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Exercise 7.1.22 If T : Mnn → R is any linear transfor-
mation satisfying T (AB)= T (BA) for all A and B in Mnn,
show that there exists a number k such that T (A) = k tr A

for all A. (See Lemma 5.5.1.) [Hint: Let Ei j denote the
n× n matrix with 1 in the (i, j) position and zeros else-
where.

Show that EikEl j =

{
0 if k 6= l

Ei j if k = l
. Use this to

show that T (Ei j) = 0 if i 6= j and
T (E11) = T (E22) = · · · = T (Enn). Put k = T (E11) and
use the fact that {Ei j | 1≤ i, j ≤ n} is a basis of Mnn.]

Exercise 7.1.23 Let T : C→ C be a linear transforma-
tion of the real vector space C and assume that T (a) = a

for every real number a. Show that the following are
equivalent:

a. T (zw) = T (z)T (w) for all z and w in C.

b. Either T = 1C or T (z) = z for each z in C (where
z denotes the conjugate).

7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation T : V →W .

Definition 7.2 Kernel and Image of a Linear Transformation

The kernel of T (denoted ker T ) and the image of T (denoted im T or T (V )) are defined by

ker T = {v in V | T (v) = 0}
im T = {T (v) | v in V}= T (V )

ker T

T

V

W
0

im TV W
T

The kernel of T is often called the nullspace of T because it consists of all
vectors v in V satisfying the condition that T (v) = 0. The image of T is
often called the range of T and consists of all vectors w in W of the form

w = T (v) for some v in V . These subspaces are depicted in the diagrams.

Example 7.2.1

Let TA : Rn→ Rm be the linear transformation induced by the
m×n matrix A, that is TA(x) = Ax for all columns x in Rn. Then

ker TA = {x | Ax = 0}= null A and

im TA = {Ax | x in Rn}= im A

Hence the following theorem extends Example 5.1.2.
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Theorem 7.2.1

Let T : V →W be a linear transformation.

1. ker T is a subspace of V .

2. im T is a subspace of W .

Proof. The fact that T (0) = 0 shows that ker T and im T contain the zero vector of V and W respectively.

1. If v and v1 lie in ker T , then T (v) = 0 = T (v1), so

T (v+v1) = T (v)+T (v1) = 0+0 = 0

T (rv) = rT (v) = r0 = 0 for all r in R

Hence v+v1 and rv lie in ker T (they satisfy the required condition), so ker T is a subspace of V

by the subspace test (Theorem 6.2.1).

2. If w and w1 lie in im T , write w = T (v) and w1 = T (v1) where v, v1 ∈V . Then

w+w1 = T (v)+T (v1) = T (v+v1)

rw = rT (v) = T (rv) for all r in R

Hence w+w1 and rw both lie in im T (they have the required form), so im T is a subspace of W .

Given a linear transformation T : V →W :

dim (ker T ) is called the nullity of T and denoted as nullity (T )
dim ( im T ) is called the rank of T and denoted as rank (T )

The rank of a matrix A was defined earlier to be the dimension of col A, the column space of A. The two
usages of the word rank are consistent in the following sense. Recall the definition of TA in Example 7.2.1.

Example 7.2.2

Given an m×n matrix A, show that im TA = col A, so rank TA = rank A.

Solution. Write A =
[

c1 · · · cn

]
in terms of its columns. Then

im TA = {Ax | x in Rn}= {x1c1 + · · ·+ xncn | xi in R}

using Definition 2.5. Hence im TA is the column space of A; the rest follows.

Often, a useful way to study a subspace of a vector space is to exhibit it as the kernel or image of a
linear transformation. Here is an example.
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Example 7.2.3

Define a transformation P : Mnn→Mnn by P(A) = A−AT for all A in Mnn. Show that P is linear
and that:

a. ker P consists of all symmetric matrices.

b. im P consists of all skew-symmetric matrices.

Solution. The verification that P is linear is left to the reader. To prove part (a), note that a matrix
A lies in ker P just when 0 = P(A) = A−AT , and this occurs if and only if A = AT —that is, A is
symmetric. Turning to part (b), the space im P consists of all matrices P(A), A in Mnn. Every such
matrix is skew-symmetric because

P(A)T = (A−AT )T = AT −A =−P(A)

On the other hand, if S is skew-symmetric (that is, ST =−S), then S lies in im P. In fact,

P
[1

2S
]
= 1

2S−
[1

2S
]T

= 1
2(S−ST ) = 1

2(S+S) = S

One-to-One and Onto Transformations

Definition 7.3 One-to-one and Onto Linear Transformations

Let T : V →W be a linear transformation.

