
6. Vector Spaces

In this chapter we introduce vector spaces in full generality. The reader will notice some similarity with
the discussion of the space Rn in Chapter 5. In fact much of the present material has been developed in
that context, and there is some repetition. However, Chapter 6 deals with the notion of an abstract vector
space, a concept that will be new to most readers. It turns out that there are many systems in which a
natural addition and scalar multiplication are defined and satisfy the usual rules familiar from Rn. The
study of abstract vector spaces is a way to deal with all these examples simultaneously. The new aspect is
that we are dealing with an abstract system in which all we know about the vectors is that they are objects
that can be added and multiplied by a scalar and satisfy rules familiar from Rn.

The novel thing is the abstraction. Getting used to this new conceptual level is facilitated by the work
done in Chapter 5: First, the vector manipulations are familiar, giving the reader more time to become
accustomed to the abstract setting; and, second, the mental images developed in the concrete setting of Rn

serve as an aid to doing many of the exercises in Chapter 6.

The concept of a vector space was first introduced in 1844 by the German mathematician Hermann
Grassmann (1809-1877), but his work did not receive the attention it deserved. It was not until 1888 that
the Italian mathematician Guiseppe Peano (1858-1932) clarified Grassmann’s work in his book Calcolo

Geometrico and gave the vector space axioms in their present form. Vector spaces became established with
the work of the Polish mathematician Stephan Banach (1892-1945), and the idea was finally accepted in
1918 when Hermann Weyl (1885-1955) used it in his widely read book Raum-Zeit-Materie (“Space-Time-
Matter”), an introduction to the general theory of relativity.

6.1 Examples and Basic Properties

Many mathematical entities have the property that they can be added and multiplied by a number. Numbers
themselves have this property, as do m×n matrices: The sum of two such matrices is again m×n as is any
scalar multiple of such a matrix. Polynomials are another familiar example, as are the geometric vectors
in Chapter 4. It turns out that there are many other types of mathematical objects that can be added and
multiplied by a scalar, and the general study of such systems is introduced in this chapter. Remarkably,
much of what we could say in Chapter 5 about the dimension of subspaces in Rn can be formulated in this
generality.
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330 Vector Spaces

Definition 6.1 Vector Spaces

A vector space consists of a nonempty set V of objects (called vectors) that can be added, that can
be multiplied by a real number (called a scalar in this context), and for which certain axioms
hold.1If v and w are two vectors in V , their sum is expressed as v+w, and the scalar product of v

by a real number a is denoted as av. These operations are called vector addition and scalar

multiplication, respectively, and the following axioms are assumed to hold.

Axioms for vector addition

A1. If u and v are in V , then u+v is in V .

A2. u+v = v+u for all u and v in V .

A3. u+(v+w) = (u+v)+w for all u, v, and w in V .

A4. An element 0 in V exists such that v+0 = v = 0+v for every v in V .

A5. For each v in V , an element −v in V exists such that −v+v = 0 and v+(−v) = 0.

Axioms for scalar multiplication

S1. If v is in V , then av is in V for all a in R.

S2. a(v+w) = av+aw for all v and w in V and all a in R.

S3. (a+b)v = av+bv for all v in V and all a and b in R.

S4. a(bv) = (ab)v for all v in V and all a and b in R.

S5. 1v = v for all v in V .

The content of axioms A1 and S1 is described by saying that V is closed under vector addition and scalar
multiplication. The element 0 in axiom A4 is called the zero vector, and the vector −v in axiom A5 is
called the negative of v.

The rules of matrix arithmetic, when applied to Rn, give

Example 6.1.1

Rn is a vector space using matrix addition and scalar multiplication.2

It is important to realize that, in a general vector space, the vectors need not be n-tuples as in Rn. They
can be any kind of objects at all as long as the addition and scalar multiplication are defined and the axioms
are satisfied. The following examples illustrate the diversity of the concept.

The space Rn consists of special types of matrices. More generally, let Mmn denote the set of all m×n

matrices with real entries. Then Theorem 2.1.1 gives:

1The scalars will usually be real numbers, but they could be complex numbers, or elements of an algebraic system called a
field. Another example is the field Q of rational numbers. We will look briefly at finite fields in Section 8.8.

2We will usually write the vectors in Rn as n-tuples. However, if it is convenient, we will sometimes denote them as rows
or columns.
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Example 6.1.2

The set Mmn of all m×n matrices is a vector space using matrix addition and scalar multiplication.
The zero element in this vector space is the zero matrix of size m×n, and the vector space negative
of a matrix (required by axiom A5) is the usual matrix negative discussed in Section 2.1. Note that
Mmn is just Rmn in different notation.

