Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra §2-2. Equations, Matrices, and Transformations

Le Chen¹

Emory University, 2020 Fall

(last updated on 10/26/2020)

Vectors

Matrix Vector Multiplication

The Dot Product

Transformations

Rotations in \mathbb{R}^2

Vectors

Vectors

Definitions

A row matrix or column matrix is often called a vector, and such matrices are referred to as row vectors and column vectors, respectively. If \vec{x} is a row vector of size $1 \times n$, and \vec{y} is a column vector of size $m \times 1$, then we write

Definition (Vector form of a system of linear equations) Consider the system of linear equations

$a_{11}x_1$	+	$a_{12}x_2$	+	+	$a_{1n}x_n$	b_1
$a_{21}x_1$		$a_{22}x_2$			$a_{2n}x_n$	b_2
$a_{m1}x_1$		$a_{m2}x_2$			$a_{mn}x_n$	$\mathbf{b}_{\mathbf{m}}$

Definition (Vector form of a system of linear equations) Consider the system of linear equations

$a_{11}x_1$	+	$a_{12}x_2$	+	+	$a_{1n}x_n$	b_1
$a_{21}x_1$		$a_{22}x_2$			$a_{2n}x_n$	b_2
$a_{m1}x_1$		$a_{m2}x_2$			$a_{mn}x_n$	$\mathbf{b}_{\mathbf{m}}$

Such a system can be expressed in vector form or as a vector equation by using linear combinations of column vectors:

$$\mathbf{x}_{1} \begin{bmatrix} \mathbf{a}_{11} \\ \mathbf{a}_{21} \\ \vdots \\ \mathbf{a}_{m1} \end{bmatrix} + \mathbf{x}_{2} \begin{bmatrix} \mathbf{a}_{12} \\ \mathbf{a}_{22} \\ \vdots \\ \mathbf{a}_{m2} \end{bmatrix} + \dots + \mathbf{x}_{n} \begin{bmatrix} \mathbf{a}_{1n} \\ \mathbf{a}_{2n} \\ \vdots \\ \mathbf{a}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \vdots \\ \mathbf{b}_{m} \end{bmatrix}$$

$\operatorname{Problem}$

Express the following system of linear equations in vector form:

Express the following system of linear equations in vector form:

$$2x_1 + 4x_2 - 3x_3 = -6$$

- x_2 + 5x_3 = 6
x_1 + x_2 + 4x_3 = 1

Solution

$$x_1 \begin{bmatrix} 2\\0\\1 \end{bmatrix} + x_2 \begin{bmatrix} 4\\-1\\1 \end{bmatrix} + x_3 \begin{bmatrix} -3\\5\\4 \end{bmatrix} = \begin{bmatrix} -6\\0\\1 \end{bmatrix}$$

Matrix vector multiplication

Matrix vector multiplication

Definition

Let $A = [a_{ij}]$ be an $m \times n$ matrix with columns $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$, written $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$, and let \vec{x} be an $n \times 1$ column vector,

$$ec{\mathbf{x}} = \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ ec{\mathbf{x}}_1 \ ec{\mathbf{x}}_2 \end{array}
ight]$$

Matrix vector multiplication

Definition

Let $A = [a_{ij}]$ be an $m \times n$ matrix with columns $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$, written $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$, and let \vec{x} be an $n \times 1$ column vector,

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$

Then the product of matrix A and (column) vector \vec{x} is the m \times 1 column vector given by

$$\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_n \vec{a}_n = \sum_{j=1}^n x_j \vec{a}_j$$

that is, $A\vec{x}$ is a linear combination of the columns of A.

Compute the product $A\vec{x}$ for

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 5 & 0 \end{bmatrix} \quad \text{and} \quad \vec{\mathbf{x}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Compute the product $A\vec{x}$ for

$$\mathbf{A} = \begin{bmatrix} 1 & 4\\ 5 & 0 \end{bmatrix} \quad \text{and} \quad \vec{\mathbf{x}} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

Solution

$$A\vec{x} = \begin{bmatrix} 1 & 4\\ 5 & 0 \end{bmatrix} \begin{bmatrix} 2\\ 3 \end{bmatrix} = 2\begin{bmatrix} 1\\ 5 \end{bmatrix} + 3\begin{bmatrix} 4\\ 0 \end{bmatrix} = \begin{bmatrix} 2\\ 10 \end{bmatrix} + \begin{bmatrix} 12\\ 0 \end{bmatrix} = \begin{bmatrix} 14\\ 10 \end{bmatrix}$$