1. T is said to be onto if im T =W .

2. T is said to be one-to-one if T (v) = T (v1) implies v = v1.

A vector w in W is said to be hit by T if w = T (v) for some v in V . Then T is onto if every vector in W

is hit at least once, and T is one-to-one if no element of W gets hit twice. Clearly the onto transformations
T are those for which im T = W is as large a subspace of W as possible. By contrast, Theorem 7.2.2
shows that the one-to-one transformations T are the ones with ker T as small a subspace of V as possible.

Theorem 7.2.2

If T : V →W is a linear transformation, then T is one-to-one if and only if ker T = {0}.

Proof. If T is one-to-one, let v be any vector in ker T . Then T (v) = 0, so T (v) = T (0). Hence v = 0

because T is one-to-one. Hence ker T = {0}.
Conversely, assume that ker T = {0} and let T (v) = T (v1) with v and v1 in V . Then

T (v− v1) = T (v)− T (v1) = 0, so v− v1 lies in ker T = {0}. This means that v− v1 = 0, so v = v1,
proving that T is one-to-one.
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Example 7.2.4

The identity transformation 1V : V →V is both one-to-one and onto for any vector space V .

Example 7.2.5

Consider the linear transformations

S : R3→ R2 given by S(x, y, z) = (x+ y, x− y)

T : R2→ R3 given by T (x, y) = (x+ y, x− y, x)

Show that T is one-to-one but not onto, whereas S is onto but not one-to-one.

Solution. The verification that they are linear is omitted. T is one-to-one because

ker T = {(x, y) | x+ y = x− y = x = 0}= {(0, 0)}

However, it is not onto. For example (0, 0, 1) does not lie in im T because if
(0, 0, 1) = (x+ y, x− y, x) for some x and y, then x+ y = 0 = x− y and x = 1, an impossibility.
Turning to S, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in ker S. But every
element (s, t) in R2 lies in im S because (s, t) = (x+ y, x− y) = S(x, y, z) for some x, y, and z (in
fact, x = 1

2(s+ t), y = 1
2(s− t), and z = 0). Hence S is onto.

Example 7.2.6

Let U be an invertible m×m matrix and define

T : Mmn→Mmn by T (X) =UX for all X in Mmn

Show that T is a linear transformation that is both one-to-one and onto.

Solution. The verification that T is linear is left to the reader. To see that T is one-to-one, let
T (X) = 0. Then UX = 0, so left-multiplication by U−1 gives X = 0. Hence ker T = {0}, so T is
one-to-one. Finally, if Y is any member of Mmn, then U−1Y lies in Mmn too, and
T (U−1Y ) =U(U−1Y ) = Y . This shows that T is onto.

The linear transformations Rn→ Rm all have the form TA for some m×n matrix A (Theorem 2.6.2).
The next theorem gives conditions under which they are onto or one-to-one. Note the connection with
Theorem 5.4.3 and Theorem 5.4.4.
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Theorem 7.2.3

Let A be an m×n matrix, and let TA : Rn→Rm be the linear transformation induced by A, that is
TA(x) = Ax for all columns x in Rn.

1. TA is onto if and only if rank A = m.

2. TA is one-to-one if and only if rank A = n.

Proof.

1. We have that im TA is the column space of A (see Example 7.2.2), so TA is onto if and only if the
column space of A is Rm. Because the rank of A is the dimension of the column space, this holds if
and only if rank A = m.

2. ker TA = {x in Rn | Ax = 0}, so (using Theorem 7.2.2) TA is one-to-one if and only if Ax = 0 implies
x = 0. This is equivalent to rank A = n by Theorem 5.4.3.

The Dimension Theorem

Let A denote an m× n matrix of rank r and let TA : Rn→ Rm denote the corresponding matrix transfor-
mation given by TA(x) = Ax for all columns x in Rn. It follows from Example 7.2.1 and Example 7.2.2
that im TA = col A, so dim ( im TA) = dim (col A) = r. On the other hand Theorem 5.4.2 shows that
dim (ker TA) = dim (null A) = n− r. Combining these we see that

dim ( im TA)+ dim (ker TA) = n for every m×n matrix A

The main result of this section is a deep generalization of this observation.

Theorem 7.2.4: Dimension Theorem

Let T : V →W be any linear transformation and assume that ker T and im T are both finite
dimensional. Then V is also finite dimensional and

dim V = dim (ker T )+ dim ( im T )

In other words, dim V = nullity (T )+ rank (T ).

