
472 Orthogonality

Exercise 8.7.16

a. If Z is an invertible complex matrix, show that ZH

is invertible and that (ZH)−1 = (Z−1)H .

b. Show that the inverse of a unitary matrix is again
unitary.

c. If U is unitary, show that UH is unitary.

Exercise 8.7.17 Let Z be an m× n matrix such that
ZHZ = In (for example, Z is a unit column in Cn).

a. Show that V = ZZH is hermitian and satisfies
V 2 =V .

b. Show that U = I− 2ZZH is both unitary and her-
mitian (so U−1 =UH =U).

Exercise 8.7.18

a. If N is normal, show that zN is also normal for all
complex numbers z.

b. Show that (a) fails if normal is replaced by hermi-

tian.

Exercise 8.7.19 Show that a real 2×2 normal matrix is

either symmetric or has the form

[
a b

−b a

]
.

Exercise 8.7.20 If A is hermitian, show that all the co-
efficients of cA(x) are real numbers.

Exercise 8.7.21

a. If A=

[
1 1
0 1

]
, show that U−1AU is not diagonal

for any invertible complex matrix U .

b. If A =

[
0 1
−1 0

]
, show that U−1AU is not upper

triangular for any real invertible matrix U .

Exercise 8.7.22 If A is any n× n matrix, show that
UHAU is lower triangular for some unitary matrix U .

Exercise 8.7.23 If A is a 3 × 3 matrix, show that
A2 = 0 if and only if there exists a unitary matrix U

such that UHAU has the form




0 0 u

0 0 v

0 0 0


 or the form




0 u v

0 0 0
0 0 0


.

Exercise 8.7.24 If A2 = A, show that rank A = tr A.
[Hint: Use Schur’s theorem.]

Exercise 8.7.25 Let A be any n× n complex matrix
with eigenvalues λ1, . . . , λn. Show that A = P + N

where Nn = 0 and P = UDUT where U is unitary and
D = diag (λ1, . . . , λn). [Hint: Schur’s theorem]

8.8 An Application to Linear Codes over Finite Fields

For centuries mankind has been using codes to transmit messages. In many cases, for example transmit-
ting financial, medical, or military information, the message is disguised in such a way that it cannot be
understood by an intruder who intercepts it, but can be easily “decoded” by the intended receiver. This
subject is called cryptography and, while intriguing, is not our focus here. Instead, we investigate methods
for detecting and correcting errors in the transmission of the message.

The stunning photos of the planet Saturn sent by the space probe are a very good example of how
successful these methods can be. These messages are subject to “noise” such as solar interference which
causes errors in the message. The signal is received on Earth with errors that must be detected and cor-
rected before the high-quality pictures can be printed. This is done using error-correcting codes. To see
how, we first discuss a system of adding and multiplying integers while ignoring multiples of a fixed
integer.

8.8. An Application to Linear Codes over Finite Fields 473

Modular Arithmetic

We work in the set Z= {0, ±1, ±2, ±3, . . .} of integers, that is the set of whole numbers. Everyone is
familiar with the process of “long division” from arithmetic. For example, we can divide an integer a by 5
and leave a remainder “modulo 5” in the set {0, 1, 2, 3, 4}. As an illustration

19 = 3 ·5+4

so the remainder of 19 modulo 5 is 4. Similarly, the remainder of 137 modulo 5 is 2 because we have
137 = 27 ·5+2. This works even for negative integers: For example,

−17 = (−4) ·5+3

so the remainder of −17 modulo 5 is 3.

This process is called the division algorithm. More formally, let n≥ 2 denote an integer. Then every
integer a can be written uniquely in the form

a = qn+ r where q and r are integers and 0≤ r ≤ n−1

Here q is called the quotient of a modulo n, and r is called the remainder of a modulo n. We refer to n

as the modulus. Thus, if n = 6, the fact that 134 = 22 ·6+2 means that 134 has quotient 22 and remainder
2 modulo 6.

Our interest here is in the set of all possible remainders modulo n. This set is denoted

Zn = {0, 1, 2, 3, . . . , n−1}

and is called the set of integers modulo n. Thus every integer is uniquely represented in Zn by its remain-
der modulo n.

We are going to show how to do arithmetic in Zn by adding and multiplying modulo n. That is, we
add or multiply two numbers in Zn by calculating the usual sum or product in Z and taking the remainder
modulo n. It is proved in books on abstract algebra that the usual laws of arithmetic hold in Zn for any
modulus n ≥ 2. This seems remarkable until we remember that these laws are true for ordinary addition
and multiplication and all we are doing is reducing modulo n.