In Chapter 5 we identified many important subspaces of Rn such as im A and null A for a matrix A. These
are all vector spaces.

Example 6.1.3

Show that every subspace of Rn is a vector space in its own right using the addition and scalar
multiplication of Rn.

Solution. Axioms A1 and S1 are two of the defining conditions for a subspace U of Rn (see
Section 5.1). The other eight axioms for a vector space are inherited from Rn. For example, if x

and y are in U and a is a scalar, then a(x+y) = ax+ay because x and y are in Rn. This shows that
axiom S2 holds for U ; similarly, the other axioms also hold for U .

Example 6.1.4

Let V denote the set of all ordered pairs (x, y) and define addition in V as in R2. However, define a
new scalar multiplication in V by

a(x, y) = (ay, ax)

Determine if V is a vector space with these operations.

Solution. Axioms A1 to A5 are valid for V because they hold for matrices. Also a(x, y) = (ay, ax)
is again in V , so axiom S1 holds. To verify axiom S2, let v = (x, y) and w = (x1, y1) be typical
elements in V and compute

a(v+w) = a(x+ x1, y+ y1) = (a(y+ y1), a(x+ x1))

av+aw = (ay, ax)+(ay1, ax1) = (ay+ay1, ax+ax1)

Because these are equal, axiom S2 holds. Similarly, the reader can verify that axiom S3 holds.
However, axiom S4 fails because

a(b(x, y)) = a(by, bx) = (abx, aby)

need not equal ab(x, y) = (aby, abx). Hence, V is not a vector space. (In fact, axiom S5 also fails.)

Sets of polynomials provide another important source of examples of vector spaces, so we review some
basic facts. A polynomial in an indeterminate x is an expression

p(x) = a0 +a1x+a2x2 + · · ·+anxn
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where a0, a1, a2, . . . , an are real numbers called the coefficients of the polynomial. If all the coefficients
are zero, the polynomial is called the zero polynomial and is denoted simply as 0. If p(x) 6= 0, the
highest power of x with a nonzero coefficient is called the degree of p(x) denoted as deg p(x). The
coefficient itself is called the leading coefficient of p(x). Hence deg (3+5x) = 1, deg (1+ x+ x2) = 2,
and deg (4) = 0. (The degree of the zero polynomial is not defined.)

Let P denote the set of all polynomials and suppose that

p(x) = a0 +a1x+a2x2 + · · ·
q(x) = b0 +b1x+b2x2 + · · ·

are two polynomials in P (possibly of different degrees). Then p(x) and q(x) are called equal [written
p(x) = q(x)] if and only if all the corresponding coefficients are equal—that is, a0 = b0, a1 = b1, a2 = b2,
and so on. In particular, a0 +a1x+a2x2 + · · · = 0 means that a0 = 0, a1 = 0, a2 = 0, . . . , and this is the
reason for calling x an indeterminate. The set P has an addition and scalar multiplication defined on it as
follows: if p(x) and q(x) are as before and a is a real number,

p(x)+q(x) = (a0 +b0)+(a1 +b1)x+(a2 +b2)x
2 + · · ·

ap(x) = aa0 +(aa1)x+(aa2)x
2 + · · ·

Evidently, these are again polynomials, so P is closed under these operations, called pointwise addition
and scalar multiplication. The other vector space axioms are easily verified, and we have

Example 6.1.5

The set P of all polynomials is a vector space with the foregoing addition and scalar multiplication.
The zero vector is the zero polynomial, and the negative of a polynomial
p(x) = a0 +a1x+a2x2 + . . . is the polynomial−p(x) =−a0−a1x−a2x2− . . . obtained by
negating all the coefficients.

There is another vector space of polynomials that will be referred to later.

Example 6.1.6

Given n≥ 1, let Pn denote the set of all polynomials of degree at most n, together with the zero
polynomial. That is

Pn = {a0 +a1x+a2x2 + · · ·+anxn | a0, a1, a2, . . . , an in R}.

Then Pn is a vector space. Indeed, sums and scalar multiples of polynomials in Pn are again in Pn,
and the other vector space axioms are inherited from P. In particular, the zero vector and the
negative of a polynomial in Pn are the same as those in P.

If a and b are real numbers and a < b, the interval [a, b] is defined to be the set of all real numbers
x such that a ≤ x ≤ b. A (real-valued) function f on [a, b] is a rule that associates to every number x in
[a, b] a real number denoted f (x). The rule is frequently specified by giving a formula for f (x) in terms of
x. For example, f (x) = 2x, f (x) = sinx, and f (x) = x2+1 are familiar functions. In fact, every polynomial
p(x) can be regarded as the formula for a function p.