Proof. Every vector in im T =T (V ) has the form T (v) for some v in V . Hence let {T (e1), T (e2), . . . , T (er)}
be a basis of im T , where the ei lie in V . Let {f1, f2, . . . , fk} be any basis of ker T . Then dim ( im T ) = r

and dim (ker T ) = k, so it suffices to show that B = {e1, . . . , er, f1, . . . , fk} is a basis of V .

1. B spans V . If v lies in V , then T (v) lies in im V , so

T (v) = t1T (e1)+ t2T (e2)+ · · ·+ trT (er) ti in R

This implies that v− t1e1− t2e2−·· ·− trer lies in ker T and so is a linear combination of f1, . . . , fk.
Hence v is a linear combination of the vectors in B.
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2. B is linearly independent. Suppose that ti and s j in R satisfy

t1e1 + · · ·+ trer + s1f1 + · · ·+ skfk = 0 (7.1)

Applying T gives t1T (e1)+ · · ·+trT (er) = 0 (because T (fi)= 0 for each i). Hence the independence
of {T (e1), . . . , T (er)} yields t1 = · · ·= tr = 0. But then (7.1) becomes

s1f1 + · · ·+ skfk = 0

so s1 = · · ·= sk = 0 by the independence of {f1, . . . , fk}. This proves that B is linearly independent.

Note that the vector space V is not assumed to be finite dimensional in Theorem 7.2.4. In fact, verify-
ing that ker T and im T are both finite dimensional is often an important way to prove that V is finite
dimensional.

Note further that r+ k = n in the proof so, after relabelling, we end up with a basis

B = {e1, e2, . . . , er, er+1, . . . , en}

of V with the property that {er+1, . . . , en} is a basis of ker T and {T (e1), . . . , T (er)} is a basis of im T .
In fact, if V is known in advance to be finite dimensional, then any basis {er+1, . . . , en} of ker T can be
extended to a basis {e1, e2, . . . , er, er+1, . . . , en} of V by Theorem 6.4.1. Moreover, it turns out that, no
matter how this is done, the vectors {T (e1), . . . , T (er)} will be a basis of im T . This result is useful, and
we record it for reference. The proof is much like that of Theorem 7.2.4 and is left as Exercise 7.2.26.

Theorem 7.2.5

Let T : V →W be a linear transformation, and let {e1, . . . , er, er+1, . . . , en} be a basis of V such
that {er+1, . . . , en} is a basis of ker T . Then {T (e1), . . . , T (er)} is a basis of im T , and hence
r = rank T .

The dimension theorem is one of the most useful results in all of linear algebra. It shows that if
either dim (ker T ) or dim ( im T ) can be found, then the other is automatically known. In many cases it is
easier to compute one than the other, so the theorem is a real asset. The rest of this section is devoted to
illustrations of this fact. The next example uses the dimension theorem to give a different proof of the first
part of Theorem 5.4.2.

Example 7.2.7

Let A be an m×n matrix of rank r. Show that the space null A of all solutions of the system
Ax = 0 of m homogeneous equations in n variables has dimension n− r.

Solution. The space in question is just ker TA, where TA : Rn→Rm is defined by TA(x) = Ax for
all columns x in Rn. But dim ( im TA) = rank TA = rank A = r by Example 7.2.2, so
dim (ker TA) = n− r by the dimension theorem.
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Example 7.2.8

If T : V →W is a linear transformation where V is finite dimensional, then

dim (ker T )≤ dim V and dim ( im T )≤ dim V

Indeed, dim V = dim (ker T )+ dim ( im T ) by Theorem 7.2.4. Of course, the first inequality also
follows because ker T is a subspace of V .

Example 7.2.9

Let D : Pn→ Pn−1 be the differentiation map defined by D [p(x)] = p′(x). Compute ker D and
hence conclude that D is onto.

Solution. Because p′(x) = 0 means p(x) is constant, we have dim (ker D) = 1. Since
dim Pn = n+1, the dimension theorem gives

dim ( im D) = (n+1)− dim (ker D) = n = dim (Pn−1)

This implies that im D = Pn−1, so D is onto.

Of course it is not difficult to verify directly that each polynomial q(x) in Pn−1 is the derivative of some
polynomial in Pn (simply integrate q(x)!), so the dimension theorem is not needed in this case. However,
in some situations it is difficult to see directly that a linear transformation is onto, and the method used in
Example 7.2.9 may be by far the easiest way to prove it. Here is another illustration.

