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b. Show that U ∩W = {0} if and only if {u, w} is
independent for any nonzero vectors u in U and w

in W .

c. If B and D are bases of U and W , and if U ∩W =
{0}, show that B∪D = {v | v is in B or D} is in-
dependent.

Exercise 6.3.34 If U and W are vector spaces, let
V = {(u, w) | u in U and w in W}.

a. Show that V is a vector space if (u, w) +
(u1, w1) = (u + u1, w + w1) and a(u, w) =
(au, aw).

b. If dim U = m and dim W = n, show that
dim V = m+n.

c. If V1, . . . , Vm are vector spaces, let

V =V1×·· ·×Vm

= {(v1, . . . , vm) | vi ∈Vi for each i}

denote the space of n-tuples from the Vi with com-
ponentwise operations (see Exercise 6.1.17). If
dim Vi = ni for each i, show that dim V = n1 +
· · ·+nm.

Exercise 6.3.35 Let Dn denote the set of all functions f

from the set {1, 2, . . . , n} to R.

a. Show that Dn is a vector space with pointwise ad-
dition and scalar multiplication.

b. Show that {S1, S2, . . . , Sn} is a basis of Dn where,
for each k = 1, 2, . . . , n, the function Sk is defined
by Sk(k) = 1, whereas Sk( j) = 0 if j 6= k.

Exercise 6.3.36 A polynomial p(x) is called even if
p(−x) = p(x) and odd if p(−x) = −p(x). Let En and
On denote the sets of even and odd polynomials in Pn.

a. Show that En is a subspace of Pn and find dim En.

b. Show that On is a subspace of Pn and find dim On.

Exercise 6.3.37 Let {v1, . . . , vn} be independent in a
vector space V , and let A be an n× n matrix. Define
u1, . . . , un by




u1
...

un


= A




v1
...

vn




(See Exercise 6.1.18.) Show that {u1, . . . , un} is inde-
pendent if and only if A is invertible.

6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence no
guarantee that one can speak at all of the dimension of V . However, Theorem 6.4.1 will show that any
space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the following basic
lemma, of interest in itself, that gives a way to enlarge a given independent set of vectors.

Lemma 6.4.1: Independent Lemma

Let {v1, v2, . . . , vk} be an independent set of vectors in a vector space V . If u ∈V but5

u /∈ span{v1, v2, . . . , vk}, then {u, v1, v2, . . . , vk} is also independent.

Proof. Let tu+ t1v1 + t2v2 + · · ·+ tkvk = 0; we must show that all the coefficients are zero. First, t = 0
because, otherwise, u =− t1

t
v1− t2

t
v2−·· ·− tk

t
vk is in span{v1, v2, . . . , vk}, contrary to our assumption.

5If X is a set, we write a ∈ X to indicate that a is an element of the set X . If a is not an element of X , we write a /∈ X .
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Hence t = 0. But then t1v1 + t2v2 + · · ·+ tkvk = 0 so the rest of the ti are zero by the independence of
{v1, v2, . . . , vk}. This is what we wanted.

0

u

v1

v2

span{v1 , v2}
x

y

z
Note that the converse of Lemma 6.4.1 is also true: if
{u, v1, v2, . . . , vk} is independent, then u is not in
span{v1, v2, . . . , vk}.

As an illustration, suppose that {v1, v2} is inde-
pendent in R3. Then v1 and v2 are not parallel, so
span{v1, v2} is a plane through the origin (shaded in
the diagram). By Lemma 6.4.1, u is not in this plane if
and only if {u, v1, v2} is independent.

Definition 6.7 Finite Dimensional and Infinite Dimensional Vector Spaces

A vector space V is called finite dimensional if it is spanned by a finite set of vectors. Otherwise,
V is called infinite dimensional.

Thus the zero vector space {0} is finite dimensional because {0} is a spanning set.

Lemma 6.4.2

Let V be a finite dimensional vector space. If U is any subspace of V , then any independent subset
of U can be enlarged to a finite basis of U .

Proof. Suppose that I is an independent subset of U . If span I = U then I is already a basis of U . If
span I 6=U , choose u1 ∈U such that u1 /∈ span I. Hence the set I∪{u1} is independent by Lemma 6.4.1.
If span (I ∪ {u1}) = U we are done; otherwise choose u2 ∈ U such that u2 /∈ span (I ∪ {u1}). Hence
I ∪ {u1, u2} is independent, and the process continues. We claim that a basis of U will be reached
eventually. Indeed, if no basis of U is ever reached, the process creates arbitrarily large independent sets
in V . But this is impossible by the fundamental theorem because V is finite dimensional and so is spanned
by a finite set of vectors.