To illustrate, consider the case n = 6, so that Z6 = {0, 1, 2, 3, 4, 5}. Then 2+5 = 1 in Z6 because 7
leaves a remainder of 1 when divided by 6. Similarly, 2 · 5 = 4 in Z6, while 3+5 = 2, and 3+3 = 0. In
this way we can fill in the addition and multiplication tables for Z6; the result is:

Tables for Z6

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

474 Orthogonality

Calculations in Z6 are carried out much as in Z . As an illustration, consider the familiar “distributive law”
a(b+ c) = ab+ ac from ordinary arithmetic. This holds for all a, b, and c in Z6; we verify a particular
case:

3(5+4) = 3 ·5+3 ·4 in Z6

In fact, the left side is 3(5+ 4) = 3 · 3 = 3, and the right side is (3 · 5)+ (3 · 4) = 3+ 0 = 3 too. Hence
doing arithmetic in Z6 is familiar. However, there are differences. For example, 3 ·4 = 0 in Z6, in contrast
to the fact that a ·b = 0 in Z can only happen when either a = 0 or b = 0. Similarly, 32 = 3 in Z6, unlike
Z.

Note that we will make statements like −30 = 19 in Z7; it means that −30 and 19 leave the same
remainder 5 when divided by 7, and so are equal in Z7 because they both equal 5. In general, if n ≥ 2 is
any modulus, the operative fact is that

a = b in Zn if and only if a−b is a multiple of n

In this case we say that a and b are equal modulo n, and write a = b(mod n).

Arithmetic in Zn is, in a sense, simpler than that for the integers. For example, consider negatives.
Given the element 8 in Z17, what is −8? The answer lies in the observation that 8+ 9 = 0 in Z17, so
−8 = 9 (and −9 = 8). In the same way, finding negatives is not difficult in Zn for any modulus n.

Finite Fields

In our study of linear algebra so far the scalars have been real (possibly complex) numbers. The set R
of real numbers has the property that it is closed under addition and multiplication, that the usual laws of
arithmetic hold, and that every nonzero real number has an inverse in R. Such a system is called a field.
Hence the real numbers R form a field, as does the set C of complex numbers. Another example is the set
Q of all rational numbers (fractions); however the set Z of integers is not a field—for example, 2 has no
inverse in the set Z because 2 · x = 1 has no solution x in Z .

Our motivation for isolating the concept of a field is that nearly everything we have done remains valid
if the scalars are restricted to some field: The gaussian algorithm can be used to solve systems of linear
equations with coefficients in the field; a square matrix with entries from the field is invertible if and only
if its determinant is nonzero; the matrix inversion algorithm works in the same way; and so on. The reason
is that the field has all the properties used in the proofs of these results for the field R, so all the theorems
remain valid.

It turns out that there are finite fields—that is, finite sets that satisfy the usual laws of arithmetic and in
which every nonzero element a has an inverse, that is an element b in the field such that ab = 1. If n≥ 2 is
an integer, the modular system Zn certainly satisfies the basic laws of arithmetic, but it need not be a field.
For example we have 2 · 3 = 0 in Z6 so 3 has no inverse in Z6 (if 3a = 1 then 2 = 2 · 1 = 2(3a) = 0a = 0
in Z6, a contradiction). The problem is that 6 = 2 ·3 can be properly factored in Z.

An integer p≥ 2 is called a prime if p cannot be factored as p = ab where a and b are positive integers
and neither a nor b equals 1. Thus the first few primes are 2, 3, 5, 7, 11, 13, 17, If n ≥ 2 is not a
prime and n = ab where 2 ≤ a, b ≤ n− 1, then ab = 0 in Zn and it follows (as above in the case n = 6)
that b cannot have an inverse in Zn, and hence that Zn is not a field. In other words, if Zn is a field, then n

must be a prime. Surprisingly, the converse is true:

8.8. An Application to Linear Codes over Finite Fields 475

Theorem 8.8.1

If p is a prime, then Zp is a field using addition and multiplication modulo p.

The proof can be found in books on abstract algebra.18 If p is a prime, the field Zp is called the field of

integers modulo p.

For example, consider the case n = 5. Then Z5 = {0, 1, 2, 3, 4} and the addition and multiplication
tables are:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Hence 1 and 4 are self-inverse in Z5, and 2 and 3 are inverses of each other, so Z5 is indeed a field. Here
is another important example.

Example 8.8.1

If p = 2, then Z2 = {0, 1} is a field with addition and multiplication modulo 2 given by the tables

+ 0 1
0 0 1
1 1 0

and
× 0 1
0 0 0
1 0 1

This is binary arithmetic, the basic algebra of computers.

While it is routine to find negatives of elements of Zp, it is a bit more difficult to find inverses in Zp.
For example, how does one find 14−1 in Z17? Since we want 14−1 · 14 = 1 in Z17, we are looking for an
integer a with the property that a ·14= 1 modulo 17. Of course we can try all possibilities in Z17 (there are
only 17 of them!), and the result is a = 11 (verify). However this method is of little use for large primes
p, and it is a comfort to know that there is a systematic procedure (called the euclidean algorithm) for
finding inverses in Zp for any prime p. Furthermore, this algorithm is easy to program for a computer. To
illustrate the method, let us once again find the inverse of 14 in Z17.

Example 8.8.2

Find the inverse of 14 in Z17.