Example 7.2.10

Given a in R, the evaluation map Ea : Pn→ R is given by Ea [p(x)] = p(a). Show that Ea is linear
and onto, and hence conclude that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of ker Ea, the
subspace of all polynomials p(x) for which p(a) = 0.

Solution. Ea is linear by Example 7.1.3; the verification that it is onto is left to the reader. Hence
dim ( im Ea) = dim (R) = 1, so dim (ker Ea) = (n+1)−1 = n by the dimension theorem. Now
each of the n polynomials (x−a), (x−a)2, . . . , (x−a)n clearly lies in ker Ea, and they are
linearly independent (they have distinct degrees). Hence they are a basis because dim (ker Ea) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

Example 7.2.11

If A is any m×n matrix, show that rank A = rank AT A = rank AAT .

Solution. It suffices to show that rank A = rank AT A (the rest follows by replacing A with AT ).
Write B = AT A, and consider the associated matrix transformations

TA : Rn→ Rm and TB : Rn→ Rn
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The dimension theorem and Example 7.2.2 give

rank A = rank TA = dim ( im TA) = n− dim (ker TA)

rank B = rank TB = dim ( im TB) = n− dim (ker TB)

so it suffices to show that ker TA = ker TB. Now Ax = 0 implies that Bx = AT Ax = 0, so ker TA is
contained in ker TB. On the other hand, if Bx = 0, then AT Ax = 0, so

‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT 0 = 0

This implies that Ax = 0, so ker TB is contained in ker TA.

Exercises for 7.2

Exercise 7.2.1 For each matrix A, find a basis for the
kernel and image of TA, and find the rank and nullity of
TA.




1 2 −1 1
3 1 0 2
1 −3 2 0


a.




2 1 −1 3
1 0 3 1
1 1 −4 2


b.




1 2 −1
3 1 2
4 −1 5
0 2 −2


c.




2 1 0
1 −1 3
1 2 −3
0 3 −6


d.

Exercise 7.2.2 In each case, (i) find a basis of ker T ,
and (ii) find a basis of im T . You may assume that T is
linear.

a. T : P2→ R2; T (a+bx+ cx2) = (a, b)

b. T : P2→ R2; T (p(x)) = (p(0), p(1))

c. T : R3→ R3; T (x, y, z) = (x+ y, x+ y, 0)

d. T : R3→ R4; T (x, y, z) = (x, x, y, y)

e. T : M22→M22; T

[
a b

c d

]
=

[
a+b b+ c

c+d d+a

]

f. T : M22→ R; T

[
a b

c d

]
= a+d

g. T : Pn→ R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn→ R; T (r1, r2, . . . , rn) = r1 + r2 + · · ·+ rn

i. T : M22→M22; T (X) = XA−AX , where

A =

[
0 1
1 0

]

j. T : M22→M22; T (X)=XA, where A=

[
1 1
0 0

]

Exercise 7.2.3 Let P : V → R and Q : V → R be lin-
ear transformations, where V is a vector space. Define
T : V → R2 by T (v) = (P(v), Q(v)).

a. Show that T is a linear transformation.

b. Show that ker T = ker P∩ ker Q, the set of vec-
tors in both ker P and ker Q.

Exercise 7.2.4 In each case, find a basis
B = {e1, . . . , er, er+1, . . . , en} of V such that
{er+1, . . . , en} is a basis of ker T , and verify Theo-
rem 7.2.5.

a. T : R3 → R4; T (x, y, z) = (x− y+ 2z, x + y−
z, 2x+ z, 2y−3z)

b. T : R3 → R4; T (x, y, z) = (x + y+ z, 2x− y+
3z, z−3y, 3x+4z)
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Exercise 7.2.5 Show that every matrix X in Mnn has the
form X = AT −2A for some matrix A in Mnn. [Hint: The
dimension theorem.]

Exercise 7.2.6 In each case either prove the statement
or give an example in which it is false. Throughout, let
T : V →W be a linear transformation where V and W are
finite dimensional.

a. If V =W , then ker T ⊆ im T .

b. If dim V = 5, dim W = 3, and dim (ker T ) = 2,
then T is onto.

c. If dim V = 5 and dim W = 4, then ker T 6= {0}.

d. If ker T =V , then W = {0}.

e. If W = {0}, then ker T =V .

f. If W =V , and im T ⊆ ker T , then T = 0.

g. If {e1, e2, e3} is a basis of V and
T (e1) = 0 = T (e2), then dim ( im T )≤ 1.

h. If dim (ker T )≤ dim W , then dim W ≥ 1
2 dim V .

i. If T is one-to-one, then dim V ≤ dim W .

j. If dim V ≤ dim W , then T is one-to-one.

k. If T is onto, then dim V ≥ dim W .

l. If dim V ≥ dim W , then T is onto.

m. If {T (v1), . . . , T (vk)} is independent, then
{v1, . . . , vk} is independent.

n. If {v1, . . . , vk} spans V , then {T (v1), . . . , T (vk)}
spans W .