Compute $\mathbf{A}\vec{\mathbf{y}}$ for

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \quad \text{and} \quad \vec{\mathbf{y}} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix}$$

Compute $\mathbf{A}\vec{\mathbf{y}}$ for

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \quad \text{and} \quad \vec{\mathbf{y}} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix}$$

Solution

$$\mathbf{A} \vec{\mathbf{y}} = 2 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + (-1) \begin{bmatrix} 0\\-1\\1 \end{bmatrix} + 1 \begin{bmatrix} 2\\0\\3 \end{bmatrix} + 4 \begin{bmatrix} -1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\9\\12 \end{bmatrix}$$

Definition (Matrix form of a system of linear equations)

Consider the system of linear equations

$a_{11}x_1$	$a_{12}x_2$		$a_{1n}x_n$	b_1
$a_{21}x_1$	$a_{22}x_2$		$a_{2n}x_n$	b_2
$a_{m1}x_1$	$a_{m2}x_2$		$a_{mn}x_n$	$\mathbf{b}_{\mathbf{m}}$

Such a system can be expressed in matrix form using matrix vector multiplication,

Γ	a_{11}	a_{12}	a_{1n}]	x_1		b_1
Ι	a_{21}	a_{22}	a_{2n}		\mathbf{x}_2		b_2
İ.						=	
ł					:		:
L	a_{m1}	a_{m2}	a _{mn}		_ x _n _		b_{m}

Definition (Matrix form of a system of linear equations)

Consider the system of linear equations

$a_{11}x_1$	$a_{12}x_2$		$a_{1n}x_n$	b_1
$a_{21}x_1$	$a_{22}x_2$		$a_{2n}x_n$	b_2
$a_{m1}x_1$	$a_{m2}x_2$		$a_{mn}x_n$	$\mathbf{b}_{\mathbf{m}}$

Such a system can be expressed in matrix form using matrix vector multiplication,

Γ	a_{11}	a_{12}	a_{1n}]	x_1]	b_1
	a_{21}	a_{22}	a_{2n}		\mathbf{x}_2		b_2
İ					:		:
İ				İ.	:		
L	a_{m1}	a_{m2}	a_{mn}		Xn		b _m

Thus a system of linear equations can be expressed as a matrix equation

 $\mathbf{A}\vec{\mathbf{x}}=\vec{\mathbf{b}},$

where A is the coefficient matrix, \vec{b} is the constant matrix, and \vec{x} is the matrix of variables.

$\operatorname{Problem}$

Express the following system of linear equations in matrix form.

Express the following system of linear equations in matrix form.

$$2x_1 + 4x_2 - 3x_3 = -6$$

- x_2 + 5x_3 = 6
x_1 + x_2 + 4x_3 = 1

Solution

$$\begin{bmatrix} 2 & 4 & -3 \\ 0 & -1 & 5 \\ 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -6 \\ 0 \\ 1 \end{bmatrix}$$

1. Every system of m linear equations in n variables can be written in the form $A\vec{x} = \vec{b}$ where A is the coefficient matrix, \vec{x} is the matrix of variables, and \vec{b} is the constant matrix.

Theorem (continued)

2. The system $A\vec{x} = \vec{b}$ is consistent (i.e., has at least one solution) if and only if \vec{b} is a linear combination of the columns of A.

Theorem (continued)

3. The vector
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is a solution to the system $A\vec{x} = \vec{b}$ if and only if x_1, x_2, \dots, x_n are a solution to the vector equation
$$x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n = \vec{b}$$

where $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ are the columns of A.

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \quad \text{and} \quad \vec{\mathbf{b}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Express \vec{b} as a linear combination of the columns $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$ of A, or show that this is impossible.

Solve the system $A\vec{x} = \vec{b}$ where \vec{x} is a column vector with four entries.

Solve the system $A\vec{x} = \vec{b}$ where \vec{x} is a column vector with four entries. Do so by putting the augmented matrix $\begin{bmatrix} A & \vec{b} \end{bmatrix}$ in reduced row-echelon form.

