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Matrix Multiplication

Properties of Matrix Multiplication



Matrix Multiplication

Definition (Product of two matrices)

Let A be an m × n matrix and let B =
[
~b1

~b2 · · · ~bp

]
be an n × p

matrix, whose columns are ~b1, ~b2, . . . , ~bp. The product of A and B is the
matrix

AB = A
[
~b1

~b2 · · · ~bp

]
=

[
A~b1 A~b2 · · · A~bp

]
i.e., the first column of AB is A~b1, the second column of AB is A~b2, etc.
Note that AB has size m × p.
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Problem
Find the product AB of matrices

A =

[
−1 0 3
2 −1 1

]
and B =

 −1 1 2
0 −2 4
1 0 0

 .

Solution
AB has columns

A~b1 =

[
−1 0 3
2 −1 1

] −1
0
1

 =

[
4
−1

]
,

A~b2 =

[
−1 0 3
2 −1 1

] 1
−2
0

 =

[
−1
4

]
,

A~b3 =

[
−1 0 3
2 −1 1

] 2
4
0

 =

[
−2
0

]
.

Thus, AB =

[
4 −1 −2

−1 4 0

]
.
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Definition
Let A and B be matrices, and suppose that A is m × n.
I In order for the product AB to exist, the number of rows in B must be

equal to the number of columns in A, implying that B is an n × p
matrix for some p.

I When defined, AB is an m × p matrix.
If the product is defined, then A and B are said to be compatible for
(matrix) multiplication.



Example
As we saw in the previous problem

2×3[
−1 0 3
2 −1 1

] 3×3 −1 1 2
0 −2 4
1 0 0

= 2×3[
4 −1 −2

−1 4 0

]

Note that the product

3×3 −1 1 2
0 −2 4
1 0 0

 2×3[
−1 0 3
2 −1 1

]

does not exist.
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Example (Multiplication by the zero matrix)
Compute the product AO for the matrix

A =

[
1 2
3 4

]

and the 2× 2 zero matrix given by O =

[
0 0
0 0

]

Solution [
1 2
3 4

] [
0 0
0 0

]
=

[
0 0
0 0

]
=⇒ AO = O.
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Definition (The (i, j)-entry of a product)

Let A = [aij] be an m × n matrix and B = [bij] be an n × p matrix. Then
the (i, j)-entry of AB is given by the dot product of row i of A and column
j of B:

ai1b1j + ai2b2j + · · ·+ ainbnj =

n∑
k=1

aikbkj



Definition (The (i, j)-entry of a product)

Let A = [aij] be an m × n matrix and B = [bij] be an n × p matrix. Then
the (i, j)-entry of AB is given by the dot product of row i of A and column
j of B:

ai1b1j + ai2b2j + · · ·+ ainbnj =

n∑
k=1

aikbkj



Example
Using the above definition, the (2, 3)-entry of the product

[
−1 0 3
2 −1 1

] −1 1 2
0 −2 4
1 0 0


is computed by the dot product of the second row of the first matrix and
the third column of the second matrix:

2× 2 + (−1)× 4 + 1× 0 = 4− 4 + 0 = 0.



Properties of Matrix Multiplication

Given matrices A and B, is AB = BA?



Properties of Matrix Multiplication

Given matrices A and B, is AB = BA?



Problem
Let

A =

 1 2
−3 0
1 −4

 and B =

[
1 −1 2 0
3 −2 1 −3

]
I Does AB exist? If so, compute it.
I Does BA exist? If so, compute it.

Solution

AB =

 7 −5 4 −6
−3 3 −6 0

−11 7 −2 12


BA does not exist!
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Problem
Let

G =

[
1
1

]
and H =

[
1 0

]
I Does GH exist? If so, compute it.
I Does HG exist? If so, compute it.

Solution

GH =

[
1 0
1 0

]
HG =

[
1

]
Remark
In this example, GH and HG both exist, but they are not equal. They
aren’t even the same size!
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Problem
Let

P =

[
1 0
2 −1

]
and Q =

[
−1 1
0 3

]
I Does PQ exist? If so, compute it.
I Does QP exist? If so, compute it.