Solution. The idea is to first divide p = 17 by 14:

17 = 1 ·14+3

Now divide (the previous divisor) 14 by the new remainder 3 to get

14 = 4 ·3+2

18See, for example, W. Keith Nicholson, Introduction to Abstract Algebra, 4th ed., (New York: Wiley, 2012).

476 Orthogonality

and then divide (the previous divisor) 3 by the new remainder 2 to get

3 = 1 ·2+1

It is a theorem of number theory that, because 17 is a prime, this procedure will always lead to a
remainder of 1. At this point we eliminate remainders in these equations from the bottom up:

1 = 3−1 ·2 since 3 = 1 ·2+1

= 3−1 · (14−4 ·3) = 5 ·3−1 ·14 since 2 = 14−4 ·3
= 5 · (17−1 ·14)−1 ·14= 5 ·17−6 ·14 since 3 = 17−1 ·14

Hence (−6) ·14 = 1 in Z17, that is, 11 ·14 = 1. So 14−1 = 11 in Z17.

As mentioned above, nearly everything we have done with matrices over the field of real numbers can
be done in the same way for matrices with entries from Zp. We illustrate this with one example. Again
the reader is referred to books on abstract algebra.

Example 8.8.3

Determine if the matrix A =

[
1 4
6 5

]
from Z7 is invertible and, if so, find its inverse.

Solution. Working in Z7 we have det A = 1 ·5−6 ·4 = 5−3 = 2 6= 0 in Z7, so A is invertible.

Hence Example 2.4.4 gives A−1 = 2−1

[
5 −4
−6 1

]
. Note that 2−1 = 4 in Z7 (because 2 ·4 = 1 in

Z7). Note also that −4 = 3 and −6 = 1 in Z7, so finally A−1 = 4

[
5 3
1 1

]
=

[
6 5
4 4

]
. The reader

can verify that indeed

[
1 4
6 5

][
6 5
4 4

]
=

[
1 0
0 1

]
in Z7.

While we shall not use them, there are finite fields other than Zp for the various primes p. Surprisingly,
for every prime p and every integer n ≥ 1, there exists a field with exactly pn elements, and this field is
unique.19 It is called the Galois field of order pn, and is denoted GF(pn).

19See, for example, W. K. Nicholson, Introduction to Abstract Algebra, 4th ed., (New York: Wiley, 2012).

8.8. An Application to Linear Codes over Finite Fields 477

Error Correcting Codes

Coding theory is concerned with the transmission of information over a channel that is affected by noise.
The noise causes errors, so the aim of the theory is to find ways to detect such errors and correct at least
some of them. General coding theory originated with the work of Claude Shannon (1916–2001) who
showed that information can be transmitted at near optimal rates with arbitrarily small chance of error.

Let F denote a finite field and, if n≥ 1, let

Fn denote the F-vector space of 1×n row matrices over F

with the usual componentwise addition and scalar multiplication. In this context, the rows in Fn are
called words (or n-words) and, as the name implies, will be written as [a b c d] = abcd. The individual
components of a word are called its digits. A nonempty subset C of Fn is called a code (or an n-code),
and the elements in C are called code words. If F = Z2, these are called binary codes.

If a code word w is transmitted and an error occurs, the resulting word v is decoded as the code word
“closest” to v in Fn. To make sense of what “closest” means, we need a distance function on Fn analogous
to that in Rn (see Theorem 5.3.3). The usual definition in Rn does not work in this situation. For example,
if w = 1111 in (Z2)

4 then the square of the distance of w from 0 is

(1−0)2+(1−0)2 +(1−0)2+(1−0)2 = 0

even though w 6= 0.

However there is a satisfactory notion of distance in Fn due to Richard Hamming (1915–1998). Given
a word w = a1a2 · · ·an in Fn, we first define the Hamming weight wt(w) to be the number of nonzero
digits in w:

wt(w) = wt(a1a2 · · ·an) = |{i | ai 6= 0}|
Clearly, 0≤ wt(w) ≤ n for every word w in Fn. Given another word v = b1b2 · · ·bn in Fn, the Hamming

distance d(v, w) between v and w is defined by

d(v, w) = wt(v−w) = |{i | bi 6= ai}|

In other words, d(v, w) is the number of places at which the digits of v and w differ. The next result
justifies using the term distance for this function d.

Theorem 8.8.2

Let u, v, and w denote words in Fn. Then:

1. d(v, w)≥ 0.

2. d(v, w) = 0 if and only if v = w.

3. d(v, w) = d(w, v).

4. d(v, w)≤ d(v, u)+d(u, w)

478 Orthogonality

Proof. (1) and (3) are clear, and (2) follows because wt(v) = 0 if and only if v = 0. To prove (4), write
x = v−u and y = u−w. Then (4) reads wt(x+y)≤ wt(x)+wt(y). If x = a1a2 · · ·an and y = b1b2 · · ·bn,
this follows because ai +bi 6= 0 implies that either ai 6= 0 or bi 6= 0.

Given a word w in Fn and a real number r > 0, define the ball Br(w) of radius r (or simply the r-ball)
about w as follows:

Br(w) = {x ∈ Fn | d(w, x)≤ r}
Using this we can describe one of the most useful decoding methods.