Exercise 7.2.7 Show that linear independence is pre-
served by one-to-one transformations and that spanning
sets are preserved by onto transformations. More pre-
cisely, if T : V →W is a linear transformation, show that:

a. If T is one-to-one and {v1, . . . , vn} is independent
in V , then {T (v1), . . . , T (vn)} is independent in
W .

b. If T is onto and V = span{v1, . . . , vn}, then
W = span {T (v1), . . . , T (vn)}.

Exercise 7.2.8 Given {v1, . . . , vn} in a vector space V ,
define T : Rn→ V by T (r1, . . . , rn) = r1v1 + · · ·+ rnvn.
Show that T is linear, and that:

a. T is one-to-one if and only if {v1, . . . , vn} is in-
dependent.

b. T is onto if and only if V = span{v1, . . . , vn}.

Exercise 7.2.9 Let T : V →V be a linear transformation
where V is finite dimensional. Show that exactly one of
(i) and (ii) holds: (i) T (v) = 0 for some v 6= 0 in V ; (ii)
T (x) = v has a solution x in V for every v in V .

Exercise 7.2.10 Let T : Mnn→R denote the trace map:
T (A) = tr A for all A in Mnn. Show that
dim (ker T ) = n2−1.

Exercise 7.2.11 Show that the following are equivalent
for a linear transformation T : V →W .

ker T =V1. im T = {0}2.

T = 03.

Exercise 7.2.12 Let A and B be m× n and k× n matri-
ces, respectively. Assume that Ax = 0 implies Bx = 0 for
every n-column x. Show that rank A≥ rank B.
[Hint: Theorem 7.2.4.]

Exercise 7.2.13 Let A be an m× n matrix of rank r.
Thinking of Rn as rows, define V = {x in Rm | xA = 0}.
Show that dim V = m− r.

Exercise 7.2.14 Consider

V =

{[
a b

c d

]∣∣∣∣a+ c = b+d

}

a. Consider S : M22→ R with S

[
a b

c d

]
= a+ c−

b−d. Show that S is linear and onto and that V is
a subspace of M22. Compute dim V .

b. Consider T : V → R with T

[
a b

c d

]
= a + c.

Show that T is linear and onto, and use this in-
formation to compute dim (ker T ).

Exercise 7.2.15 Define T : Pn → R by T [p(x)] = the
sum of all the coefficients of p(x).

a. Use the dimension theorem to show that
dim (ker T ) = n.
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b. Conclude that {x−1, x2−1, . . . , xn−1} is a basis
of ker T .

Exercise 7.2.16 Use the dimension theorem to prove
Theorem 1.3.1: If A is an m× n matrix with m < n, the
system Ax = 0 of m homogeneous equations in n vari-
ables always has a nontrivial solution.

Exercise 7.2.17 Let B be an n× n matrix, and con-
sider the subspaces U = {A | A in Mmn, AB = 0} and
V = {AB | A in Mmn}. Show that dim U + dim V = mn.

Exercise 7.2.18 Let U and V denote, respectively, the
spaces of even and odd polynomials in Pn. Show that
dim U + dim V = n+ 1. [Hint: Consider T : Pn → Pn

where T [p(x)] = p(x)− p(−x).]

Exercise 7.2.19 Show that every polynomial f (x) in
Pn−1 can be written as f (x) = p(x+ 1)− p(x) for some
polynomial p(x) in Pn. [Hint: Define T : Pn→ Pn−1 by
T [p(x)] = p(x+1)− p(x).]

Exercise 7.2.20 Let U and V denote the spaces of sym-
metric and skew-symmetric n× n matrices. Show that
dim U + dim V = n2.

Exercise 7.2.21 Assume that B in Mnn satisfies Bk = 0
for some k ≥ 1. Show that every matrix in Mnn has
the form BA−A for some A in Mnn. [Hint: Show that
T : Mnn→Mnn is linear and one-to-one where
T (A) = BA−A for each A.]