Theorem 6.4.1

Let V be a finite dimensional vector space spanned by m vectors.

1. V has a finite basis, and dim V ≤ m.

2. Every independent set of vectors in V can be enlarged to a basis of V by adding vectors from
any fixed basis of V .

3. If U is a subspace of V , then

a. U is finite dimensional and dim U ≤ dim V .

b. If dim U = dim V then U =V .
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Proof.

1. If V = {0}, then V has an empty basis and dim V = 0 ≤ m. Otherwise, let v 6= 0 be a vector in V .
Then {v} is independent, so (1) follows from Lemma 6.4.2 with U =V .

2. We refine the proof of Lemma 6.4.2. Fix a basis B of V and let I be an independent subset of V .
If span I = V then I is already a basis of V . If span I 6= V , then B is not contained in I (because
B spans V ). Hence choose b1 ∈ B such that b1 /∈ span I. Hence the set I∪{b1} is independent by
Lemma 6.4.1. If span (I ∪{b1}) = V we are done; otherwise a similar argument shows that (I ∪
{b1, b2}) is independent for some b2 ∈ B. Continue this process. As in the proof of Lemma 6.4.2,
a basis of V will be reached eventually.

3. a. This is clear if U = {0}. Otherwise, let u 6= 0 in U . Then {u} can be enlarged to a finite basis
B of U by Lemma 6.4.2, proving that U is finite dimensional. But B is independent in V , so
dim U ≤ dim V by the fundamental theorem.

b. This is clear if U = {0} because V has a basis; otherwise, it follows from (2).

Theorem 6.4.1 shows that a vector space V is finite dimensional if and only if it has a finite basis (possibly
empty), and that every subspace of a finite dimensional space is again finite dimensional.

Example 6.4.1

Enlarge the independent set D =

{[
1 1
1 0

]
,

[
0 1
1 1

]
,

[
1 0
1 1

]}
to a basis of M22.

Solution. The standard basis of M22 is

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
, so

including one of these in D will produce a basis by Theorem 6.4.1. In fact including any of these
matrices in D produces an independent set (verify), and hence a basis by Theorem 6.4.4. Of course

these vectors are not the only possibilities, for example, including

[
1 1
0 1

]
works as well.

Example 6.4.2

Find a basis of P3 containing the independent set {1+ x, 1+ x2}.

Solution. The standard basis of P3 is {1, x, x2, x3}, so including two of these vectors will do. If
we use 1 and x3, the result is {1, 1+ x, 1+ x2, x3}. This is independent because the polynomials
have distinct degrees (Example 6.3.4), and so is a basis by Theorem 6.4.1. Of course, including
{1, x} or {1, x2} would not work!

Example 6.4.3

Show that the space P of all polynomials is infinite dimensional.



6.4. Finite Dimensional Spaces 357

Solution. For each n≥ 1, P has a subspace Pn of dimension n+1. Suppose P is finite dimensional,
say dim P = m. Then dim Pn ≤ dim P by Theorem 6.4.1, that is n+1≤ m. This is impossible
since n is arbitrary, so P must be infinite dimensional.

The next example illustrates how (2) of Theorem 6.4.1 can be used.

Example 6.4.4

If c1, c2, . . . , ck are independent columns in Rn, show that they are the first k columns in some
invertible n×n matrix.

Solution. By Theorem 6.4.1, expand {c1, c2, . . . , ck} to a basis {c1, c2, . . . , ck, ck+1, . . . , cn} of
Rn. Then the matrix A =

[
c1 c2 . . . ck ck+1 . . . cn

]
with this basis as its columns is an

n×n matrix and it is invertible by Theorem 5.2.3.

Theorem 6.4.2

Let U and W be subspaces of the finite dimensional space V .

1. If U ⊆W , then dim U ≤ dim W .

2. If U ⊆W and dim U = dim W , then U =W .

Proof. Since W is finite dimensional, (1) follows by taking V = W in part (3) of Theorem 6.4.1. Now
assume dim U = dim W = n, and let B be a basis of U . Then B is an independent set in W . If U 6= W ,
then span B 6= W , so B can be extended to an independent set of n+ 1 vectors in W by Lemma 6.4.1.
This contradicts the fundamental theorem (Theorem 6.3.2) because W is spanned by dim W = n vectors.
Hence U =W , proving (2).