Nearest Neighbour Decoding

Let C be an n-code, and suppose a word v is transmitted and w is received. Then w is decoded as
the code word in C closest to it. (If there is a tie, choose arbitrarily.)

Using this method, we can describe how to construct a code C that can detect (or correct) t errors.
Suppose a code word c is transmitted and a word w is received with s errors where 1 ≤ s ≤ t. Then s is
the number of places at which the c- and w-digits differ, that is, s = d(c, w). Hence Bt(c) consists of all
possible received words where at most t errors have occurred.

Assume first that C has the property that no code word lies in the t-ball of another code word. Because
w is in Bt(c) and w 6= c, this means that w is not a code word and the error has been detected. If we
strengthen the assumption on C to require that the t-balls about code words are pairwise disjoint, then w

belongs to a unique ball (the one about c), and so w will be correctly decoded as c.

To describe when this happens, let C be an n-code. The minimum distance d of C is defined to be the
smallest distance between two distinct code words in C; that is,

d = min{d(v, w) | v and w in C;v 6= w}

Theorem 8.8.3

Let C be an n-code with minimum distance d. Assume that nearest neighbour decoding is used.
Then:

1. If t < d, then C can detect t errors.20

2. If 2t < d, then C can correct t errors.

Proof.
1. Let c be a code word in C. If w ∈ Bt(c), then d(w, c) ≤ t < d by hypothesis. Thus the t-ball Bt(c)

contains no other code word, so C can detect t errors by the preceding discussion.

2. If 2t < d, it suffices (again by the preceding discussion) to show that the t-balls about distinct code
words are pairwise disjoint. But if c 6= c′ are code words in C and w is in Bt(c

′)∩ Bt(c), then
Theorem 8.8.2 gives

d(c, c′)≤ d(c, w)+d(w, c′)≤ t + t = 2t < d

by hypothesis, contradicting the minimality of d.

20We say that C detects (corrects) t errors if C can detect (or correct) t or fewer errors.

8.8. An Application to Linear Codes over Finite Fields 479

Example 8.8.4

If F = Z3 = {0, 1, 2}, the 6-code {111111, 111222, 222111} has minimum distance 3 and so can
detect 2 errors and correct 1 error.

Let c be any word in Fn. A word w satisfies d(w, c) = r if and only if w and c differ in exactly r digits.
If |F| = q, there are exactly

(
n
r

)
(q−1)r such words where

(
n
r

)
is the binomial coefficient. Indeed, choose

the r places where they differ in
(

n
r

)
ways, and then fill those places in w in (q−1)r ways. It follows that

the number of words in the t-ball about c is

|Bt(c)|=
(

n
0

)
+
(

n
1

)
(q−1)+

(
n
2

)
(q−1)2 + · · ·+

(
n
t

)
(q−1)t = ∑t

i=0

(
n
i

)
(q−1)i

This leads to a useful bound on the size of error-correcting codes.

Theorem 8.8.4: Hamming Bound

Let C be an n-code over a field F that can correct t errors using nearest neighbour decoding. If
|F|= q, then

|C| ≤ qn

∑t
i=0 (

n
i)(q−1)i

Proof. Write k = ∑t
i=0

(
n
i

)
(q− 1)i. The t-balls centred at distinct code words each contain k words, and

there are |C| of them. Moreover they are pairwise disjoint because the code corrects t errors (see the
discussion preceding Theorem 8.8.3). Hence they contain k · |C| distinct words, and so k · |C| ≤ |Fn|= qn,
proving the theorem.

A code is called perfect if there is equality in the Hamming bound; equivalently, if every word in Fn

lies in exactly one t-ball about a code word. For example, if F = Z2, n = 3, and t = 1, then q = 2 and(3
0

)
+
(3

1

)
= 4, so the Hamming bound is 23

4 = 2. The 3-code C = {000, 111} has minimum distance 3 and
so can correct 1 error by Theorem 8.8.3. Hence C is perfect.

Linear Codes

Up to this point we have been regarding any nonempty subset of the F-vector space Fn as a code. However
many important codes are actually subspaces. A subspace C ⊆ Fn of dimension k ≥ 1 over F is called an
(n, k)-linear code, or simply an (n, k)-code. We do not regard the zero subspace (that is, k = 0) as a code.

Example 8.8.5

If F = Z2 and n≥ 2, the n-parity-check code is constructed as follows: An extra digit is added to
each word in Fn−1 to make the number of 1s in the resulting word even (we say such words have
even parity). The resulting (n, n−1)-code is linear because the sum of two words of even parity
again has even parity.

Many of the properties of general codes take a simpler form for linear codes. The following result gives
a much easier way to find the minimal distance of a linear code, and sharpens the results in Theorem 8.8.3.

480 Orthogonality

Theorem 8.8.5

Let C be an (n, k)-code with minimum distance d over a finite field F , and use nearest neighbour
decoding.

1. d = min{wt(w) | 0 6= w ∈C}.