6.1. Examples and Basic Properties 333
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1

O

y =−x = g(x)

y = f (x)+g(x)
= x2− x

y = x2 = f (x)

x

y The set of all functions on [a, b] is denoted F[a, b]. Two functions
f and g in F[a, b] are equal if f (x) = g(x) for every x in [a, b], and we
describe this by saying that f and g have the same action. Note that two
polynomials are equal in P (defined prior to Example 6.1.5) if and only if
they are equal as functions.

If f and g are two functions in F[a, b], and if r is a real number, define
the sum f +g and the scalar product r f by

( f +g)(x) = f (x)+g(x) for each x in [a, b]

(r f )(x) = r f (x) for each x in [a, b]

In other words, the action of f + g upon x is to associate x with the number f (x) + g(x), and r f

associates x with r f (x). The sum of f (x) = x2 and g(x) = −x is shown in the diagram. These operations
on F[a, b] are called pointwise addition and scalar multiplication of functions and they are the usual
operations familiar from elementary algebra and calculus.

Example 6.1.7

The set F[a, b] of all functions on the interval [a, b] is a vector space using pointwise addition and
scalar multiplication. The zero function (in axiom A4), denoted 0, is the constant function defined
by

0(x) = 0 for each x in [a, b]

The negative of a function f is denoted − f and has action defined by

(− f )(x) =− f (x) for each x in [a, b]

Axioms A1 and S1 are clearly satisfied because, if f and g are functions on [a, b], then f +g and
r f are again such functions. The verification of the remaining axioms is left as Exercise 6.1.14.

Other examples of vector spaces will appear later, but these are sufficiently varied to indicate the scope
of the concept and to illustrate the properties of vector spaces to be discussed. With such a variety of
examples, it may come as a surprise that a well-developed theory of vector spaces exists. That is, many
properties can be shown to hold for all vector spaces and hence hold in every example. Such properties
are called theorems and can be deduced from the axioms. Here is an important example.

Theorem 6.1.1: Cancellation

Let u, v, and w be vectors in a vector space V . If v+u = v+w, then u = w.

Proof. We are given v+u = v+w. If these were numbers instead of vectors, we would simply subtract v

from both sides of the equation to obtain u = w. This can be accomplished with vectors by adding −v to
both sides of the equation. The steps (using only the axioms) are as follows:

v+u = v+w

−v+(v+u) =−v+(v+w) (axiom A5)

(−v+v)+u = (−v+v)+w (axiom A3)
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0+u = 0+w (axiom A5)

u = w (axiom A4)

This is the desired conclusion.3

As with many good mathematical theorems, the technique of the proof of Theorem 6.1.1 is at least as
important as the theorem itself. The idea was to mimic the well-known process of numerical subtraction
in a vector space V as follows: To subtract a vector v from both sides of a vector equation, we added −v

to both sides. With this in mind, we define difference u−v of two vectors in V as

u−v = u+(−v)

We shall say that this vector is the result of having subtracted v from u and, as in arithmetic, this operation
has the property given in Theorem 6.1.2.

Theorem 6.1.2

If u and v are vectors in a vector space V , the equation

x+v = u

has one and only one solution x in V given by

x = u−v

Proof. The difference x = u−v is indeed a solution to the equation because (using several axioms)

x+v = (u−v)+v = [u+(−v)]+v = u+(−v+v) = u+0 = u

To see that this is the only solution, suppose x1 is another solution so that x1 +v = u. Then x+v = x1+v

(they both equal u), so x = x1 by cancellation.

Similarly, cancellation shows that there is only one zero vector in any vector space and only one
negative of each vector (Exercises 6.1.10 and 6.1.11). Hence we speak of the zero vector and the negative
of a vector.

The next theorem derives some basic properties of scalar multiplication that hold in every vector space,
and will be used extensively.

Theorem 6.1.3

Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0.

2. a0 = 0.

3. If av = 0, then either a = 0 or v = 0.

3Observe that none of the scalar multiplication axioms are needed here.
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4. (−1)v =−v.

5. (−a)v =−(av) = a(−v).

Proof.

1. Observe that 0v+0v = (0+0)v = 0v = 0v+0 where the first equality is by axiom S3. It follows
that 0v = 0 by cancellation.

