transformations
R2→ R2 because they do not carry 0 to 0 (unless w = 0). However, there is a
clever way around this.
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The idea is to represent a point v =

[
x

y

]
as a 3×1 column




x

y

1


, called the homogeneous coordi-

nates of v. Then translation by w =

[
p

q

]
can be achieved by multiplying by a 3×3 matrix:




1 0 p

0 1 q

0 0 1






x

y

1


=




x+ p

y+q

1


=

[
Tw(v)

1

]

Thus, by using homogeneous coordinates we can implement the translation Tw in the top two coordinates.

On the other hand, the matrix transformation induced by A =

[
a b

c d

]
is also given by a 3×3 matrix:




a b 0
c d 0
0 0 1






x

y

1


=




ax+by

cx+dy

1


=

[
Av

1

]

So everything can be accomplished at the expense of using 3×3 matrices and homogeneous coordinates.

Example 4.5.1

Rotate the letter A in Figure 4.5.2 through π
6 about the point

[
4
5

]
.

Solution. Using homogeneous coordinates for the vertices of the letter results in a data matrix with
three rows:

Kd =




0 6 5 1 3
0 0 3 3 9
1 1 1 1 1




Origin

Figure 4.5.6

If we write w =

[
4
5

]
, the idea is to use a composite of

transformations: First translate the letter by −w so that the point
w moves to the origin, then rotate this translated letter, and then
translate it by w back to its original position. The matrix arithmetic
is as follows (remember the order of composition!):




1 0 4
0 1 5
0 0 1






0.866 −0.5 0
0.5 0.866 0
0 0 1






1 0 −4
0 1 −5
0 0 1






0 6 5 1 3
0 0 3 3 9
1 1 1 1 1




=




3.036 8.232 5.866 2.402 1.134
−1.33 1.67 3.768 1.768 7.964
1 1 1 1 1




This is plotted in Figure 4.5.6.

This discussion merely touches the surface of computer graphics, and the reader is referred to special-
ized books on the subject. Realistic graphic rendering requires an enormous number of matrix calcula-
tions. In fact, matrix multiplication algorithms are now embedded in microchip circuits, and can perform
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over 100 million matrix multiplications per second. This is particularly important in the field of three-
dimensional graphics where the homogeneous coordinates have four components and 4× 4 matrices are
required.

Exercises for 4.5

Exercise 4.5.1 Consider the letter A described in Fig-
ure 4.5.2. Find the data matrix for the letter obtained by:

a. Rotating the letter through π
4 about the origin.

b. Rotating the letter through π
4 about the point[

1
2

]
.

Exercise 4.5.2 Find the matrix for turning the letter A

in Figure 4.5.2 upside-down in place.

Exercise 4.5.3 Find the 3× 3 matrix for reflecting in

the line y = mx+ b. Use

[
1
m

]
as direction vector for

the line.

Exercise 4.5.4 Find the 3×3 matrix for rotating through
the angle θ about the point P(a, b).

Exercise 4.5.5 Find the reflection of the point P in the
line y = 1+2x in R2 if:

a. P = P(1, 1)

b. P = P(1, 4)

c. What about P = P(1, 3)? Explain. [Hint: Exam-
ple 4.5.1 and Section 4.4.]

Supplementary Exercises for Chapter 4

Exercise 4.1 Suppose that u and v are nonzero vectors.
If u and v are not parallel, and au+bv = a1u+b1v, show
that a = a1 and b = b1.

Exercise 4.2 Consider a triangle with vertices A, B,
and C. Let E and F be the midpoints of sides AB and
AC, respectively, and let the medians EC and FB meet at
O. Write

−→
EO = s

−→
EC and

−→
FO = t

−→
FB, where s and t are

scalars. Show that s = t = 1
3 by expressing

−→
AO two ways

in the form a
−→
EO+b

−→
AC, and applying Exercise 4.1. Con-

clude that the medians of a triangle meet at the point on
each that is one-third of the way from the midpoint to the
vertex (and so are concurrent).

Exercise 4.3 A river flows at 1 km/h and a swimmer
moves at 2 km/h (relative to the water). At what angle
must he swim to go straight across? What is his resulting
speed?

Exercise 4.4 A wind is blowing from the south at 75

knots, and an airplane flies heading east at 100 knots.
Find the resulting velocity of the airplane.

Exercise 4.5 An airplane pilot flies at 300 km/h in a di-
rection 30◦ south of east. The wind is blowing from the
south at 150 km/h.

a. Find the resulting direction and speed of the air-
plane.

b. Find the speed of the airplane if the wind is from
the west (at 150 km/h).

Exercise 4.6 A rescue boat has a top speed of 13 knots.
The captain wants to go due east as fast as possible in wa-
ter with a current of 5 knots due south. Find the velocity
vector v = (x, y) that she must achieve, assuming the x

and y axes point east and north, respectively, and find her
resulting speed.


