# Math 221: LINEAR ALGEBRA

# Chapter 2. Matrix Algebra §2-2. Equations, Matrices, and Transformations

Le Chen<sup>1</sup>
Emory University, 2020 Fall
(last updated on 10/26/2020)



Vectors

Matrix Vector Multiplication

The Dot Product

Transformations

Rotations in  $\mathbb{R}^2$ 

#### Vectors

#### **Definitions**

A row matrix or column matrix is often called a vector, and such matrices are referred to as row vectors and column vectors, respectively. If  $\vec{x}$  is a row vector of size  $1 \times n$ , and  $\vec{y}$  is a column vector of size  $m \times 1$ , then we write

$$ec{\mathbf{x}} = \left[ \begin{array}{cccc} \mathbf{x_1} & \mathbf{x_2} & \cdots & \mathbf{x_n} \end{array} \right] \quad ext{ and } \quad ec{\mathbf{y}} = \left[ \begin{array}{c} \mathbf{y_1} \\ \mathbf{y_2} \\ \vdots \\ \mathbf{y_m} \end{array} \right]$$

# Definition (Vector form of a system of linear equations)

Consider the system of linear equations

Such a system can be expressed in vector form or as a vector equation by using linear combinations of column vectors:

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Express the following system of linear equations in vector form:

$$2x_1 + 4x_2 - 3x_3 = -6$$
  
 $- x_2 + 5x_3 = 0$   
 $x_1 + x_2 + 4x_3 = 1$ 

## Solution

$$\mathbf{x}_1 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + \mathbf{x}_2 \begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix} + \mathbf{x}_3 \begin{bmatrix} -3 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} -6 \\ 0 \\ 1 \end{bmatrix}$$

# Matrix vector multiplication

## Definition

Let  $A = [a_{ij}]$  be an  $m \times n$  matrix with columns  $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ , written  $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$ , and let  $\vec{x}$  be an  $n \times 1$  column vector,

$$ec{\mathbf{x}} = \left[ egin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{array} 
ight]$$

Then the product of matrix A and (column) vector  $\vec{\mathbf{x}}$  is the m × 1 column vector given by

$$\left[ \begin{array}{cccc} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{array} \right] \left[ \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right] = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_n \vec{a}_n = \sum_{j=1}^n x_j \vec{a}_j$$

that is,  $A\vec{x}$  is a linear combination of the columns of A.

Compute the product  $A\vec{x}$  for

$$\mathbf{A} = \left[ \begin{array}{cc} 1 & 4 \\ 5 & 0 \end{array} \right] \quad \text{and} \quad \vec{\mathbf{x}} = \left[ \begin{array}{cc} 2 \\ 3 \end{array} \right]$$

# Solution

$$\mathbf{A}\vec{\mathbf{x}} = \begin{bmatrix} 1 & 4 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 5 \end{bmatrix} + 3 \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \end{bmatrix} + \begin{bmatrix} 12 \\ 0 \end{bmatrix} = \begin{bmatrix} 14 \\ 10 \end{bmatrix}$$

Compute  $A\vec{y}$  for

$$A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \quad \text{and} \quad \vec{y} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix}$$

## Solution

$$A\vec{y} = 2\begin{bmatrix} 1\\2\\3 \end{bmatrix} + (-1)\begin{bmatrix} 0\\-1\\1 \end{bmatrix} + 1\begin{bmatrix} 2\\0\\3 \end{bmatrix} + 4\begin{bmatrix} -1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\9\\12 \end{bmatrix}$$

# Definition (Matrix form of a system of linear equations)

Consider the system of linear equations

Such a system can be expressed in matrix form using matrix vector multiplication,

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Thus a system of linear equations can be expressed as a matrix equation

$$A\vec{x} = \vec{b}$$

where A is the coefficient matrix,  $\vec{b}$  is the constant matrix, and  $\vec{x}$  is the matrix of variables.