2. The proof is similar to that of (1), and is left as Exercise 6.1.12(a).

3. Assume that av = 0. If a = 0, there is nothing to prove; if a 6= 0, we must show that v = 0. But
a 6= 0 means we can scalar-multiply the equation av = 0 by the scalar 1

a
. The result (using (2) and

Axioms S5 and S4) is
v = 1v =

(1
a
a
)

v = 1
a
(av) = 1

a
0 = 0

4. We have −v+v = 0 by axiom A5. On the other hand,

(−1)v+v = (−1)v+1v = (−1+1)v = 0v = 0

using (1) and axioms S5 and S3. Hence (−1)v+ v = −v + v (because both are equal to 0), so
(−1)v =−v by cancellation.

5. The proof is left as Exercise 6.1.12.4

The properties in Theorem 6.1.3 are familiar for matrices; the point here is that they hold in every vector
space. It is hard to exaggerate the importance of this observation.

Axiom A3 ensures that the sum u+(v+w) = (u+v)+w is the same however it is formed, and we
write it simply as u+ v+w. Similarly, there are different ways to form any sum v1 + v2 + · · ·+ vn, and
Axiom A3 guarantees that they are all equal. Moreover, Axiom A2 shows that the order in which the
vectors are written does not matter (for example: u+v+w+ z = z+u+w+v).

Similarly, Axioms S2 and S3 extend. For example

a(u+v+w) = a [u+(v+w)] = au+a(v+w) = au+av+aw

for all a, u, v, and w. Similarly (a+b+ c)v = av+bv+ cv hold for all values of a, b, c, and v (verify).
More generally,

a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

(a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv

hold for all n≥ 1, all numbers a, a1, . . . , an, and all vectors, v, v1, . . . , vn. The verifications are by induc-
tion and are left to the reader (Exercise 6.1.13). These facts—together with the axioms, Theorem 6.1.3,
and the definition of subtraction—enable us to simplify expressions involving sums of scalar multiples of
vectors by collecting like terms, expanding, and taking out common factors. This has been discussed for
the vector space of matrices in Section 2.1 (and for geometric vectors in Section 4.1); the manipulations
in an arbitrary vector space are carried out in the same way. Here is an illustration.
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Example 6.1.8

If u, v, and w are vectors in a vector space V , simplify the expression

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

Solution. The reduction proceeds as though u, v, and w were matrices or variables.

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

= 2u+6w−6w+3v−3[4u+2v−8w−4u+8w]

= 2u+3v−3[2v]

= 2u+3v−6v

= 2u−3v

Condition (2) in Theorem 6.1.3 points to another example of a vector space.

Example 6.1.9

A set {0} with one element becomes a vector space if we define

0+0 = 0 and a0 = 0 for all scalars a.

The resulting space is called the zero vector space and is denoted {0}.

The vector space axioms are easily verified for {0}. In any vector space V , Theorem 6.1.3 shows that the
zero subspace (consisting of the zero vector of V alone) is a copy of the zero vector space.

Exercises for 6.1

Exercise 6.1.1 Let V denote the set of ordered triples
(x, y, z) and define addition in V as in R3. For each of
the following definitions of scalar multiplication, decide
whether V is a vector space.

a. a(x, y, z) = (ax, y, az)

b. a(x, y, z) = (ax, 0, az)

c. a(x, y, z) = (0, 0, 0)

d. a(x, y, z) = (2ax, 2ay, 2az)

Exercise 6.1.2 Are the following sets vector spaces with
the indicated operations? If not, why not?

a. The set V of nonnegative real numbers; ordinary
addition and scalar multiplication.

b. The set V of all polynomials of degree ≥ 3,
together with 0; operations of P.

c. The set of all polynomials of degree ≤ 3; opera-
tions of P.

d. The set {1, x, x2, . . .}; operations of P.
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e. The set V of all 2 × 2 matrices of the form[
a b

0 c

]
; operations of M22.

f. The set V of 2× 2 matrices with equal column
sums; operations of M22.

g. The set V of 2×2 matrices with zero determinant;
usual matrix operations.

h. The set V of real numbers; usual operations.

i. The set V of complex numbers; usual addition and
multiplication by a real number.

j. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (ax, −ay).

k. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (x, y) for all a in R.

l. The set V of all functions f : R→ R with point-
wise addition, but scalar multiplication defined by
(a f )(x) = f (ax).

m. The set V of all 2×2 matrices whose entries sum
to 0; operations of M22.

n. The set V of all 2× 2 matrices with the addi-
tion of M22 but scalar multiplication ∗ defined by
a∗X = aXT .

Exercise 6.1.3 Let V be the set of positive real numbers
with vector addition being ordinary multiplication, and
scalar multiplication being a · v = va. Show that V is a
vector space.