2. C can detect t ≥ 1 errors if and only if t < d.

3. C can correct t ≥ 1 errors if and only if 2t < d.

4. If C can correct t ≥ 1 errors and |F|= q, then
(

n
0

)
+
(

n
1

)
(q−1)+

(
n
2

)
(q−1)2+ · · ·+

(
n
t

)
(q−1)t ≤ qn−k

Proof.

1. Write d′ = min{wt(w) | 0 6= w in C}. If v 6= w are words in C, then d(v, w) = wt(v−w) ≥ d′

because v−w is in the subspace C. Hence d ≥ d′. Conversely, given w 6= 0 in C then, since 0 is in
C, we have wt(w) = d(w, 0)≥ d by the definition of d. Hence d′ ≥ d and (1) is proved.

2. Assume that C can detect t errors. Given w 6= 0 in C, the t-ball Bt(w) about w contains no other
code word (see the discussion preceding Theorem 8.8.3). In particular, it does not contain the code
word 0, so t < d(w, 0) = wt(w). Hence t < d by (1). The converse is part of Theorem 8.8.3.

3. We require a result of interest in itself.

Claim. Suppose c in C has wt(c)≤ 2t. Then Bt(0)∩Bt(c) is nonempty.

Proof. If wt(c)≤ t, then c itself is in Bt(0)∩Bt(c). So assume t < wt(c)≤ 2t. Then c has more than
t nonzero digits, so we can form a new word w by changing exactly t of these nonzero digits to zero.
Then d(w, c) = t, so w is in Bt(c). But wt(w) = wt(c)− t ≤ t, so w is also in Bt(0). Hence w is in
Bt(0)∩Bt(c), proving the Claim.

If C corrects t errors, the t-balls about code words are pairwise disjoint (see the discussion preceding
Theorem 8.8.3). Hence the claim shows that wt(c)> 2t for all c 6= 0 in C, from which d > 2t by (1).
The other inequality comes from Theorem 8.8.3.

4. We have |C|= qk because dim F C = k, so this assertion restates Theorem 8.8.4.

Example 8.8.6

If F = Z2, then

C = {0000000, 0101010, 1010101, 1110000, 1011010, 0100101, 0001111, 1111111}

is a (7, 3)-code; in fact C = span{0101010, 1010101, 1110000}. The minimum distance for C is
3, the minimum weight of a nonzero word in C.

8.8. An Application to Linear Codes over Finite Fields 481

Matrix Generators

Given a linear n-code C over a finite field F , the way encoding works in practice is as follows. A message
stream is blocked off into segments of length k≤ n called messages. Each message u in Fk is encoded as a
code word, the code word is transmitted, the receiver decodes the received word as the nearest code word,
and then re-creates the original message. A fast and convenient method is needed to encode the incoming
messages, to decode the received word after transmission (with or without error), and finally to retrieve
messages from code words. All this can be achieved for any linear code using matrix multiplication.

Let G denote a k×n matrix over a finite field F , and encode each message u in Fk as the word uG in
Fn using matrix multiplication (thinking of words as rows). This amounts to saying that the set of code
words is the subspace C = {uG | u in Fk} of Fn. This subspace need not have dimension k for every
k×n matrix G. But, if {e1, e2, . . . , ek} is the standard basis of Fk, then eiG is row i of G for each I and
{e1G, e2G, . . . , ekG} spans C. Hence dim C = k if and only if the rows of G are independent in Fn, and
these matrices turn out to be exactly the ones we need. For reference, we state their main properties in
Lemma 8.8.1 below (see Theorem 5.4.4).

Lemma 8.8.1

The following are equivalent for a k×n matrix G over a finite field F:

1. rank G = k.

2. The columns of G span Fk.

3. The rows of G are independent in Fn.

4. The system GX = B is consistent for every column B in Rk.

5. GK = Ik for some n× k matrix K.

Proof. (1)⇒ (2). This is because dim (col G) = k by (1).

(2)⇒ (4). G
[

x1 · · · xn

]T
= x1c1 + · · ·+ xncn where c j is column j of G.

(4)⇒ (5). G
[

k1 · · · kk

]
=
[

Gk1 · · · Gkk

]
for columns k j.

(5) ⇒ (3). If a1R1 + · · ·+ akRk = 0 where Ri is row i of G, then
[

a1 · · · ak

]
G = 0, so by (5),[

a1 · · · ak

]
= 0. Hence each ai = 0, proving (3).

(3)⇒ (1). rank G = dim (row G) = k by (3).

Note that Theorem 5.4.4 asserts that, over the real field R, the properties in Lemma 8.8.1 hold if and only if

GGT is invertible. But this need not be true in general. For example, if F = Z2 and G =

[
1 0 1 0
0 1 0 1

]
,

then GGT = 0. The reason is that the dot product w ·w can be zero for w in Fn even if w 6= 0. However,
even though GGT is not invertible, we do have GK = I2 for some 4×2 matrix K over F as Lemma 8.8.1

asserts (in fact, K =

[
1 0 0 0
0 1 0 0

]T

is one such matrix).