Solve the system $A\vec{x} = \vec{b}$ where \vec{x} is a column vector with four entries. Do so by putting the augmented matrix $\begin{bmatrix} A & \vec{b} \end{bmatrix}$ in reduced row-echelon form.

$$\begin{bmatrix} 1 & 0 & 2 & -1 & | & 1 \\ 2 & -1 & 0 & 1 & | & 1 \\ 3 & 1 & 3 & 1 & | & 1 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & 0 & 1 & | & 1/7 \\ 0 & 1 & 0 & 1 & | & -5/7 \\ 0 & 0 & 1 & -1 & | & 3/7 \end{bmatrix}$$

Solve the system $A\vec{x} = \vec{b}$ where \vec{x} is a column vector with four entries. Do so by putting the augmented matrix $\begin{bmatrix} A & \vec{b} \end{bmatrix}$ in reduced row-echelon form.

$$\begin{bmatrix} 1 & 0 & 2 & -1 & | & 1 \\ 2 & -1 & 0 & 1 & | & 1 \\ 3 & 1 & 3 & 1 & | & 1 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & 0 & 1 & | & 1/7 \\ 0 & 1 & 0 & 1 & | & -5/7 \\ 0 & 0 & 1 & -1 & | & 3/7 \end{bmatrix}$$

Since there are infinitely many solutions $(x_4 \text{ is assigned a parameter})$, choose any value for x_4 .

Solve the system $A\vec{x} = \vec{b}$ where \vec{x} is a column vector with four entries. Do so by putting the augmented matrix $\begin{bmatrix} A & \vec{b} \end{bmatrix}$ in reduced row-echelon form.

$$\begin{bmatrix} 1 & 0 & 2 & -1 & | & 1 \\ 2 & -1 & 0 & 1 & | & 1 \\ 3 & 1 & 3 & 1 & | & 1 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & 0 & 1 & | & 1/7 \\ 0 & 1 & 0 & 1 & | & -5/7 \\ 0 & 0 & 1 & -1 & | & 3/7 \end{bmatrix}$$

Since there are infinitely many solutions $(x_4 \text{ is assigned a parameter})$, choose any value for x_4 . Choosing $x_4 = 0$ (which is the simplest thing to do) gives us

$$\vec{\mathbf{b}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \frac{5}{7} \begin{bmatrix} 0\\-1\\1 \end{bmatrix} + \frac{3}{7} \begin{bmatrix} 2\\0\\3 \end{bmatrix} = \frac{1}{7} \vec{\mathbf{a}}_1 - \frac{5}{7} \vec{\mathbf{a}}_2 + \frac{3}{7} \vec{\mathbf{a}}_3 + 0 \vec{\mathbf{a}}_4.$$

Remark

The problem may ask to to find all possible linear combinations of the columns \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , \vec{a}_4 of A.

Remark

The problem may ask to to find all possible linear combinations of the columns \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , \vec{a}_4 of A.

This is equivalent to find all solutions to the corresponding system of linear equations:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} - s \\ -\frac{5}{7} - s \\ \frac{3}{7} + s \\ s \end{bmatrix}$$

Remark

The problem may ask to to find all possible linear combinations of the columns \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , \vec{a}_4 of A.

This is equivalent to find all solutions to the corresponding system of linear equations:

$$\begin{bmatrix} \mathbf{x}_1\\ \mathbf{x}_2\\ \mathbf{x}_3\\ \mathbf{x}_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} - \mathbf{s}\\ -\frac{5}{7} - \mathbf{s}\\ \frac{3}{7} + \mathbf{s}\\ \mathbf{s} \end{bmatrix}$$

Hence, all possible linear combinations are:

$$\vec{\mathbf{b}} = \left(\frac{1}{7} - \mathbf{s}\right) \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \left(\frac{5}{7} + \mathbf{s}\right) \begin{bmatrix} 0\\-1\\1 \end{bmatrix} + \left(\frac{3}{7} + \mathbf{s}\right) \begin{bmatrix} 2\\0\\3 \end{bmatrix} + \mathbf{s} \begin{bmatrix} -1\\1\\1 \end{bmatrix}$$

Let A and B be $m \times n$ matrices, and let \vec{x} and \vec{y} be n-vectors in \mathbb{R}^n . Then:

- 1. $A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}.$
- 2. $A(a\vec{x}) = a(A\vec{x}) = (aA)\vec{x}$ for all scalars a.
- 3. $(A + B)\vec{x} = A\vec{x} + B\vec{x}$.