Theorem 6.4.2 is very useful. This was illustrated in Example 5.2.13 for R2 and R3; here is another
example.

Example 6.4.5

If a is a number, let W denote the subspace of all polynomials in Pn that have a as a root:

W = {p(x) | p(x) ∈ Pn and p(a) = 0}

Show that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of W .

Solution. Observe first that (x−a), (x−a)2, . . . , (x−a)n are members of W , and that they are
independent because they have distinct degrees (Example 6.3.4). Write

U = span{(x−a), (x−a)2, . . . , (x−a)n}

Then we have U ⊆W ⊆ Pn, dim U = n, and dim Pn = n+1. Hence n≤ dim W ≤ n+1 by
Theorem 6.4.2. Since dim W is an integer, we must have dim W = n or dim W = n+1. But then
W =U or W = Pn, again by Theorem 6.4.2. Because W 6= Pn, it follows that W =U , as required.
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A set of vectors is called dependent if it is not independent, that is if some nontrivial linear combina-
tion vanishes. The next result is a convenient test for dependence.

Lemma 6.4.3: Dependent Lemma

A set D = {v1, v2, . . . , vk} of vectors in a vector space V is dependent if and only if some vector
in D is a linear combination of the others.

Proof. Let v2 (say) be a linear combination of the rest: v2 = s1v1 + s3v3 + · · ·+ skvk. Then

s1v1 +(−1)v2 + s3v3 + · · ·+ skvk = 0

is a nontrivial linear combination that vanishes, so D is dependent. Conversely, if D is dependent, let
t1v1 + t2v2 + · · ·+ tkvk = 0 where some coefficient is nonzero. If (say) t2 6= 0, then v2 = − t1

t2
v1− t3

t2
v3−

·· ·− tk
t2

vk is a linear combination of the others.

Lemma 6.4.1 gives a way to enlarge independent sets to a basis; by contrast, Lemma 6.4.3 shows that
spanning sets can be cut down to a basis.

Theorem 6.4.3

Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by deleting
vectors) to a basis of V .

Proof. Since V is finite dimensional, it has a finite spanning set S. Among all spanning sets contained in S,
choose S0 containing the smallest number of vectors. It suffices to show that S0 is independent (then S0 is a
basis, proving the theorem). Suppose, on the contrary, that S0 is not independent. Then, by Lemma 6.4.3,
some vector u ∈ S0 is a linear combination of the set S1 = S0 \{u} of vectors in S0 other than u. It follows
that span S0 = span S1, that is, V = span S1. But S1 has fewer elements than S0 so this contradicts the
choice of S0. Hence S0 is independent after all.

Note that, with Theorem 6.4.1, Theorem 6.4.3 completes the promised proof of Theorem 5.2.6 for the case
V = Rn.

Example 6.4.6

Find a basis of P3 in the spanning set S = {1, x+ x2, 2x−3x2, 1+3x−2x2, x3}.

Solution. Since dim P3 = 4, we must eliminate one polynomial from S. It cannot be x3 because
the span of the rest of S is contained in P2. But eliminating 1+3x−2x2 does leave a basis (verify).
Note that 1+3x−2x2 is the sum of the first three polynomials in S.

Theorems 6.4.1 and 6.4.3 have other useful consequences.
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Theorem 6.4.4

Let V be a vector space with dim V = n, and suppose S is a set of exactly n vectors in V . Then S is
independent if and only if S spans V .

Proof. Assume first that S is independent. By Theorem 6.4.1, S is contained in a basis B of V . Hence
|S|= n = |B| so, since S⊆ B, it follows that S = B. In particular S spans V .

Conversely, assume that S spans V , so S contains a basis B by Theorem 6.4.3. Again |S|= n = |B| so,
since S⊇ B, it follows that S = B. Hence S is independent.

One of independence or spanning is often easier to establish than the other when showing that a set of
vectors is a basis. For example if V = Rn it is easy to check whether a subset S of Rn is orthogonal (hence
independent) but checking spanning can be tedious. Here are three more examples.