482 Orthogonality

Let C ⊆ Fn be an (n, k)-code over a finite field F . If {w1, . . . , wk} is a basis of C, let G =




w1
...

wk




be the k×n matrix with the wi as its rows. Let {e1, . . . , ek} is the standard basis of Fk regarded as rows.
Then wi = eiG for each i, so C = span{w1, . . . , wk}= span{e1G, . . . , ekG}. It follows (verify) that

C = {uG | u in Fk}

Because of this, the k×n matrix G is called a generator of the code C, and G has rank k by Lemma 8.8.1
because its rows wi are independent.

In fact, every linear code C in Fn has a generator of a simple, convenient form. If G is a generator
matrix for C, let R be the reduced row-echelon form of G. We claim that C is also generated by R. Since
G→ R by row operations, Theorem 2.5.1 shows that these same row operations

[
G Ik

]
→
[

R W
]
,

performed on
[

G Ik

]
, produce an invertible k×k matrix W such that R=WG. Then C = {uR | u in Fk}.

[In fact, if u is in Fk, then uG = u1R where u1 = uW−1 is in Fk, and uR = u2G where u2 = uW is in Fk].
Thus R is a generator of C, so we may assume that G is in reduced row-echelon form.

In that case, G has no row of zeros (since rank G = k) and so contains all the columns of Ik. Hence a
series of column interchanges will carry G to the block form G′′ =

[
Ik A

]
for some k× (n− k) matrix

A. Hence the code C′′ = {uG′′ | u in Fk} is essentially the same as C; the code words in C′′ are obtained
from those in C by a series of column interchanges. Hence if C is a linear (n, k)-code, we may (and shall)
assume that the generator matrix G has the form

G =
[

Ik A
]

for some k× (n− k) matrix A

Such a matrix is called a standard generator, or a systematic generator, for the code C. In this case,
if u is a message word in Fk, the first k digits of the encoded word uG are just the first k digits of u, so
retrieval of u from uG is very simple indeed. The last n− k digits of uG are called parity digits.

Parity-Check Matrices

We begin with an important theorem about matrices over a finite field.

Theorem 8.8.6

Let F be a finite field, let G be a k×n matrix of rank k, let H be an (n−k)×n matrix of rank n−k,
and let C = {uG | u in Fk} and D = {vH | V in Fn−k} be the codes they generate. Then the
following conditions are equivalent:

1. GHT = 0.

2. HGT = 0.

3. C = {w in Fn | wHT = 0}.

4. D = {w in Fn | wGT = 0}.

Proof. First, (1)⇔ (2) holds because HGT and GHT are transposes of each other.

8.8. An Application to Linear Codes over Finite Fields 483

(1)⇒ (3) Consider the linear transformation T : Fn→ Fn−k defined by T (w) = wHT for all w in Fn.
To prove (3) we must show that C = ker T . We have C⊆ ker T by (1) because T (uG) = uGHT = 0 for all
u in Fk. Since dim C = rank G = k, it is enough (by Theorem 6.4.2) to show dim (ker T) = k. However
the dimension theorem (Theorem 7.2.4) shows that dim (ker T) = n− dim (im T), so it is enough to show
that dim (im T) = n− k. But if R1, . . . , Rn are the rows of HT , then block multiplication gives

im T = {wHT | w in Rn}= span{R1, . . . , Rn}= row (HT)

Hence dim (im T) = rank (HT) = rank H = n− k, as required. This proves (3).

(3)⇒ (1) If u is in Fk, then uG is in C so, by (3), u(GHT) = (uG)HT = 0. Since u is arbitrary in Fk,
it follows that GHT = 0.

(2)⇔ (4) The proof is analogous to (1)⇔ (3).

The relationship between the codes C and D in Theorem 8.8.6 will be characterized in another way in the
next subsection.

If C is an (n, k)-code, an (n−k)×n matrix H is called a parity-check matrix for C if C = {w |wHT = 0}
as in Theorem 8.8.6. Such matrices are easy to find for a given code C. If G =

[
Ik A

]
is a standard

generator for C where A is k× (n− k), the (n− k)×n matrix

H =
[
−AT In−k

]

is a parity-check matrix for C. Indeed, rank H = n− k because the rows of H are independent (due to the
presence of In−k), and

GHT =
[

Ik A
][−A

In−k

]
=−A+A = 0

by block multiplication. Hence H is a parity-check matrix for C and we have C = {w in Fn | wHT = 0}.
Since wHT and HwT are transposes of each other, this shows that C can be characterized as follows:

C = {w in Fn | HwT = 0}

by Theorem 8.8.6.

