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Matrices – Definitions and Basic Properties

Definition
Let m and n be positive integers.
I An m × n matrix is a rectangular array of numbers having m rows and

n columns. Such a matrix is said to have size m × n.
I A row matrix (or row) is a 1× n matrix, and a column matrix (or

column) is an m × 1 matrix.
I A square matrix is an n × n matrix.
I The (i, j)-entry of a matrix is the entry in row i and column j. For a

matrix A, the (i, j)-entry of A is often written as aij.

General notation for an m × n matrix, A:

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
...

...
am1 am2 am3 . . . amn

 = [aij]
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Remark (Basic Properties)
1. Equality: two matrices are equal if and only if they have the same size

and the corresponding entries are equal.

2. Zero Matrix: an m × n matrix with all entries equal to zero.
3. Addition: matrices must have the same size; add corresponding entries.
4. Scalar Multiplication: multiply each entry of the matrix by the scalar.
5. Negative of a Matrix: for an m × n matrix A, its negative is denoted

−A and −A = (−1)A.
6. Subtraction: for m × n matrices A and B, A − B = A + (−1)B.
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Matrix Addition

Definition
Let A = [aij] and B = [bij] be two m × n matrices. Then A + B = C where
C is the m × n matrix C = [cij] defined by

cij = aij + bij

Example

Let A =

[
1 3
2 5

]
,B =

[
0 −2
6 1

]
. Then,

A + B =

[
1 + 0 3 +−2
2 + 6 5 + 1

]
=

[
1 1
8 6

]



Matrix Addition

Definition
Let A = [aij] and B = [bij] be two m × n matrices. Then A + B = C where
C is the m × n matrix C = [cij] defined by

cij = aij + bij

Example

Let A =

[
1 3
2 5

]
,B =

[
0 −2
6 1

]
. Then,

A + B =

[
1 + 0 3 +−2
2 + 6 5 + 1

]
=

[
1 1
8 6

]



Matrix Addition

Definition
Let A = [aij] and B = [bij] be two m × n matrices. Then A + B = C where
C is the m × n matrix C = [cij] defined by

cij = aij + bij

Example

Let A =

[
1 3
2 5

]
,B =

[
0 −2
6 1

]
. Then,

A + B =

[
1 + 0 3 +−2
2 + 6 5 + 1

]
=

[
1 1
8 6

]



Theorem (Properties of Matrix Addition)
Let A,B and C be m × n matrices. Then the following properties hold.

1. A + B = B + A (matrix addition is commutative).

2. (A + B) + C = A + (B + C) (matrix addition is associative).

3. There exists an m × n zero matrix, 0, such that A + 0 = A.
(existence of an additive identity).

4. There exists an m × n matrix −A such that A + (−A) = 0.
(existence of an additive inverse).
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Scalar Multiplication

Definition
Let A = [aij] be an m × n matrix and let k be a scalar. Then kA = [kaij].

Example

Let A =

 2 0 −1
3 1 −2
0 4 5

.

Then

3A =

 3(2) 3(0) 3(−1)
3(3) 3(1) 3(−2)
3(0) 3(4) 3(5)


=

 6 0 −3
9 3 −6
0 12 15


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Theorem (Properties of Scalar Multiplication)

Let A,B be m × n matrices and let k, p ∈ R (scalars). Then the following
properties hold.

1. k (A + B) = kA + kB.
(scalar multiplication distributes over matrix addition).

2. (k + p)A = kA + pA.
(addition distributes over scalar multiplication).

3. k (pA) = (kp)A. (scalar multiplication is associative).

4. 1A = A. (existence of a multiplicative identity).
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Example

2

[
−1 0
1 1

]
+ 4

[
−2 1
3 0

]
−

[
6 8
1 −1

]
=

[
−16 −4
13 3

]

Problem
Let A and B be m × n matrices. Simplify the expression

2[9(A − B) + 7(2B − A)]− 2[3(2B + A)− 2(A + 3B)− 5(A + B)]

Solution

2[9(A − B) + 7(2B − A)]− 2[3(2B + A)− 2(A + 3B)− 5(A + B)]

= 2(9A − 9B + 14B − 7A)− 2(6B + 3A − 2A − 6B − 5A − 5B)

= 2(2A + 5B)− 2(−4A − 5B)

= 12A + 20B
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Matrix Transpose

Definition

If A is an m× n matrix, then its transpose, denoted AT, is the n×m whose
ith row is the ith column of A, 1 ≤ i ≤ n; i.e., if A = [aij], then

AT = [aij]
T = [aji]

i.e., the (i, j)-entry of AT is the (j, i)-entry of A.

Theorem (Properties of the Transpose of a Matrix)
Let A and B be m × n matrices, C be a n × p matrix, and r ∈ R a scalar.
Then

1. (AT)T = A
2. (rA)T = rAT

3. (A + B)T = AT + BT

4. (AC)T = CTAT

To prove each these properties, you only need to compute the (i, j)-entries
of the matrices on the left-hand side and the right-hand side. And you can
do it!
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1. (AT)T = A
2. (rA)T = rAT

3. (A + B)T = AT + BT

4. (AC)T = CTAT

To prove each these properties, you only need to compute the (i, j)-entries
of the matrices on the left-hand side and the right-hand side. And you can
do it!



Problem

Find the matrix A if
(

A + 3

[
1 −1 0
1 2 4

])T

=

 2 1
0 5
3 8

.

Solution

[(
A + 3

[
1 −1 0
1 2 4

])T
]T

=

 2 1
0 5
3 8

T

A + 3

[
1 −1 0
1 2 4

]
=

[
2 0 3
1 5 8

]
A =

[
2 0 3
1 5 8

]
− 3

[
1 −1 0
1 2 4

]
A =

[
−1 3 3
−2 −1 −4

]
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Definition
Let A = [aij] be an m × n matrix. The entries a11, a22, a33, . . . are called the
main diagonal of A.

Definition (Symmetric Matrices)

The matrix A is called symmetric if and only if AT = A. Note that this
immediately implies that A is a square matrix.

Examples

[
2 −3

−3 17

]
,

 −1 0 5
0 2 11
5 11 −3

 ,


0 2 5 −1
2 1 −3 0
5 −3 2 −7

−1 0 −7 4


are symmetric matrices, and each is symmetric about its main diagonal.
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Definition

An n × n matrix A is said to be skew symmetric if AT = −A.

Example (Skew Symmetric Matrices)[
0 2

−2 0

]
,

 0 9 4
−9 0 −3
−4 3 0



Problem

Show that if A is a square matrix, then A − AT is skew-symmetric.

Solution

We must show that (A − AT)T = −(A − AT). Using the properties of
matrix addition, scalar multiplication, and transposition

(A − AT)T = AT − (AT)T = AT − A = −(A − AT).
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