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Row-Echelon Form

Solving Systems of Linear Equations – Gaussian Elimination

Rank

Uniqueness of the Reduced Row-Echelon Form

One Application



Row-Echelon Matrix

Definition
A matrix is called a row-echelon matrix if
I All rows consisting entirely of zeros are at the bottom.
I The first nonzero entry in each nonzero row is a 1

(called the leading 1 for that row).
I Each leading 1 is to the right of all leading 1’s in rows above it.

A matrix is said to be in the row-echelon form (REF) if it a row-echelon
matrix.

Example 
0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


where ∗ can be any number.
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Definition
A matrix is called a reduced row-echelon matrix if
I Row-echelon matrix.
I Each leading 1 is the only nonzero entry in its column.

A matrix is said to be in the reduced row-echelon form (RREF) if it a
reduced row-echelon matrix.

Example 
0 1 ∗ 0 0 ∗ ∗ 0
0 0 0 1 0 ∗ ∗ 0
0 0 0 0 1 ∗ ∗ 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


where ∗ can be any number.
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Examples
Which of the following matrices are in the REF?

Which ones are in the RREF?

(a)
[

0 1 2 0
0 0 1 2

]
(b)

[
1 0 2 0
0 0 1 2

]
(c)

 1 0 2 0
0 0 1 2
0 0 1 2



(d)
[

1 0 2 0
0 1 1 2

]
(e)

[
1 2 0 0
0 0 1 2

]
(f)

 1 2 0 0
0 0 1 0
0 0 0 1


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Example
Suppose that the following matrix is the augmented matrix of a system of
linear equations. We see from this matrix that the system of linear
equations has four equations and seven variables.

x1 x2 x3 x4 x5 x6 x7
1 −3 4 −2 5 −7 0 4
0 0 1 8 0 3 −7 0
0 0 0 1 1 −1 0 −1
0 0 0 0 0 0 1 2


Note that the matrix is a row-echelon matrix.

I Each column of the matrix corresponds to a variable, and the leading
variables are the variables that correspond to columns containing
leading ones.

I The remaining variables are called non-leading variables.

We will use elementary row operations to transform a matrix to
row-echelon (REF) or reduced row-echelon form (RREF).
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Solving Systems of Linear Equations – Gaussian Elimination

Theorem
Every matrix can be brought to (reduced) row-echelon form by a sequence
of elementary row operations.

Gaussian Elimination
To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix to a reduced row-echelon matrix using
elementary row operations.

2. If a row of the form [0 0 · · · 0 | 1] occurs, the system is inconsistent.
3. Otherwise assign the nonleading variables (if any) parameters and use

the equations corresponding to the reduced row-echelon matrix to solve
for the leading variables in terms of the parameters.
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Problem
Solve the system