Express the following system of linear equations in matrix form.

## Solution

$$\begin{bmatrix} 2 & 4 & -3 \\ 0 & -1 & 5 \\ 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -6 \\ 0 \\ 1 \end{bmatrix}$$

#### Theorem

1. Every system of m linear equations in n variables can be written in the form  $A\vec{x} = \vec{b}$  where A is the coefficient matrix,  $\vec{x}$  is the matrix of variables, and  $\vec{b}$  is the constant matrix.

# Theorem (continued)

2. The system  $A\vec{x} = \vec{b}$  is consistent (i.e., has at least one solution) if and only if  $\vec{b}$  is a linear combination of the columns of A.

#### Theorem (continued)

3. The vector  $\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \end{bmatrix}$  is a solution to the system  $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$  if and only

if  $x_1, x_2, \ldots, x_n$  are a solution to the vector equation

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots x_n\vec{a}_n=\vec{b}$$

where  $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$  are the columns of A.

Let

$$A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Express  $\vec{b}$  as a linear combination of the columns  $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$  of A, or show that this is impossible.

#### Solution

Solve the system  $A\vec{x} = \vec{b}$  where  $\vec{x}$  is a column vector with four entries. Do so by putting the augmented matrix  $\begin{bmatrix} A & \vec{b} \end{bmatrix}$  in reduced row-echelon form.

$$\begin{bmatrix} 1 & 0 & 2 & -1 & | & 1 \\ 2 & -1 & 0 & 1 & | & 1 \\ 3 & 1 & 3 & 1 & | & 1 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & | & 1/7 \\ 0 & 1 & 0 & 1 & | & -5/7 \\ 0 & 0 & 1 & -1 & | & 3/7 \end{bmatrix}$$

Since there are infinitely many solutions ( $x_4$  is assigned a parameter), choose any value for  $x_4$ . Choosing  $x_4 = 0$  (which is the simplest thing to do) gives us

$$\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \frac{5}{7} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + \frac{3}{7} \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} = \frac{1}{7} \vec{a}_1 - \frac{5}{7} \vec{a}_2 + \frac{3}{7} \vec{a}_3 + 0 \vec{a}_4.$$

#### Remark

The problem may ask to to find all possible linear combinations of the columns  $\vec{a}_1$ ,  $\vec{a}_2$ ,  $\vec{a}_3$ ,  $\vec{a}_4$  of A.

This is equivalent to find all solutions to the corresponding system of linear equations:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} - s \\ -\frac{5}{7} - s \\ \frac{3}{7} + s \\ s \end{bmatrix}$$

Hence, all possible linear combinations are:

$$\vec{\mathbf{b}} = \left(\frac{1}{7} - \mathbf{s}\right) \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \left(\frac{5}{7} + \mathbf{s}\right) \begin{bmatrix} 0\\-1\\1 \end{bmatrix} + \left(\frac{3}{7} + \mathbf{s}\right) \begin{bmatrix} 2\\0\\3 \end{bmatrix} + \mathbf{s} \begin{bmatrix} -1\\1\\1 \end{bmatrix}$$

#### Theorem

Let A and B be  $m \times n$  matrices, and let  $\vec{x}$  and  $\vec{y}$  be n-vectors in  $\mathbb{R}^n$ . Then:

- 1.  $A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}.$
- 2.  $A(a\vec{x}) = a(A\vec{x}) = (aA)\vec{x}$  for all scalars a.
- 3.  $(A + B)\vec{x} = A\vec{x} + B\vec{x}$ .

This provides a useful way to describe the solutions to a system  $A\vec{x} = \vec{b}$ .

#### Theorem

Suppose  $\vec{x_1}$  is any particular solution to the system  $A\vec{x} = \vec{b}$  of linear equations. Then every solution  $\vec{x_2}$  to  $A\vec{x} = \vec{b}$  has the form  $\vec{x_2} = \vec{x_0} + \vec{x_1}$  for some solution  $\vec{x_0}$  of the associated homogeneous system  $A\vec{x} = \vec{0}$ .