This is useful in decoding. The reason is that decoding is done as follows: If a code word c is trans-
mitted and v is received, then z = v− c is called the error. Since HcT = 0, we have HzT = HvT and this
word

s = HzT = HvT

is called the syndrome. The receiver knows v and s = HvT , and wants to recover c. Since c = v− z, it is
enough to find z. But the possibilities for z are the solutions of the linear system

HzT = s

where s is known. Now recall that Theorem 2.2.3 shows that these solutions have the form z = x+s where
x is any solution of the homogeneous system HxT = 0, that is, x is any word in C (by Lemma 8.8.1). In
other words, the errors z are the elements of the set

C+ s = {c+ s | c in C}

The set C+ s is called a coset of C. Let |F|= q. Since |C+ s|= |C|= qn−k the search for z is reduced
from qn possibilities in Fn to qn−k possibilities in C+ s. This is called syndrome decoding, and various

484 Orthogonality

methods for improving efficiency and accuracy have been devised. The reader is referred to books on
coding for more details.21

Orthogonal Codes

Let F be a finite field. Given two words v = a1a2 · · ·an and w = b1b2 · · ·bn in Fn, the dot product v ·w is
defined (as in Rn) by

v ·w = a1b1 +a2b2 + · · ·+anbn

Note that v ·w is an element of F , and it can be computed as a matrix product: v ·w = vwT .

If C ⊆ Fn is an (n, k)-code, the orthogonal complement C⊥ is defined as in Rn:

C⊥ = {v in Fn | v · c = 0 for all c in C}

This is easily seen to be a subspace of Fn, and it turns out to be an (n, n− k)-code. This follows when
F = R because we showed (in the projection theorem) that n = dim U⊥+ dim U for any subspace U of
Rn. However the proofs break down for a finite field F because the dot product in Fn has the property that
w ·w = 0 can happen even if w 6= 0. Nonetheless, the result remains valid.

Theorem 8.8.7

Let C be an (n, k)-code over a finite field F , let G =
[

Ik A
]

be a standard generator for C where
A is k× (n− k), and write H =

[
−AT In−k

]
for the parity-check matrix. Then:

1. H is a generator of C⊥.

2. dim (C⊥) = n− k = rank H.

3. C⊥⊥ =C and dim (C⊥)+ dim C = n.

Proof. As in Theorem 8.8.6, let D = {vH | v in Fn−k} denote the code generated by H. Observe first that,
for all w in Fn and all u in Fk, we have

w · (uG) = w(uG)T = w(GT uT) = (wGT) ·u

Since C = {uG | u in Fk}, this shows that w is in C⊥ if and only if (wGT) ·u = 0 for all u in Fk; if and
only if22 wGT = 0; if and only if w is in D (by Theorem 8.8.6). Thus C⊥ = D and a similar argument
shows that D⊥ =C.

1. H generates C⊥ because C⊥ = D = {vH | v in Fn−k}.

2. This follows from (1) because, as we observed above, rank H = n− k.

3. Since C⊥ = D and D⊥ = C, we have C⊥⊥ = (C⊥)⊥ = D⊥ = C. Finally the second equation in (3)
restates (2) because dim C = k.

21For an elementary introduction, see V. Pless, Introduction to the Theory of Error-Correcting Codes, 3rd ed., (New York:
Wiley, 1998).

22If v ·u = 0 for every u in Fk, then v = 0—let u range over the standard basis of Fk.

8.8. An Application to Linear Codes over Finite Fields 485

We note in passing that, if C is a subspace of Rk, we have C +C⊥ = Rk by the projection theorem
(Theorem 8.1.3), and C ∩C⊥ = {0} because any vector x in C ∩C⊥ satisfies ‖x‖2 = x · x = 0. How-
ever, this fails in general. For example, if F = Z2 and C = span{1010, 0101} in F4 then C⊥ = C, so
C+C⊥ =C =C∩C⊥.

We conclude with one more example. If F = Z2, consider the standard matrix G below, and the
corresponding parity-check matrix H:

G =




1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1


 and H =




1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1




The code C = {uG | u in F4} generated by G has dimension k = 4, and is called the Hamming (7, 4)-code.
The vectors in C are listed in the first table below. The dual code generated by H has dimension n− k = 3
and is listed in the second table.

u uG

0000 0000000
0001 0001011
0010 0010101
0011 0011110
0100 0100110
0101 0101101
0110 0110011

C : 0111 0111000
1000 1000111
1001 1001100
1010 1010010
1011 1011001
1100 1100001
1101 1101010
1110 1110100
1111 1111111

v vH

000 0000000
001 1011001
010 1101010

C⊥ : 011 0110011
100 1110100
101 0101101
110 0011110
111 1000111

Clearly each nonzero code word in C has weight at least 3, so C has minimum distance d = 3. Hence C

can detect two errors and correct one error by Theorem 8.8.5. The dual code has minimum distance 4 and
so can detect 3 errors and correct 1 error.

486 Orthogonality

Exercises for 8.8

Exercise 8.8.1 Find all a in Z10 such that:

a. a2 = a.

b. a has an inverse (and find the inverse).

c. ak = 0 for some k ≥ 1.

d. a = 2k for some k ≥ 1.

e. a = b2 for some b in Z10.

Exercise 8.8.2

a. Show that if 3a = 0 in Z10, then necessarily a = 0
in Z10.

b. Show that 2a = 0 in Z10 holds in Z10 if and only
if a = 0 or a = 5.