Let A and B be $m \times n$ matrices, and let \vec{x} and \vec{y} be n-vectors in \mathbb{R}^n . Then:

- 1. $A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}.$
- 2. $A(a\vec{x}) = a(A\vec{x}) = (aA)\vec{x}$ for all scalars a.
- 3. $(A + B)\vec{x} = A\vec{x} + B\vec{x}$.

This provides a useful way to describe the solutions to a system $A\vec{x} = \vec{b}$.

Let A and B be $m \times n$ matrices, and let \vec{x} and \vec{y} be n-vectors in \mathbb{R}^n . Then:

- 1. $A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}.$
- 2. $A(a\vec{x}) = a(A\vec{x}) = (aA)\vec{x}$ for all scalars a.
- 3. $(A + B)\vec{x} = A\vec{x} + B\vec{x}$.

This provides a useful way to describe the solutions to a system $A\vec{x} = \vec{b}$.

Theorem

Suppose $\vec{x_1}$ is any particular solution to the system $A\vec{x} = \vec{b}$ of linear equations. Then every solution $\vec{x_2}$ to $A\vec{x} = \vec{b}$ has the form $\vec{x_2} = \vec{x_0} + \vec{x_1}$ for some solution $\vec{x_0}$ of the associated homogeneous system $A\vec{x} = \vec{0}$.

The Dot Product

The Dot Product

Definition

If (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) are two ordered n-tuples, their dot product is defined to be the number

```
a_1b_1+a_2b_2+\dots+a_nb_n
```

obtained by multiplying corresponding entries and adding the results.
The Dot Product

Definition

If (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) are two ordered n-tuples, their dot product is defined to be the number

```
a_1b_1+a_2b_2+\dots+a_nb_n
```

obtained by multiplying corresponding entries and adding the results.

This is very much related of the matrix product Ax.

Theorem (Dot Product Rule)

Let A be an $m \times n$ matrix and let \vec{x} be an n-vector. Then each entry of the vector $A\vec{x}$ is the dot product of the corresponding row of A with \vec{x} .

Problem

If
$$A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix}$$
 and $\vec{x} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix}$, compute $A\vec{x}$.

 $\operatorname{Problem}$

If
$$A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix}$$
 and $\vec{x} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix}$, compute $A\vec{x}$.

Solution

The entries of $A\vec{x}$ are the dot products of the rows of A with \vec{x} :

$$\begin{aligned} \mathbf{A}\vec{\mathbf{x}} &= \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \\ 4 \end{bmatrix} \\ &= \begin{bmatrix} 1 \cdot 2 & + & 0(-1) & + & 2 \cdot 1 & + & (-1)4 \\ 2 \cdot 2 & + & (-1)(-1) & + & 0 \cdot 1 & + & 1 \cdot 4 \\ 3 \cdot 2 & + & 1(-1) & + & 3 \cdot 1 & + & 1 \cdot 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \\ 12 \end{bmatrix} \end{aligned}$$

Of course, this agrees with the outcome of the previous example.

Definition (Identity Matrix)

For each n > 2, the identity matrix I_n is the $n \times n$ matrix with 1's on the main diagonal (upper left to lower right), and zeros elsewhere.

Definition (Identity Matrix)

For each n > 2, the identity matrix I_n is the $n \times n$ matrix with 1's on the main diagonal (upper left to lower right), and zeros elsewhere.

Example

The first few identity matrices are

$$I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad I_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \dots$$

Problem

Show that $I_n \vec{x} = \vec{x}$ for each n-vector \vec{x} in \mathbb{R}^n , $n \ge 1$.

Problem

Show that $I_n \vec{x} = \vec{x}$ for each n-vector \vec{x} in \mathbb{R}^n , $n \ge 1$.

Solution

We verify the case n = 4. Given the 4-vector
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
 the dot product

rule gives

$$I_4 \vec{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 0 + 0 + 0 \\ 0 + x_2 + 0 + 0 \\ 0 + 0 + x_3 + 0 \\ 0 + 0 + 0 + x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \vec{x}.$$

In general, $I_n \vec{x} = \vec{x}$ because entry k of $I_n \vec{x}$ is the dot product of row k of I_n with \vec{x} , and row k of I_n has 1 in position k and zeros elsewhere.

Notation and Terminology

• We have already used \mathbb{R} to denote the set of real numbers.