Example 6.4.7

Consider the set S = {p0(x), p1(x), . . . , pn(x)} of polynomials in Pn. If deg pk(x) = k for each k,
show that S is a basis of Pn.

Solution. The set S is independent—the degrees are distinct—see Example 6.3.4. Hence S is a
basis of Pn by Theorem 6.4.4 because dim Pn = n+1.

Example 6.4.8

Let V denote the space of all symmetric 2×2 matrices. Find a basis of V consisting of invertible
matrices.

Solution. We know that dim V = 3 (Example 6.3.11), so what is needed is a set of three invertible,
symmetric matrices that (using Theorem 6.4.4) is either independent or spans V . The set{[

1 0
0 1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]}
is independent (verify) and so is a basis of the required type.

Example 6.4.9

Let A be any n×n matrix. Show that there exist n2 +1 scalars a0, a1, a2, . . . , an2 not all zero,
such that

a0I +a1A+a2A2 + · · ·+an2An2
= 0

where I denotes the n×n identity matrix.

Solution. The space Mnn of all n×n matrices has dimension n2 by Example 6.3.7. Hence the
n2 +1 matrices I, A, A2, . . . , An2

cannot be independent by Theorem 6.4.4, so a nontrivial linear
combination vanishes. This is the desired conclusion.

The result in Example 6.4.9 can be written as f (A) = 0 where f (x) = a0 + a1x+ a2x2 + · · ·+ an2xn2
. In

other words, A satisfies a nonzero polynomial f (x) of degree at most n2. In fact we know that A satisfies
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a nonzero polynomial of degree n (this is the Cayley-Hamilton theorem—see Theorem 8.7.10), but the
brevity of the solution in Example 6.4.6 is an indication of the power of these methods.

If U and W are subspaces of a vector space V , there are two related subspaces that are of interest, their
sum U +W and their intersection U ∩W , defined by

U +W = {u+w | u ∈U and w ∈W}
U ∩W = {v ∈V | v ∈U and v ∈W}

It is routine to verify that these are indeed subspaces of V , that U ∩W is contained in both U and W , and
that U +W contains both U and W . We conclude this section with a useful fact about the dimensions of
these spaces. The proof is a good illustration of how the theorems in this section are used.

Theorem 6.4.5

Suppose that U and W are finite dimensional subspaces of a vector space V . Then U +W is finite
dimensional and

dim (U +W ) = dim U + dim W − dim (U ∩W ).

Proof. Since U∩W ⊆U , it has a finite basis, say {x1, . . . , xd}. Extend it to a basis {x1, . . . , xd , u1, . . . , um}
of U by Theorem 6.4.1. Similarly extend {x1, . . . , xd} to a basis {x1, . . . , xd , w1, . . . , wp} of W . Then

U +W = span{x1, . . . , xd , u1, . . . , um, w1, . . . , wp}

as the reader can verify, so U +W is finite dimensional. For the rest, it suffices to show that
{x1, . . . , xd , u1, . . . , um, w1, . . . , wp} is independent (verify). Suppose that

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum + t1w1 + · · ·+ tpwp = 0 (6.1)

where the ri, s j, and tk are scalars. Then

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum =−(t1w1 + · · ·+ tpwp)

is in U (left side) and also in W (right side), and so is in U ∩W . Hence (t1w1 + · · ·+ tpwp) is a linear
combination of {x1, . . . , xd}, so t1 = · · · = tp = 0, because {x1, . . . , xd , w1, . . . , wp} is independent.
Similarly, s1 = · · ·= sm = 0, so (6.1) becomes r1x1 + · · ·+ rdxd = 0. It follows that r1 = · · ·= rd = 0, as
required.

Theorem 6.4.5 is particularly interesting if U ∩W = {0}. Then there are no vectors xi in the above
proof, and the argument shows that if {u1, . . . , um} and {w1, . . . , wp} are bases of U and W respectively,
then {u1, . . . , um, w1, . . . , wp} is a basis of U + W . In this case U +W is said to be a direct sum (written
U⊕W ); we return to this in Chapter 9.
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Exercises for 6.4

Exercise 6.4.1 In each case, find a basis for V that in-
cludes the vector v.

a. V =R3, v = (1, −1, 1)

b. V =R3, v = (0, 1, 1)

c. V = M22, v =

[
1 1
1 1

]

d. V = P2, v = x2− x+1

Exercise 6.4.2 In each case, find a basis for V among
the given vectors.