2x + y + 3z = 1
2y − z + x = 0
9z + x − 4y = 2

Solution

 2 1 3 1
1 2 −1 0
1 −4 9 2

 →r1↔r2

 1 2 −1 0
2 1 3 1
1 −4 9 2



→−2r1+r2,−r1+r3

 1 2 −1 0
0 −3 5 1
0 −6 10 2

 →−2r2+r3

 1 2 −1 0
0 −3 5 1
0 0 0 0



→− 1
3
r2

 1 2 −1 0
0 1 −5/3 −1/3
0 0 0 0

 →−2r2+r1

 1 0 7/3 2/3
0 1 −5/3 −1/3
0 0 0 0





Problem
Solve the system


2x + y + 3z = 1
2y − z + x = 0
9z + x − 4y = 2

Solution

 2 1 3 1
1 2 −1 0
1 −4 9 2



→r1↔r2

 1 2 −1 0
2 1 3 1
1 −4 9 2



→−2r1+r2,−r1+r3

 1 2 −1 0
0 −3 5 1
0 −6 10 2

 →−2r2+r3

 1 2 −1 0
0 −3 5 1
0 0 0 0



→− 1
3
r2

 1 2 −1 0
0 1 −5/3 −1/3
0 0 0 0

 →−2r2+r1

 1 0 7/3 2/3
0 1 −5/3 −1/3
0 0 0 0





Problem
Solve the system


2x + y + 3z = 1
2y − z + x = 0
9z + x − 4y = 2

Solution

 2 1 3 1
1 2 −1 0
1 −4 9 2

 →r1↔r2

 1 2 −1 0
2 1 3 1
1 −4 9 2



→−2r1+r2,−r1+r3

 1 2 −1 0
0 −3 5 1
0 −6 10 2

 →−2r2+r3

 1 2 −1 0
0 −3 5 1
0 0 0 0



→− 1
3
r2

 1 2 −1 0
0 1 −5/3 −1/3
0 0 0 0

 →−2r2+r1

 1 0 7/3 2/3
0 1 −5/3 −1/3
0 0 0 0





Problem
Solve the system


2x + y + 3z = 1
2y − z + x = 0
9z + x − 4y = 2

Solution

 2 1 3 1
1 2 −1 0
1 −4 9 2

 →r1↔r2

 1 2 −1 0
2 1 3 1
1 −4 9 2



→−2r1+r2,−r1+r3

 1 2 −1 0
0 −3 5 1
0 −6 10 2



→−2r2+r3

 1 2 −1 0
0 −3 5 1
0 0 0 0



→− 1
3
r2

 1 2 −1 0
0 1 −5/3 −1/3
0 0 0 0

 →−2r2+r1

 1 0 7/3 2/3
0 1 −5/3 −1/3
0 0 0 0





Problem
Solve the system


2x + y + 3z = 1
2y − z + x = 0
9z + x − 4y = 2

Solution

 2 1 3 1
1 2 −1 0
1 −4 9 2

 →r1↔r2

 1 2 −1 0
2 1 3 1
1 −4 9 2



→−2r1+r2,−r1+r3

 1 2 −1 0
0 −3 5 1
0 −6 10 2

 →−2r2+r3

 1 2 −1 0
0 −3 5 1
0 0 0 0



→− 1
3
r2

 1 2 −1 0
0 1 −5/3 −1/3
0 0 0 0

 →−2r2+r1

 1 0 7/3 2/3
0 1 −5/3 −1/3
0 0 0 0





Problem
Solve the system


2x + y + 3z = 1
2y − z + x = 0
9z + x − 4y = 2

Solution

 2 1 3 1
1 2 −1 0
1 −4 9 2

 →r1↔r2

 1 2 −1 0
2 1 3 1
1 −4 9 2



→−2r1+r2,−r1+r3

 1 2 −1 0
0 −3 5 1
0 −6 10 2

 →−2r2+r3

 1 2 −1 0
0 −3 5 1
0 0 0 0



→− 1
3
r2

 1 2 −1 0
0 1 −5/3 −1/3
0 0 0 0



→−2r2+r1

 1 0 7/3 2/3
0 1 −5/3 −1/3
0 0 0 0





Problem
Solve the system


2x + y + 3z = 1
2y − z + x = 0
9z + x − 4y = 2

Solution

 2 1 3 1
1 2 −1 0
1 −4 9 2

 →r1↔r2

 1 2 −1 0
2 1 3 1
1 −4 9 2



→−2r1+r2,−r1+r3

 1 2 −1 0
0 −3 5 1
0 −6 10 2

 →−2r2+r3

 1 2 −1 0
0 −3 5 1
0 0 0 0



→− 1
3
r2

 1 2 −1 0
0 1 −5/3 −1/3
0 0 0 0

 →−2r2+r1

 1 0 7/3 2/3
0 1 −5/3 −1/3
0 0 0 0





Solution (continued)
Given the reduced row-echelon matrix 1 0 7/3 2/3

0 1 −5/3 −1/3
0 0 0 0


x and y are leading variables; z is a non-leading variable and so assign a
parameter to z.

Thus the solution to the original system is given by

x = 2
3

− 7
3
s

y = − 1
3

+ 5
3
s

z = s

 for all s ∈ R.
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Problem
Solve the system


x + y + 2z = −1
y + 2x + 3z = 0
z − 2y = 2

Solution

 1 1 2 −1
2 1 3 0
0 −2 1 2

 →−2r1+r2

 1 1 2 −1
0 −1 −1 2
0 −2 1 2



→−1·r2

 1 1 2 −1
0 1 1 −2
0 −2 1 2

 →2r2+r3

 1 0 1 1
0 1 1 −2
0 0 3 −2



→
1
3
r3

 1 0 1 1
0 1 1 −2
0 0 1 −2/3

 →−r3+r2,−r3+r1

 1 0 0 5/3
0 1 0 −4/3
0 0 1 −2/3


The unique solution is x = 5/3, y = −4/3, z = −2/3.