## The Dot Product

#### Definition

If  $(a_1, a_2, \ldots, a_n)$  and  $(b_1, b_2, \ldots, b_n)$  are two ordered n-tuples, their dot product is defined to be the number

$$a_1b_1 + a_2b_2 + \dots + a_nb_n$$

obtained by multiplying corresponding entries and adding the results.

This is very much related of the matrix produxt  $A\vec{x}$ .

## Theorem (Dot Product Rule)

Let A be an  $m \times n$  matrix and let  $\vec{x}$  be an n-vector. Then each entry of the vector  $A\vec{x}$  is the dot product of the corresponding row of A with  $\vec{x}$ .

If 
$$A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix}$$
 and  $\vec{x} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix}$ , compute  $A\vec{x}$ .

#### Solution

The entries of  $A\vec{x}$  are the dot products of the rows of A with  $\vec{x}$ :

$$A\vec{x} = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix} 
= \begin{bmatrix} 1 \cdot 2 & + & 0(-1) & + & 2 \cdot 1 & + & (-1)4 \\ 2 \cdot 2 & + & (-1)(-1) & + & 0 \cdot 1 & + & 1 \cdot 4 \\ 3 \cdot 2 & + & 1(-1) & + & 3 \cdot 1 & + & 1 \cdot 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \\ 12 \end{bmatrix}.$$

Of course, this agrees with the outcome of the previous example.

### Definition (Identity Matrix)

For each n > 2, the identity matrix  $I_n$  is the  $n \times n$  matrix with 1's on the main diagonal (upper left to lower right), and zeros elsewhere.

### Example

The first few identity matrices are

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \dots$$

Show that  $I_n \vec{x} = \vec{x}$  for each n-vector  $\vec{x}$  in  $\mathbb{R}^n$ ,  $n \geq 1$ .

#### Solution

We verify the case n=4. Given the 4-vector  $\vec{x}=\begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix}$  the dot product

rule gives

$$I_4\vec{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 0 + 0 + 0 \\ 0 + x_2 + 0 + 0 \\ 0 + 0 + x_3 + 0 \\ 0 + 0 + 0 + x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \vec{x}.$$

In general,  $I_n\vec{x} = \vec{x}$  because entry k of  $I_n\vec{x}$  is the dot product of row k of  $I_n$  with  $\vec{x}$ , and row k of  $I_n$  has 1 in position k and zeros elsewhere.

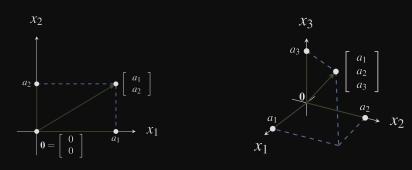
### Transformations

## Notation and Terminology

- ightharpoonup We have already used  $\mathbb{R}$  to denote the set of real numbers.
- ▶ We use  $\mathbb{R}^2$  to the denote the set of all column vectors of length two, and we use  $\mathbb{R}^3$  to the denote the set of all column vectors of length three (the length of a vector is the number of entries it contains).
- ▶ In general, we write  $\mathbb{R}^n$  for the set of all column vectors of length n.

## $\mathbb{R}^2$ and $\mathbb{R}^3$

Vectors in  $\mathbb{R}^2$  and  $\mathbb{R}^3$  have convenient geometric interpretations as  $\operatorname{position}$  vectors of points in the 2-dimensional (Cartesian) plane and in 3-dimensional space, respectively.



# Definition (Transformations)

A transformation is a function  $T: \mathbb{R}^n \to \mathbb{R}^m$ , sometimes written  $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ , and is called a transformation from  $\mathbb{R}^n$  to  $\mathbb{R}^m$ . If m = n, then we say T is a transformation of  $\mathbb{R}^n$ .