a. V =R3,
{(1, 1, −1), (2, 0, 1), (−1, 1, −2), (1, 2, 1)}

b. V = P2, {x2 +3, x+2, x2−2x−1, x2 + x}

Exercise 6.4.3 In each case, find a basis of V containing
v and w.

a. V =R4, v = (1, −1, 1, −1), w = (0, 1, 0, 1)

b. V =R4, v = (0, 0, 1, 1), w = (1, 1, 1, 1)

c. V = M22, v =

[
1 0
0 1

]
, w =

[
0 1
1 0

]

d. V = P3, v = x2 +1, w = x2 + x

Exercise 6.4.4

a. If z is not a real number, show that {z, z2} is a basis
of the real vector space C of all complex numbers.

b. If z is neither real nor pure imaginary, show that
{z, z} is a basis of C.

Exercise 6.4.5 In each case use Theorem 6.4.4 to decide
if S is a basis of V .

a. V = M22;

S =

{[
1 1
1 1

]
,

[
0 1
1 1

]
,

[
0 0
1 1

]
,

[
0 0
0 1

]}

b. V = P3; S = {2x2, 1+ x, 3, 1+ x+ x2 + x3}

Exercise 6.4.6

a. Find a basis of M22 consisting of matrices with the
property that A2 = A.

b. Find a basis of P3 consisting of polynomials
whose coefficients sum to 4. What if they sum
to 0?

Exercise 6.4.7 If {u, v, w} is a basis of V , determine
which of the following are bases.

a. {u+v, u+w, v+w}

b. {2u+v+3w, 3u+v−w, u−4w}

c. {u, u+v+w}

d. {u, u+w, u−w, v+w}

Exercise 6.4.8

a. Can two vectors span R3? Can they be linearly
independent? Explain.

b. Can four vectors span R3? Can they be linearly
independent? Explain.

Exercise 6.4.9 Show that any nonzero vector in a finite
dimensional vector space is part of a basis.

Exercise 6.4.10 If A is a square matrix, show that
det A = 0 if and only if some row is a linear combina-
tion of the others.

Exercise 6.4.11 Let D, I, and X denote finite, nonempty
sets of vectors in a vector space V . Assume that D is de-
pendent and I is independent. In each case answer yes or
no, and defend your answer.

a. If X ⊇ D, must X be dependent?

b. If X ⊆ D, must X be dependent?

c. If X ⊇ I, must X be independent?

d. If X ⊆ I, must X be independent?
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Exercise 6.4.12 If U and W are subspaces of V and
dim U = 2, show that either U ⊆W or dim (U ∩W )≤ 1.

Exercise 6.4.13 Let A be a nonzero 2× 2 matrix and
write U = {X in M22 | XA= AX}. Show that dim U ≥ 2.
[Hint: I and A are in U .]

Exercise 6.4.14 If U ⊆ R2 is a subspace, show that
U = {0}, U = R2, or U is a line through the origin.

Exercise 6.4.15 Given v1, v2, v3, . . . , vk, and v, let U =
span{v1, v2, . . . , vk} and W = span{v1, v2, . . . , vk, v}.
Show that either dim W = dim U or dim W = 1 +
dim U .

Exercise 6.4.16 Suppose U is a subspace of P1,
U 6= {0}, and U 6= P1. Show that either U = R or
U = R(a+ x) for some a in R.

Exercise 6.4.17 Let U be a subspace of V and assume
dim V = 4 and dim U = 2. Does every basis of V result
from adding (two) vectors to some basis of U? Defend
your answer.

Exercise 6.4.18 Let U and W be subspaces of a vector
space V .

a. If dim V = 3, dim U = dim W = 2, and U 6= W ,
show that dim (U ∩W) = 1.

b. Interpret (a.) geometrically if V = R3.

Exercise 6.4.19 Let U ⊆ W be subspaces of V with
dim U = k and dim W = m, where k < m. If k < l < m,
show that a subspace X exists where U ⊆ X ⊆W and
dim X = l.

Exercise 6.4.20 Let B = {v1, . . . , vn} be a maximal in-
dependent set in a vector space V . That is, no set of more
than n vectors S is independent. Show that B is a basis of
V .

Exercise 6.4.21 Let B = {v1, . . . , vn} be a minimal

spanning set for a vector space V . That is, V cannot be
spanned by fewer than n vectors. Show that B is a basis
of V .