Exercise 7.2.22 Fix a column y 6= 0 in Rn and let
U = {A in Mnn | Ay = 0}. Show that dim U = n(n−1).

Exercise 7.2.23 If B in Mmn has rank r, let U = {A in
Mnn | BA = 0} and W = {BA | A in Mnn}. Show that
dim U = n(n− r) and dim W = nr. [Hint: Show that U

consists of all matrices A whose columns are in the null
space of B. Use Example 7.2.7.]

Exercise 7.2.24 Let T : V → V be a linear transforma-
tion where dim V = n. If ker T ∩ im T = {0}, show that
every vector v in V can be written v = u+w for some u

in ker T and w in im T . [Hint: Choose bases B ⊆ ker T

and D⊆ im T , and use Exercise 6.3.33.]

Exercise 7.2.25 Let T : Rn → Rn be a linear operator
of rank 1, where Rn is written as rows. Show that there
exist numbers a1, a2, . . . , an and b1, b2, . . . , bn such that
T (X) = XA for all rows X in Rn, where

A =




a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

...
...

...
anb1 anb2 · · · anbn




[Hint: im T =Rw for w = (b1, . . . , bn) in Rn.]

Exercise 7.2.26 Prove Theorem 7.2.5.

Exercise 7.2.27 Let T :V →R be a nonzero linear trans-
formation, where dim V = n. Show that there is a basis
{e1, . . . , en} of V so that T (r1e1+r2e2+ · · ·+rnen)= r1.

Exercise 7.2.28 Let f 6= 0 be a fixed polynomial of de-
gree m≥ 1. If p is any polynomial, recall that
(p◦ f )(x) = p [ f (x)]. Define Tf : Pn→ Pn+m by
Tf (p) = p◦ f .

a. Show that Tf is linear.

b. Show that Tf is one-to-one.

Exercise 7.2.29 Let U be a subspace of a finite dimen-
sional vector space V .

a. Show that U = ker T for some linear operator
T : V →V .

b. Show that U = im S for some linear operator
S : V → V . [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

Exercise 7.2.30 Let V and W be finite dimensional vec-
tor spaces.

a. Show that dim W ≤ dim V if and only if there
exists an onto linear transformation T : V →W .
[Hint: Theorem 6.4.1 and Theorem 7.1.3.]

b. Show that dim W ≥ dim V if and only if there ex-
ists a one-to-one linear transformation T : V →W .
[Hint: Theorem 6.4.1 and Theorem 7.1.3.]

Exercise 7.2.31 Let A and B be n×n matrices, and as-
sume that AXB= 0, X ∈Mnn, implies X = 0. Show that A

and B are both invertible. [Hint: Dimension Theorem.]
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7.3 Isomorphisms and Composition

Often two vector spaces can consist of quite different types of vectors but, on closer examination, turn out
to be the same underlying space displayed in different symbols. For example, consider the spaces

R2 = {(a, b) | a, b ∈ R} and P1 = {a+bx | a, b ∈ R}

Compare the addition and scalar multiplication in these spaces:

(a, b)+(a1, b1) = (a+a1, b+b1) (a+bx)+(a1+b1x) = (a+a1)+(b+b1)x

r(a, b) = (ra, rb) r(a+bx) = (ra)+(rb)x

Clearly these are the same vector space expressed in different notation: if we change each (a, b) in R2 to
a+bx, then R2 becomes P1, complete with addition and scalar multiplication. This can be expressed by
noting that the map (a, b) 7→ a+bx is a linear transformation R2→ P1 that is both one-to-one and onto.
In this form, we can describe the general situation.

Definition 7.4 Isomorphic Vector Spaces

A linear transformation T : V →W is called an isomorphism if it is both onto and one-to-one. The
vector spaces V and W are said to be isomorphic if there exists an isomorphism T : V →W , and
we write V ∼=W when this is the case.

Example 7.3.1

The identity transformation 1V : V →V is an isomorphism for any vector space V .

Example 7.3.2

If T : Mmn→Mnm is defined by T (A) = AT for all A in Mmn, then T is an isomorphism (verify).
Hence Mmn

∼= Mnm.

Example 7.3.3

Isomorphic spaces can “look” quite different. For example, M22
∼= P3 because the map

T : M22→ P3 given by T

[
a b

c d

]
= a+bx+ cx2 +dx3 is an isomorphism (verify).

The word isomorphism comes from two Greek roots: iso, meaning “same,” and morphos, meaning
“form.” An isomorphism T : V →W induces a pairing

v↔ T (v)