- We have already used \mathbb{R} to denote the set of real numbers.
- We use \mathbb{R}^2 to the denote the set of all column vectors of length two,

- We have already used \mathbb{R} to denote the set of real numbers.
- We use \mathbb{R}^2 to the denote the set of all column vectors of length two, and we use \mathbb{R}^3 to the denote the set of all column vectors of length three

- We have already used \mathbb{R} to denote the set of real numbers.
- We use ℝ² to the denote the set of all column vectors of length two, and we use ℝ³ to the denote the set of all column vectors of length three (the length of a vector is the number of entries it contains).

- We have already used \mathbb{R} to denote the set of real numbers.
- We use ℝ² to the denote the set of all column vectors of length two, and we use ℝ³ to the denote the set of all column vectors of length three (the length of a vector is the number of entries it contains).
- ln general, we write \mathbb{R}^n for the set of all column vectors of length n.

Notation and Terminology

- We have already used \mathbb{R} to denote the set of real numbers.
- We use ℝ² to the denote the set of all column vectors of length two, and we use ℝ³ to the denote the set of all column vectors of length three (the length of a vector is the number of entries it contains).
- ln general, we write \mathbb{R}^n for the set of all column vectors of length n.

\mathbb{R}^2 and \mathbb{R}^3

Vectors in \mathbb{R}^2 and \mathbb{R}^3 have convenient geometric interpretations as position vectors of points in the 2-dimensional (Cartesian) plane and in 3-dimensional space, respectively.

A transformation is a function $T : \mathbb{R}^n \to \mathbb{R}^m$, sometimes written $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$, and is called a transformation from \mathbb{R}^n to \mathbb{R}^m .

A transformation is a function $T : \mathbb{R}^n \to \mathbb{R}^m$, sometimes written $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$, and is called a transformation from \mathbb{R}^n to \mathbb{R}^m . If m = n, then we say T is a transformation of \mathbb{R}^n .

A transformation is a function $T : \mathbb{R}^n \to \mathbb{R}^m$, sometimes written $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$, and is called a transformation from \mathbb{R}^n to \mathbb{R}^m . If m = n, then we say T is a transformation of \mathbb{R}^n .

What do we mean by a function?

A transformation is a function $T : \mathbb{R}^n \to \mathbb{R}^m$, sometimes written $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$, and is called a transformation from \mathbb{R}^n to \mathbb{R}^m . If m = n, then we say T is a transformation of \mathbb{R}^n .

What do we mean by a function?

Informally, a function $T:\mathbb{R}^n\to\mathbb{R}^m$ is a rule that, for each vector in $\mathbb{R}^n,$ assigns exactly one vector of \mathbb{R}^m

We use the notation $\mathrm{T}(\vec{\mathrm{x}})$ to mean the transformation T applied to the vector $\vec{\mathrm{x}}.$

A transformation is a function $T : \mathbb{R}^n \to \mathbb{R}^m$, sometimes written $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$, and is called a transformation from \mathbb{R}^n to \mathbb{R}^m . If m = n, then we say T is a transformation of \mathbb{R}^n .

What do we mean by a function?

Informally, a function $T:\mathbb{R}^n\to\mathbb{R}^m$ is a rule that, for each vector in $\mathbb{R}^n,$ assigns exactly one vector of \mathbb{R}^m

We use the notation $\mathrm{T}(\vec{\mathrm{x}})$ to mean the transformation T applied to the vector $\vec{\mathrm{x}}.$

Definition

If T acts by matrix multiplication of a matrix A (such as the previous example), we call T a matrix transformation, and write $T_A(\vec{x}) = A\vec{x}$.

Definition (Equality of Transformations)

Suppose $S : \mathbb{R}^n \to \mathbb{R}^m$ and $T : \mathbb{R}^n \to \mathbb{R}^m$ are transformations. Then S = T if and only if $S(\vec{x}) = T(\vec{x})$ for every $\vec{x} \in \mathbb{R}^n$.

Example (Specifying the action of a transformation) $T:\mathbb{R}^3\to\mathbb{R}^4 \mbox{ defined by }$

$$T\begin{bmatrix}a\\b\\c\end{bmatrix} = \begin{bmatrix}a+b\\b+c\\a-c\\c-b\end{bmatrix}$$

is a transformation

Example (Specifying the action of a transformation) $T:\mathbb{R}^3\to\mathbb{R}^4 \text{ defined by}$

$$T\begin{bmatrix}a\\b\\c\end{bmatrix} = \begin{bmatrix}a+b\\b+c\\a-c\\c-b\end{bmatrix}$$

is a transformation that transforms the vector $\begin{bmatrix}1\\4\\7\end{bmatrix}$ in \mathbb{R}^3 into the vector

$$\mathbf{T} \begin{bmatrix} 1\\ 4\\ 7 \end{bmatrix} = \begin{bmatrix} 1+4\\ 4+7\\ 1-7\\ 7-4 \end{bmatrix} = \begin{bmatrix} 5\\ 11\\ -6\\ 3 \end{bmatrix}.$$

Consider the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$. By matrix multiplication, A

transforms vectors in \mathbb{R}^3 into vectors in \mathbb{R}^2 .