Check your answer!
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Check your answer!



Problem
Solve the system
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The unique solution is x = 5/3, y = −4/3, z = −2/3.

Check your answer!



Problem
Solve the system


−3x1 − 9x2 + x3 = −9
2x1 + 6x2 − x3 = 6
x1 + 3x2 − x3 = 2

Solution

 1 3 −1 2
2 6 −1 6

−3 −9 1 −9

 →

 1 3 −1 2
0 0 1 2
0 0 −2 −3

 →

 1 3 0 4
0 0 1 2
0 0 0 1


The last row of the final matrix corresponds to the equation

0x1 + 0x2 + 0x3 = 1

which is impossible!

Therefore, this system is inconsistent, i.e., it has no solutions.
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Problem ( General Patterns for Systems of Linear Equations )

Find all values of a, b and c (or conditions on a, b and c) so that the system

2x + 3y + az = b
− y + 2z = c

x + 3y − 2z = 1

has (i) a unique solution, (ii) no solutions, and (iii) infinitely many
solutions. In (i) and (iii), find the solution(s).

Solution  2 3 a b
0 −1 2 c
1 3 −2 1

 →

 1 3 −2 1
0 −1 2 c
2 3 a b


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Solution (continued) 1 3 −2 1
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

→

 1 3 −2 1
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0 −3 a + 4 b − 2


→

 1 3 −2 1
0 1 −2 −c
0 −3 a + 4 b − 2
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0 1 −2 −c
0 0 a − 2 b − 2− 3c



Case 1. a − 2 6= 0, i.e., a 6= 2.

In this case,

→

 1 0 4 1 + 3c
0 1 −2 −c
0 0 1 b−2−3c

a−2

 →


1 0 0 1 + 3c − 4

(
b−2−3c

a−2

)
0 1 0 −c + 2

(
b−2−3c

a−2

)
0 0 1 b−2−3c

a−2


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Solution (continued)
1 0 0 1 + 3c − 4

(
b−2−3c

a−2

)
0 1 0 −c + 2

(
b−2−3c

a−2

)
0 0 1 b−2−3c

a−2



(i) When a 6= 2, the unique solution is

x = 1 + 3c − 4

(
b − 2− 3c

a − 2

)
y = −c + 2

(
b − 2− 3c

a − 2

)
z =

b − 2− 3c
a − 2
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(i) When a 6= 2, the unique solution is

x = 1 + 3c − 4
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b − 2− 3c

a − 2

)
y = −c + 2

(
b − 2− 3c

a − 2

)
z =

b − 2− 3c
a − 2



Solution (continued)
Case 2. If a = 2, then the augmented matrix becomes 1 0 4 1 + 3c

0 1 −2 −c
0 0 a − 2 b − 2− 3c



→

 1 0 4 1 + 3c
0 1 −2 −c
0 0 0 b − 2− 3c


From this we see that the system has no solutions when b − 2− 3c 6= 0.

(ii) When a = 2 and b − 3c 6= 2, the system has no solutions.



Solution (continued)
Case 2. If a = 2, then the augmented matrix becomes 1 0 4 1 + 3c

0 1 −2 −c
0 0 a − 2 b − 2− 3c

 →

 1 0 4 1 + 3c
0 1 −2 −c
0 0 0 b − 2− 3c


From this we see that the system has no solutions when b − 2− 3c 6= 0.

(ii) When a = 2 and b − 3c 6= 2, the system has no solutions.



Solution (continued)
Case 2. If a = 2, then the augmented matrix becomes 1 0 4 1 + 3c

0 1 −2 −c
0 0 a − 2 b − 2− 3c

 →

 1 0 4 1 + 3c
0 1 −2 −c
0 0 0 b − 2− 3c


From this we see that the system has no solutions when b − 2− 3c 6= 0.

(ii) When a = 2 and b − 3c 6= 2, the system has no solutions.



Solution (continued)
Finally when a = 2 and b − 3c = 2, the augmented matrix becomes

 1 0 4 1 + 3c
0 1 −2 −c
0 0 0 b − 2− 3c

 →

 1 0 4 1 + 3c
0 1 −2 −c
0 0 0 0


and the system has infinitely many solutions.

