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Example 8.10.3
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A manufacturer makes x1 units of product 1, and x2 units
of product 2, at a profit of $70 and $50 per unit respectively,
and wants to choose x1 and x2 to maximize the total profit
p(x1, x2) = 70x1 +50x2. However x1 and x2 are not arbitrary; for
example, x1 ≥ 0 and x2 ≥ 0. Other conditions also come into play.
Each unit of product 1 costs $1200 to produce and requires 2000
square feet of warehouse space; each unit of product 2 costs $1300
to produce and requires 1100 square feet of space. If the total
warehouse space is 11 300 square feet, and if the total production
budget is $8700, x1 and x2 must also satisfy the conditions

2000x1 +1100x2 ≤ 11300

1200x1 +1300x2 ≤ 8700

The feasible region in the plane satisfying these constraints (and x1 ≥ 0, x2 ≥ 0) is shaded in the
diagram. If the profit equation 70x1 +50x2 = p is plotted for various values of p, the resulting
lines are parallel, with p increasing with distance from the origin. Hence the best choice occurs for
the line 70x1 +50x2 = 430 that touches the shaded region at the point (4, 3). So the profit p has a
maximum of p = 430 for x1 = 4 units and x2 = 3 units.

Example 8.10.3 is a simple case of the general linear programming problem23 which arises in eco-
nomic, management, network, and scheduling applications. Here the objective function is a linear com-
bination q = a1x1 + a2x2 + · · ·+ anxn of the variables, and the feasible region consists of the vectors
x=(x1, x2, . . . , xn)

T in Rn which satisfy a set of linear inequalities of the form b1x1+b2x2+· · ·+bnxn≤ b.
There is a good method (an extension of the gaussian algorithm) called the simplex algorithm for finding
the maximum and minimum values of q when x ranges over such a feasible set. As Example 8.10.3 sug-
gests, the optimal values turn out to be vertices of the feasible set. In particular, they are on the boundary
of the feasible region, as is the case in Theorem 8.10.1.

8.11 An Application to Statistical Principal Component

Analysis

Linear algebra is important in multivariate analysis in statistics, and we conclude with a very short look
at one application of diagonalization in this area. A main feature of probability and statistics is the idea
of a random variable X , that is a real-valued function which takes its values according to a probability
law (called its distribution). Random variables occur in a wide variety of contexts; examples include the
number of meteors falling per square kilometre in a given region, the price of a share of a stock, or the
duration of a long distance telephone call from a certain city.

The values of a random variable X are distributed about a central number µ , called the mean of X .
The mean can be calculated from the distribution as the expectation E(X) = µ of the random variable X .

23More information is available in “Linear Programming and Extensions” by N. Wu and R. Coppins, McGraw-Hill, 1981.
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Functions of a random variable are again random variables. In particular, (X −µ)2 is a random variable,
and the variance of the random variable X , denoted var (X), is defined to be the number

var (X) = E{(X−µ)2} where µ = E(X)

It is not difficult to see that var (X)≥ 0 for every random variable X . The number σ =
√

var (X) is called
the standard deviation of X , and is a measure of how much the values of X are spread about the mean
µ of X . A main goal of statistical inference is finding reliable methods for estimating the mean and the
standard deviation of a random variable X by sampling the values of X .

If two random variables X and Y are given, and their joint distribution is known, then functions of X

and Y are also random variables. In particular, X +Y and aX are random variables for any real number a,
and we have

E(X +Y ) = E(X)+E(Y ) and E(aX) = aE(X).24

An important question is how much the random variables X and Y depend on each other. One measure of
this is the covariance of X and Y , denoted cov (X , Y ), defined by

cov (X , Y ) = E{(X−µ)(Y −υ)} where µ = E(X) and υ = E(Y )

Clearly, cov (X , X) = var (X). If cov (X , Y ) = 0 then X and Y have little relationship to each other and
are said to be uncorrelated.25

Multivariate statistical analysis deals with a family X1, X2, . . . , Xn of random variables with means
µi = E(Xi) and variances σ 2

i = var (Xi) for each i. Let σi j = cov (Xi, X j) denote the covariance of Xi and
X j. Then the covariance matrix of the random variables X1, X2, . . . , Xn is defined to be the n×n matrix

Σ = [σi j]

whose (i, j)-entry is σi j. The matrix Σ is clearly symmetric; in fact it can be shown that Σ is positive

semidefinite in the sense that λ ≥ 0 for every eigenvalue λ of Σ. (In reality, Σ is positive definite in most
cases of interest.) So suppose that the eigenvalues of Σ are λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. The principal axes
theorem (Theorem 8.2.2) shows that an orthogonal matrix P exists such that

PT ΣP = diag (λ1, λ2, . . . , λn)

If we write X = (X1, X2, . . . , Xn), the procedure for diagonalizing a quadratic form gives new variables
Y = (Y1, Y2, . . . , Yn) defined by

Y = PT X

These new random variables Y1, Y2, . . . , Yn are called the principal components of the original random
variables Xi, and are linear combinations of the Xi. Furthermore, it can be shown that

cov (Yi, Yj) = 0 if i 6= j and var (Yi) = λi for each i

Of course the principal components Yi point along the principal axes of the quadratic form q = X
T

ΣX .

24Hence E( ) is a linear transformation from the vector space of all random variables to the space of real numbers.
25If X and Y are independent in the sense of probability theory, then they are uncorrelated; however, the converse is not true

in general.
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The sum of the variances of a set of random variables is called the total variance of the variables, and
determining the source of this total variance is one of the benefits of principal component analysis. The
fact that the matrices Σ and diag (λ1, λ2, . . . , λn) are similar means that they have the same trace, that is,

σ11 +σ22 + · · ·+σnn = λ1 +λ2 + · · ·+λn

This means that the principal components Yi have the same total variance as the original random variables
Xi. Moreover, the fact that λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0 means that most of this variance resides in the first few
Yi. In practice, statisticians find that studying these first few Yi (and ignoring the rest) gives an accurate
analysis of the total system variability. This results in substantial data reduction since often only a few Yi

suffice for all practical purposes. Furthermore, these Yi are easily obtained as linear combinations of the
Xi. Finally, the analysis of the principal components often reveals relationships among the Xi that were not
previously suspected, and so results in interpretations that would not otherwise have been made.