Exercise 6.4.22

a. Let p(x) and q(x) lie in P1 and suppose that
p(1) 6= 0, q(2) 6= 0, and p(2) = 0 = q(1). Show
that {p(x), q(x)} is a basis of P1. [Hint: If
rp(x)+ sq(x) = 0, evaluate at x = 1, x = 2.]

b. Let B = {p0(x), p1(x), . . . , pn(x)} be a set of
polynomials in Pn. Assume that there exist num-
bers a0, a1, . . . , an such that pi(ai) 6= 0 for each i

but pi(a j) = 0 if i is different from j. Show that B

is a basis of Pn.

Exercise 6.4.23 Let V be the set of all infinite sequences
(a0, a1, a2, . . . ) of real numbers. Define addition and
scalar multiplication by

(a0, a1, . . . )+ (b0, b1, . . . ) = (a0 +b0, a1 +b1, . . . )

and
r(a0, a1, . . . ) = (ra0, ra1, . . . )

a. Show that V is a vector space.

b. Show that V is not finite dimensional.

c. [For those with some calculus.] Show that the set
of convergent sequences (that is, lim

n→∞
an exists) is

a subspace, also of infinite dimension.

Exercise 6.4.24 Let A be an n× n matrix of rank r. If
U = {X in Mnn | AX = 0}, show that dim U = n(n− r).
[Hint: Exercise 6.3.34.]

Exercise 6.4.25 Let U and W be subspaces of V .

a. Show that U +W is a subspace of V containing
both U and W .

b. Show that span{u, w}=Ru+Rw for any vectors
u and w.

c. Show that

span{u1, . . . , um, w1, . . . , wn}
= span{u1, . . . , um}+ span{w1, . . . , wn}

for any vectors ui in U and w j in W .

Exercise 6.4.26 If A and B are m× n matrices, show
that rank (A+B) ≤ rank A+ rank B. [Hint: If U and V

are the column spaces of A and B, respectively, show that
the column space of A+B is contained in U +V and that
dim (U +V )≤ dim U + dim V . (See Theorem 6.4.5.)]
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6.5 An Application to Polynomials

The vector space of all polynomials of degree at most n is denoted Pn, and it was established in Section 6.3
that Pn has dimension n+1; in fact, {1, x, x2, . . . , xn} is a basis. More generally, any n+1 polynomials
of distinct degrees form a basis, by Theorem 6.4.4 (they are independent by Example 6.3.4). This proves

Theorem 6.5.1

Let p0(x), p1(x), p2(x), . . . , pn(x) be polynomials in Pn of degrees 0, 1, 2, . . . , n, respectively.
Then {p0(x), . . . , pn(x)} is a basis of Pn.

An immediate consequence is that {1, (x−a), (x−a)2, . . . , (x−a)n} is a basis of Pn for any number
a. Hence we have the following:

Corollary 6.5.1

If a is any number, every polynomial f (x) of degree at most n has an expansion in powers of
(x−a):

f (x) = a0 +a1(x−a)+a2(x−a)2 + · · ·+an(x−a)n (6.2)

If f (x) is evaluated at x = a, then equation (6.2) becomes

f (x) = a0 +a1(a−a)+ · · ·+an(a−a)n = a0

Hence a0 = f (a), and equation (6.2) can be written f (x) = f (a)+(x−a)g(x), where g(x) is a polynomial
of degree n−1 (this assumes that n≥ 1). If it happens that f (a) = 0, then it is clear that f (x) has the form
f (x) = (x−a)g(x). Conversely, every such polynomial certainly satisfies f (a) = 0, and we obtain:

Corollary 6.5.2

Let f (x) be a polynomial of degree n≥ 1 and let a be any number. Then:
Remainder Theorem

1. f (x) = f (a)+(x−a)g(x) for some polynomial g(x) of degree n−1.

Factor Theorem

2. f (a) = 0 if and only if f (x) = (x−a)g(x) for some polynomial g(x).

The polynomial g(x) can be computed easily by using “long division” to divide f (x) by (x− a)—see
Appendix D.

All the coefficients in the expansion (6.2) of f (x) in powers of (x−a) can be determined in terms of the
derivatives of f (x).6 These will be familiar to students of calculus. Let f (n)(x) denote the nth derivative

6The discussion of Taylor’s theorem can be omitted with no loss of continuity.