(iii) When a = 2 and b − 3c = 2, the system has infinitely many solutions:

x = 1 + 3c − 4s
y = −c + 2s
z = s

 for all s ∈ R.

�
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Rank

Definition
The rank of a matrix A, denoted rank A, is the number of leading 1’s in
any row-echelon matrix obtained from A by performing elementary row
operations.



Rank

Definition
The rank of a matrix A, denoted rank A, is the number of leading 1’s in
any row-echelon matrix obtained from A by performing elementary row
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Suppose A is the augmented matrix of a consistent system of m linear
equations in n variables, and rank A = r.

m




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 →


1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

n
︸ ︷︷ ︸

r leading 1′s

Then the set of solutions to the system has n − r parameters, so
I if r < n, there is at least one parameter, and the system has infinitely

many solutions;
I if r = n, there are no parameters, and the system has a unique solution.
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Problem

Find the rank of A =

[
a b 5
1 −2 1

]
.

Solution[
a b 5
1 −2 1

]
→

[
1 −2 1
a b 5

]
→

[
1 −2 1
0 b + 2a 5− a

]
If b + 2a = 0 and 5− a = 0, i.e., a = 5 and b = −10, then rank A = 1.
Otherwise, rank A = 2.
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For any system of linear equations, exactly one of the following holds:

1. the system is inconsistent;
2. the system has a unique solution, i.e., exactly one solution;
3. the system has infinitely many solutions.

One can see what case applies by looking at the RREF matrix equivalent to
the augmented matrix of the system and distinguishing three cases:

1. The last nonzero row is [0, · · · , 0, 1]: no solution.
2. The last nonzero row is not [0, · · · , 0, 1] and all variables are leading:

unique solution.
3. The last nonzero row is not [0, · · · , 0, 1] and there are non-leading

variables: infinitely many solutions.



For any system of linear equations, exactly one of the following holds:
1. the system is inconsistent;

2. the system has a unique solution, i.e., exactly one solution;
3. the system has infinitely many solutions.

One can see what case applies by looking at the RREF matrix equivalent to
the augmented matrix of the system and distinguishing three cases:

1. The last nonzero row is [0, · · · , 0, 1]: no solution.
2. The last nonzero row is not [0, · · · , 0, 1] and all variables are leading:

unique solution.
3. The last nonzero row is not [0, · · · , 0, 1] and there are non-leading

variables: infinitely many solutions.



For any system of linear equations, exactly one of the following holds:
1. the system is inconsistent;
2. the system has a unique solution, i.e., exactly one solution;

3. the system has infinitely many solutions.

One can see what case applies by looking at the RREF matrix equivalent to
the augmented matrix of the system and distinguishing three cases:

1. The last nonzero row is [0, · · · , 0, 1]: no solution.
2. The last nonzero row is not [0, · · · , 0, 1] and all variables are leading:

unique solution.
3. The last nonzero row is not [0, · · · , 0, 1] and there are non-leading

variables: infinitely many solutions.



For any system of linear equations, exactly one of the following holds:
1. the system is inconsistent;
2. the system has a unique solution, i.e., exactly one solution;
3. the system has infinitely many solutions.

One can see what case applies by looking at the RREF matrix equivalent to
the augmented matrix of the system and distinguishing three cases:

1. The last nonzero row is [0, · · · , 0, 1]: no solution.
2. The last nonzero row is not [0, · · · , 0, 1] and all variables are leading:

unique solution.
3. The last nonzero row is not [0, · · · , 0, 1] and there are non-leading

variables: infinitely many solutions.



For any system of linear equations, exactly one of the following holds:
1. the system is inconsistent;
2. the system has a unique solution, i.e., exactly one solution;
3. the system has infinitely many solutions.

One can see what case applies by looking at the RREF matrix equivalent to
the augmented matrix of the system and distinguishing three cases:

1. The last nonzero row is [0, · · · , 0, 1]: no solution.
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Problem
Solve the system

−3x1 + 6x2 − 4x3 − 9x4 + 3x5 = −1
−x1 + 2x2 − 2x3 − 4x4 − 3x5 = 3

x1 − 2x2 + 2x3 + 2x4 − 5x5 = 1
x1 − 2x2 + x3 + 3x4 − x5 = 1

Solution
Begin by putting the augmented matrix in reduced row-echelon form.