Exercise 6.1.4 If V is the set of ordered pairs (x, y) of
real numbers, show that it is a vector space with addition
(x, y)+ (x1, y1) = (x+ x1, y+ y1 + 1) and scalar mul-
tiplication a(x, y) = (ax, ay+ a− 1). What is the zero
vector in V ?

Exercise 6.1.5 Find x and y (in terms of u and v) such
that:

2x + y= u

5x + 3y = v

a. 3x− 2y= u

4x− 5y= v

b.

Exercise 6.1.6 In each case show that the condition
au+bv+ cw = 0 in V implies that a = b = c = 0.

a. V = R4; u = (2, 1, 0, 2), v = (1, 1, −1, 0),
w = (0, 1, 2, 1)

b. V = M22; u =

[
1 0
0 1

]
, v =

[
0 1
1 0

]
,

w =

[
1 1
1 −1

]

c. V = P; u = x3 + x, v = x2 +1, w = x3− x2 + x+1

d. V = F[0, π]; u = sinx, v = cosx, w = 1—the con-
stant function

Exercise 6.1.7 Simplify each of the following.

a. 3[2(u−2v−w)+3(w−v)]−7(u−3v−w)

b. 4(3u−v+w)−2[(3u−2v)−3(v−w)]
+6(w−u−v)

Exercise 6.1.8 Show that x = v is the only solution to
the equation x+x = 2v in a vector space V . Cite all ax-
ioms used.

Exercise 6.1.9 Show that −0 = 0 in any vector space.
Cite all axioms used.

Exercise 6.1.10 Show that the zero vector 0 is uniquely
determined by the property in axiom A4.

Exercise 6.1.11 Given a vector v, show that its negative
−v is uniquely determined by the property in axiom A5.

Exercise 6.1.12

a. Prove (2) of Theorem 6.1.3. [Hint: Axiom S2.]

b. Prove that (−a)v = −(av) in Theorem 6.1.3 by
first computing (−a)v+ av. Then do it using (4)
of Theorem 6.1.3 and axiom S4.

c. Prove that a(−v) = −(av) in Theorem 6.1.3 in
two ways, as in part (b).

Exercise 6.1.13 Let v, v1, . . . , vn denote vectors in a
vector space V and let a, a1, . . . , an denote numbers.
Use induction on n to prove each of the following.

a. a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

b. (a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv
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Exercise 6.1.14 Verify axioms A2—A5 and S2—S5 for
the space F[a, b] of functions on [a, b] (Example 6.1.7).

Exercise 6.1.15 Prove each of the following for vectors
u and v and scalars a and b.

a. If av = 0, then a = 0 or v = 0.

b. If av = bv and v 6= 0, then a = b.

c. If av = aw and a 6= 0, then v = w.

Exercise 6.1.16 By calculating (1+ 1)(v+w) in two
ways (using axioms S2 and S3), show that axiom A2 fol-
lows from the other axioms.

Exercise 6.1.17 Let V be a vector space, and define V n

to be the set of all n-tuples (v1, v2, . . . , vn) of n vec-
tors vi, each belonging to V . Define addition and scalar
multiplication in V n as follows:

(u1, u2, . . . , un)+ (v1, v2, . . . , vn)

= (u1 +v1, u2 +v2, . . . , un +vn)

a(v1, v2, . . . , vn) = (av1, av2, . . . , avn)

Show that V n is a vector space.

Exercise 6.1.18 Let V n be the vector space of n-tuples
from the preceding exercise, written as columns. If A

is an m× n matrix, and X is in V n, define AX in V m by
matrix multiplication. More precisely, if

A = [ai j] and X =




v1
...

vn


 , let AX =




u1
...

un




where ui = ai1v1 +ai2v2 + · · ·+ainvn for each i.
Prove that:

a. B(AX) = (BA)X

b. (A+A1)X = AX +A1X

c. A(X +X1) = AX +AX1

d. (kA)X = k(AX) = A(kX) if k is any number

e. IX = X if I is the n×n identity matrix

f. Let E be an elementary matrix obtained by per-
forming a row operation on the rows of In (see
Section 2.5). Show that EX is the column re-
sulting from performing that same row operation
on the vectors (call them rows) of X . [Hint:
Lemma 2.5.1.]

6.2 Subspaces and Spanning Sets

Chapter 5 is essentially about the subspaces of Rn. We now extend this notion.

Definition 6.2 Subspaces of a Vector Space

If V is a vector space, a nonempty subset U ⊆V is called a subspace of V if U is itself a vector
space using the addition and scalar multiplication of V .

Subspaces of Rn (as defined in Section 5.1) are subspaces in the present sense by Example 6.1.3. Moreover,
the defining properties for a subspace of Rn actually characterize subspaces in general.