Solution

PQ =

[
−1 1
−2 −1

]

QP =

[
1 −1
6 −3

]
�

Remark
In this example, PQ and QP both exist and are the same size, but
PQ 6= QP.
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Fact
The three preceding problems illustrate an important property of matrix
multiplication.

In general, matrix multiplication is not commutative, i.e., the order
of the matrices in the product is important.

In other words, in general
AB 6= BA.

Multiplying from left or right, it MATTERS!



Problem
Let

U =

[
2 0
0 2

]
and V =

[
1 2
3 4

]
I Does UV exist? If so, compute it.
I Does VU exist? If so, compute it.

Solution

UV =

[
2 4
6 8

]

VU =

[
2 4
6 8

]
�

Remark
In this particular example, the matrices commute, i.e., UV = VU.
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Theorem (Properties of Matrix Multiplication)
Let A, B, and C be matrices of the appropriate sizes, and let r ∈ R be a
scalar. Then the following properties hold.

1. IA = A and AI = A.
2. A(B + C) = AB + AC.

(matrix multiplication distributes over matrix addition).
3. (B + C)A = BA + CA.

(matrix multiplication distributes over matrix addition).
4. A (BC) = (AB)C. (matrix multiplication is associative).
5. r(AB) = (rA)B = A(rB).
6. (AB)T = BTAT.

Remark
This applies to matrix-vector multiplication as well, since a vector is a row
matrix or a column matrix.
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Problem
Let A = [aij], B = [bij] and C = [cij] be three n× n matrices. For 1 ≤ i, j ≤ n
write down a formula for the (i, j)-entry of each of the following matrices.

1. AB
2. BA
3. A+C

4. C(A+B)
5. A(BC)
6. (AB)C



Problem
Let A and B be m× n matrices, and let C be an n× p matrix. Prove that if
A and B commute with C, then A + B commutes with C.

Proof.
We are given that AC = CA and BC = CB. Consider (A + B)C.

(A + B)C = AC + BC
= CA + CB
= C(A + B)

Since (A + B)C = C(A + B), A + B commutes with C. �
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Problem
Let A,B and C be n× n matrices, and suppose that both A and B commute
with C, i.e., AC = CA and BC = CB. Show that AB commutes with C.

Proof.
We must show that (AB)C = C(AB) given that AC = CA and BC = CB.

(AB)C = A(BC) (matrix multiplication is associative)

= A(CB) (B commutes with C)

= (AC)B (matrix multiplication is associative)

= (CA)B (A commutes with C)

= C(AB) (matrix multiplication is associative)

Therefore, AB commutes with C. �
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Partitioned matrix and block multiplication

Observation
We can partition matrix into blocks so that each entry of the partitioned matrix
is again a matrix.

Example



Example
Let A and B be m × n and n × k matrices, respectively. We can partition
then into either column vectors or row vectors:

When viewed as partitioned
matrices, AB can be equivalently written in one of the following four ways:

Amn =
(
~a1, · · · ,~an

)
=

~αT
1

...
~αT

m

 and Bnk =
(
~b1, · · · , ~bk

)
=


~βT
1

...
~βT
n


1.

AB = A
(
~b1, · · · , ~bk

)
=

(
A~b1, · · · ,A~bk

)
2.

AB =

~αT
1

...
~αT

m

B =

~αT
1 B
...

~αT
mB
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Example (continued)
3

AB =
(
~a1, · · · ,~an

)
~βT
1

...
~βT
n

 = ~a1
~βT
1 +~a2

~βT
2 + · · ·~an~β

T
n

4

AB =

~αT
1

...
~αT

m

(
~b1, · · · , ~bk

)
=


~αT
1 b1 ~αT

1 b2 · · · ~αT
1 bk

~αT
2 b1 ~αT

2 b2 · · · ~αT
2 bk

...
...

. . .
...

~αT
mb1 ~αT

mbm · · · ~αT
mbk





Example (continued)
One can also partition A and B as follows:

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
in a way that dimensions match. Then

AB =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)



Problem

Let A be a square matrix. Compute Ak where A =

(
I X
O O

)
.

Solution

A2 = · · · = A.

Hence, Ak = A for all k ≥ 2.
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