1 −2 2 2 −5 1
−3 6 −4 −9 3 −1
−1 2 −2 −4 −3 3
1 −2 1 3 −1 1

 →


1 −2 0 0 −13 9
0 0 1 0 0 −2
0 0 0 1 4 −2
0 0 0 0 0 0


The system is consistent. The rank of the augmented matrix is 3.
Since the system is consistent, the set of solutions has 5− 3 = 2 parameters.
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Solution (continued)
From the reduced row-echelon matrix

1 −2 0 0 −13 9
0 0 1 0 0 −2
0 0 0 1 4 −2
0 0 0 0 0 0

 ,

we obtain the general solution

x1 = 9 + 2r + 13s
x2 = r
x3 = −2
x4 = −2− 4s
x5 = s

 ∀r, s ∈ R

The solution has two parameters (r and s) as we expected.
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Uniqueness of the Reduced Row-Echelon Form

Theorem
Systems of linear equations that correspond to row equivalent augmented
matrices have exactly the same solutions.

Theorem
Every matrix A is row equivalent to a unique reduced row-echelon matrix.
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Solution (continued)
This row-echelon matrix corresponds to the system

x + 0y + 7
3
z = − 2

3

y − 5
3
z = − 1

3

,

and thus
x = 2

3
− 7

3
z

y = − 1
3
+ 5

3
z

Setting z = s, where s ∈ R, gives us (as before):

x = 2
3

− 7
3
s

y = − 1
3

+ 5
3
s

z = s

Always check your answer! �
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One Application

Problem
Derive the formula for 1r + 2r + · · ·+ nr for r = 3.

Solution
We know that 13 + 23 + · · ·+ n3 is a polynomial in n of oder 4, namely,

13 + 23 + · · ·+ n3 = a0 + a1n + a2n2 + a3n3 + a4n4.

It is easy to see that when n = 0, both sides should be equal to zero. Hence,
a0 = 0. Now we have 4 unknowns, a1, · · · , a4. We can let n = 1, · · · , 4 to
form 4 equations in order to find these unknowns:

11a1 + 12a2 + 13a3 + 14a4 = 13 (n = 1)
21a1 + 22a2 + 23a3 + 24a4 = 13 + 23 (n = 2)
31a1 + 32a2 + 33a3 + 34a4 = 13 + 23 + 33 (n = 3)
41a1 + 42a2 + 43a3 + 44a4 = 13 + 23 + 33 + 43 (n = 4)
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Solution (continued)
Hence, we have the following augmented matrix:

1 1 1 1 1
2 4 8 16 9
3 9 27 81 36
4 16 64 256 100



You can use Octave or Matlab to compute the reduced echelon form:
1 0 0 0 0
0 1 0 0 1/4
0 0 1 0 1/2
0 0 0 1 1/4


Therefore, we have that

13 + 23 + · · ·+ n3 =
n2

4
+

n3

2
+

n4

4
=

1

4
n2(n + 1)2.

�



Solution (continued)
Hence, we have the following augmented matrix:

1 1 1 1 1
2 4 8 16 9
3 9 27 81 36
4 16 64 256 100


You can use Octave or Matlab to compute the reduced echelon form:

1 0 0 0 0
0 1 0 0 1/4
0 0 1 0 1/2
0 0 0 1 1/4



Therefore, we have that

13 + 23 + · · ·+ n3 =
n2

4
+

n3

2
+

n4

4
=

1

4
n2(n + 1)2.

�



Solution (continued)
Hence, we have the following augmented matrix:

1 1 1 1 1
2 4 8 16 9
3 9 27 81 36
4 16 64 256 100


You can use Octave or Matlab to compute the reduced echelon form:

1 0 0 0 0
0 1 0 0 1/4
0 0 1 0 1/2
0 0 0 1 1/4


Therefore, we have that

13 + 23 + · · ·+ n3 =
n2

4
+

n3

2
+

n4

4
=

1

4
n2(n + 1)2.

�


	Row-Echelon Form
	Solving Systems of Linear Equations – Gaussian Elimination
	Rank
	Uniqueness of the Reduced Row-Echelon Form
	One Application