Consider the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$. By matrix multiplication, A transforms vectors in \mathbb{R}^3 into vectors in \mathbb{R}^2 . Consider the vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$.

Consider the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$. By matrix multiplication, A transforms vectors in \mathbb{R}^3 into vectors in \mathbb{R}^2 . Consider the vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Transforming this vector by A looks like:

$$\left[\begin{array}{rrrr} 1 & 2 & 0 \\ 2 & 1 & 0 \end{array}\right] \left[\begin{array}{r} x \\ y \\ z \end{array}\right] = \left[\begin{array}{r} x + 2y \\ 2x + y \end{array}\right].$$

Consider the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$. By matrix multiplication, A transforms vectors in \mathbb{R}^3 into vectors in \mathbb{R}^2 . Consider the vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Transforming this vector by A looks like:

$$\left[\begin{array}{rrrr}1&2&0\\2&1&0\end{array}\right]\left[\begin{array}{r}x\\y\\z\end{array}\right] = \left[\begin{array}{r}x+2y\\2x+y\end{array}\right].$$

For example:

$$\left[\begin{array}{rrr}1&2&0\\2&1&0\end{array}\right]\left[\begin{array}{r}1\\2\\3\end{array}\right]=\left[\begin{array}{r}5\\4\end{array}\right].$$

Definition

Let A be an $m \times n$ matrix. The transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by

 $T(\vec{x}) = A\vec{x}$ for each $\vec{x} \in \mathbb{R}^n$

is called the matrix transformation induced by A.

Definition

Let A be an $m \times n$ matrix. The transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by

 $T(\vec{x}) = A\vec{x}$ for each $\vec{x} \in \mathbb{R}^n$

is called the matrix transformation induced by A.

Definition

The transformation

$$R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$$

denotes counterclockwise rotation about the origin through an angle of θ .

We denote by

$$R_{\pi}: \mathbb{R}^2 \to \mathbb{R}^2$$

We denote by

$$R_{\pi}: \mathbb{R}^2 \to \mathbb{R}^2$$

We denote by

$$\mathbf{R}_{\pi}:\mathbb{R}^2\to\mathbb{R}^2$$

We denote by

$$\mathbf{R}_{\pi}:\mathbb{R}^2\to\mathbb{R}^2$$

We denote by

$$\mathbf{R}_{\pi}:\mathbb{R}^2\to\mathbb{R}^2$$

We denote by

$$\mathbf{R}_{\pi}:\mathbb{R}^2\to\mathbb{R}^2$$

We denote by

$$R_{\pi/2}:\mathbb{R}^2\to\mathbb{R}^2$$

We denote by

$$R_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$

We denote by

$$\mathbf{R}_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$

We denote by

$$R_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$

We denote by

$$\mathbb{R}_{\pi/2}:\mathbb{R}^2\to\mathbb{R}^2$$

We denote by

$$\mathbf{R}_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$

Remark

In general, the rotation (counterclockwise) about the origin for an angle θ is

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

and

Remark

In general, the rotation (counterclockwise) about the origin for an angle θ is

$$\mathbf{R}_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

and

$$\begin{bmatrix} \mathbf{a}' \\ \mathbf{b}' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{a}\cos(\theta) - \mathbf{b}\sin(\theta) \\ \mathbf{a}\sin(\theta) + \mathbf{b}\cos(\theta) \end{bmatrix}$$

Remark

In general, the rotation (counterclockwise) about the origin for an angle θ is

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

and

$$\begin{bmatrix} \mathbf{a}' \\ \mathbf{b}' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{a}\cos(\theta) - \mathbf{b}\sin(\theta) \\ \mathbf{a}\sin(\theta) + \mathbf{b}\cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{\pi} = \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \quad \text{and} \quad \mathbf{R}_{\pi/2} = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}$$