What do we mean by a function?

Informally, a function  $T:\mathbb{R}^n\to\mathbb{R}^m$  is a rule that, for each vector in  $\mathbb{R}^n$ , assigns exactly one vector of  $\mathbb{R}^m$ 

We use the notation  $T(\vec{x})$  to mean the transformation T applied to the vector  $\vec{x}.$ 

#### Definition

If T acts by matrix multiplication of a matrix A (such as the previous example), we call T a matrix transformation, and write  $T_A(\vec{x}) = A\vec{x}$ .

Definition ( Equality of Transformations )

Suppose  $S: \mathbb{R}^n \to \mathbb{R}^m$  and  $T: \mathbb{R}^n \to \mathbb{R}^m$  are transformations. Then S = T if and only if  $S(\vec{x}) = T(\vec{x})$  for every  $\vec{x} \in \mathbb{R}^n$ .

Example (Specifying the action of a transformation)

 $T: \mathbb{R}^3 \to \mathbb{R}^4$  defined by

$$T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a+b \\ b+c \\ a-c \\ c-b \end{bmatrix}$$

is a transformation that transforms the vector  $\begin{bmatrix} 1\\4\\5 \end{bmatrix}$  in  $\mathbb{R}^3$  into the vector

$$T\begin{bmatrix} 1\\4\\7 \end{bmatrix} = \begin{bmatrix} 1+4\\4+7\\1-7\\2-4 \end{bmatrix} = \begin{bmatrix} 5\\11\\-6\\2 \end{bmatrix}.$$

Example (Transformation by matrix multiplication)

Consider the matrix  $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$ . By matrix multiplication, A

transforms vectors in  $\mathbb{R}^3$  into vectors in  $\mathbb{R}^2$ . Consider the vector  $\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$ .

Transforming this vector by A looks like:

$$\left[\begin{array}{ccc} 1 & 2 & 0 \\ 2 & 1 & 0 \end{array}\right] \left|\begin{array}{cc} x \\ y \\ z \end{array}\right| = \left[\begin{array}{c} x + 2y \\ 2x + y \end{array}\right]$$

For example:

$$\left[\begin{array}{ccc} 1 & 2 & 0 \\ 2 & 1 & 0 \end{array}\right] \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right] = \left[\begin{array}{c} 5 \\ 4 \end{array}\right].$$

# Rotations in $\mathbb{R}^2$

#### Definition

Let A be an  $m\times n$  matrix. The transformation  $T:\mathbb{R}^n\to\mathbb{R}^m$  defined by

$$T(\vec{x}) = A\vec{x} \text{ for each } \vec{x} \in \mathbb{R}^n$$

is called the matrix transformation induced by A.

#### Definition

The transformation

$$R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$$

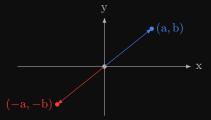
denotes counterclockwise rotation about the origin through an angle of  $\theta$ .

## Example (Rotation through $\pi$ )

We denote by

$$R_{\pi}: \mathbb{R}^2 \to \mathbb{R}^2$$

counterclockwise rotation about the origin through an angle of  $\pi$ .



We see that  $R_{\pi}\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -a \\ -b \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$ , so  $R_{\pi}$  is a matrix transformation.

## Example (Rotation through $\pi/2$ )

We denote by

$$R_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$

counterclockwise rotation about the origin through an angle of  $\pi/2$ .



We see that  $R_{\pi/2} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$ , so  $R_{\pi/2}$  is a

matrix transformation.

#### Remark

In general, the rotation (counterclockwise) about the origin for an angle  $\theta$  is

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

and

$$\begin{bmatrix} a' \\ b' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a\cos(\theta) - b\sin(\theta) \\ a\sin(\theta) + b\cos(\theta) \end{bmatrix}$$

$$R_{\pi} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 and  $R_{\pi/2} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$