Exercise 8.8.3 Find the inverse of:

8 in Z13;a. 11 in Z19.b.

Exercise 8.8.4 If ab = 0 in a field F , show that either
a = 0 or b = 0.

Exercise 8.8.5 Show that the entries of the last column
of the multiplication table of Zn are

0, n−1, n−2, . . . , 2, 1

in that order.

Exercise 8.8.6 In each case show that the matrix A is
invertible over the given field, and find A−1.

a. A =

[
1 4
2 1

]
over Z5.

b. A =

[
5 6
4 3

]
over Z7.

Exercise 8.8.7 Consider the linear system
3x + y + 4z = 3
4x + 3y + z = 1

. In each case solve the system by

reducing the augmented matrix to reduced row-echelon
form over the given field:

Z5a. Z7b.

Exercise 8.8.8 Let K be a vector space over Z2 with ba-
sis {1, t}, so K = {a+bt | a, b, in Z2}. It is known that
K becomes a field of four elements if we define t2 = 1+t.
Write down the multiplication table of K.

Exercise 8.8.9 Let K be a vector space over Z3 with ba-
sis {1, t}, so K = {a+bt | a, b, in Z3}. It is known that
K becomes a field of nine elements if we define t2 = −1
in Z3. In each case find the inverse of the element x of K:

x = 1+2ta. x = 1+ tb.

Exercise 8.8.10 How many errors can be detected or
corrected by each of the following binary linear codes?

a. C = {0000000, 0011110, 0100111, 0111001,
1001011, 1010101, 1101100, 1110010}

b. C = {0000000000, 0010011111, 0101100111,
0111111000, 1001110001, 1011101110,
1100010110, 1110001001}

Exercise 8.8.11

a. If a binary linear (n, 2)-code corrects one error,
show that n≥ 5. [Hint: Hamming bound.]

b. Find a (5, 2)-code that corrects one error.

Exercise 8.8.12

a. If a binary linear (n, 3)-code corrects two errors,
show that n≥ 9. [Hint: Hamming bound.]

b. If G =




1 0 0 1 1 1 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 0 1 1 0 1 0 1 1 1


,

show that the binary (10, 3)-code generated by
G corrects two errors. [It can be shown that no
binary (9, 3)-code corrects two errors.]

Exercise 8.8.13

a. Show that no binary linear (4, 2)-code can correct
single errors.

8.9. An Application to Quadratic Forms 487

b. Find a binary linear (5, 2)-code that can correct
one error.

Exercise 8.8.14 Find the standard generator matrix G

and the parity-check matrix H for each of the following
systematic codes:

a. {00000, 11111} over Z2.

b. Any systematic (n, 1)-code where n≥ 2.

c. The code in Exercise 8.8.10(a).

d. The code in Exercise 8.8.10(b).

Exercise 8.8.15 Let c be a word in Fn. Show that
Bt(c) = c+Bt(0), where we write

c+Bt(0) = {c+v | v in Bt(0)}

Exercise 8.8.16 If a (n, k)-code has two standard gen-
erator matrices G and G1, show that G = G1.

Exercise 8.8.17 Let C be a binary linear n-code (over
Z2). Show that either each word in C has even weight, or
half the words in C have even weight and half have odd
weight. [Hint: The dimension theorem.]

8.9 An Application to Quadratic Forms

An expression like x2
1 + x2

2 + x2
3− 2x1x3 + x2x3 is called a quadratic form in the variables x1, x2, and x3.

In this section we show that new variables y1, y2, and y3 can always be found so that the quadratic form,
when expressed in terms of the new variables, has no cross terms y1y2, y1y3, or y2y3. Moreover, we do this
for forms involving any finite number of variables using orthogonal diagonalization. This has far-reaching
applications; quadratic forms arise in such diverse areas as statistics, physics, the theory of functions of
several variables, number theory, and geometry.

Definition 8.21 Quadratic Form

A quadratic form q in the n variables x1, x2, . . . , xn is a linear combination of terms
x2

1, x2
2, . . . , x2

n, and cross terms x1x2, x1x3, x2x3,

If n = 3, q has the form

q = a11x2
1 +a22x2

2 +a33x2
3 +a12x1x2 +a21x2x1 +a13x1x3 +a31x3x1 +a23x2x3 +a32x3x2

In general
q = a11x2

1 +a22x2
2 + · · ·+annx2

n +a12x1x2 +a13x1x3 + · · ·
This sum can be written compactly as a matrix product

q = q(x) = xT Ax

where x = (x1, x2, . . . , xn) is thought of as a column, and A =
[
ai j

]
is a real n× n matrix. Note that if

i 6= j, two separate terms ai jxix j and a jix jxi are listed, each of which involves xix j, and they can (rather
cleverly) be replaced by

1
2(ai j +a ji)xix j and 1

2(ai j +a ji)x jxi

respectively, without altering the quadratic form. Hence there is no loss of generality in assuming that xix j

and x jxi have the same coefficient in the sum for q. In other words, we may assume that A is symmetric.

