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The Identity and Inverse Matrices

Definition
For each n ≥ 2, the n × n identity matrix, denoted In, is the matrix having
ones on its main diagonal and zeros elsewhere, and is defined for all n ≥ 2.

Example

I2 =

[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1





Definition

Let n ≥ 2. For each j, 1 ≤ j ≤ n, we denote by ~ej the jth column of In.

Example

When n = 3, ~e1 =

 1
0
0

 ,~e2 =

 0
1
0

 ,~e3 =

 0
0
1

.



Theorem
Let A be an m × n matrix. Then AIn = A and ImA = A.

Proof.

The (i, j)-entry of AIn is the product of the ith row of A = [aij], namely[
ai1 ai2 · · · aij · · · ain

]
with the jth column of In, namely ~ej. Since

~ej has a one in row j and zeros elsewhere,[
ai1 ai2 · · · aij · · · ain

]
~ej = aij

Since this is true for all i ≤ m and all j ≤ n, AIn = A.

The proof of ImA = A is analogous—work it out! �



Instead of AIn and ImA we often write AI and IA, respectively, since the
size of the identity matrix is clear from the context: the sizes of A and I
must be compatible for matrix multiplication.

Thus
AI = A and IA = A

which is why I is called an identity matrix – it is an identity for matrix
multiplication.



Definition ( Matrix Inverses )
Let A be an n × n matrix. Then B is an inverse of A if and only if AB = In
and BA = In.

Remark
Note that since A and In are both n × n, B must also be an n × n matrix.

Example

Let A =

[
1 2
3 4

]
and B =

[
−2 1
3/2 −1/2

]
. Then

AB =

[
1 0
0 1

]
and BA =

[
1 0
0 1

]
.

Therefore, B is an inverse of A.



Problem
Does every square matrix have an inverse?

Solution
No! Take e.g. the zero matrix On (all entries of On are equal to 0)

AOn = OnA = On

for all n×n matrices A: The (i, j)-entry of OnA is equal to
∑n

k=1 0akj = 0. �

Problem
Does every nonzero square matrix have an inverse?



Problem
Does the following matrix A have an inverse?

A =

[
0 1
0 1

]

Solution
No! To see this, suppose

B =

[
a b
c d

]
is an inverse of A. Then

AB =

[
0 1
0 1

] [
a b
c d

]
=

[
c d
c d

]
which is never equal to I2. (Why?) �



Theorem ( Uniqueness of an Inverse )
If A is a square matrix and B and C are inverses of A, then B = C.

Proof.
Since B and C are inverses of A, AB = I = BA and AC = I = CA. Then

C = CI = C(AB) = CAB

and
B = IB = (CA)B = CAB

so B = C. �



Example (revisited)

For A =

[
1 2
3 4

]
and B =

[
−2 1
3/2 −1/2

]
, we saw that

AB =

[
1 0
0 1

]
and BA =

[
1 0
0 1

]
The preceding theorem tells us that B is the inverse of A, rather than just
an inverse of A.



Remark (notation)
Let A be a square matrix, i.e., an n × n matrix.
I The inverse of A, if it exists, is denoted A−1, and

AA−1 = I = A−1A

I If A has an inverse, then we say that A is invertible.



Finding the inverse of a 2× 2 matrix

Example

Suppose that A =

[
a b
c d

]
. If ad − bc 6= 0, then there is a formula for

A−1:

A−1 =
1

ad − bc

[
d −b

−c a

]
.

This can easily be verified by computing the products AA−1 and A−1A.

AA−1 =

[
a b
c d

]
1

ad − bc

[
d −b

−c a

]
=

1

ad − bc

([
a b
c d

] [
d −b

−c a

])
=

1

ad − bc

[
ad − bc 0

0 −bc + ad

]
=

[
1 0
0 1

]
Showing that A−1A = I2 is left as an exercise.



Remark
Here are some terminology related to this example:

1. Determinant:

det
(

a b
c d

)
:= ad − cd

2. Adjugate:

adj
(

a b
c d

)
:=

(
d −b
−c a

)



Problem
Suppose that A is any n × n matrix.
I How do we know whether or not A−1 exists?
I If A−1 exists, how do we find it?

Solution
The matrix inversion algorithm!

Although the formula for the inverse of a 2× 2 matrix is quicker and easier
to use than the matrix inversion algorithm, the general formula for the
inverse an n × n matrix, n ≥ 3 (which we will see later), is more
complicated and difficult to use than the matrix inversion algorithm. To
find inverses of square matrices that are not 2× 2, the matrix inversion
algorithm is the most efficient method to use.



The Matrix Inversion Algorithm

Let A be an n × n matrix. To find A−1, if it exists,
Step 1 take the n × 2n matrix [

A In
]

obtained by augmenting A with the n × n identity matrix, In.
Step 2 Perform elementary row operations to transform

[
A In

]
into a

reduced row-echelon matrix.

Theorem (Matrix Inverses)
Let A be an n × n matrix. Then the following conditions are equivalent.

1. A is invertible.
2. the reduced row-echelon form on A is I.
3.

[
A In

]
can be transformed into

[
In A−1

]
using the Matrix

Inversion Algorithm.



Problem

Find, if possible, the inverse of

 1 0 −1
−2 1 3
−1 1 2

.

Solution
Using the matrix inversion algorithm 1 0 −1 1 0 0

−2 1 3 0 1 0
−1 1 2 0 0 1

 →

 1 0 −1 1 0 0
0 1 1 2 1 0
0 1 1 1 0 1

 →

 1 0 −1 1 0 0
0 1 1 2 1 0
0 0 0 −1 −1 1



From this, we see that A has no inverse.



Problem

Let A =

 3 1 2
1 −1 3
1 2 4

. Find the inverse of A, if it exists.



Solution
Using the matrix inversion algorithm

[
A I

]
=

 3 1 2 1 0 0
1 −1 3 0 1 0
1 2 4 0 0 1

 →

 1 −1 3 0 1 0
3 1 2 1 0 0
1 2 4 0 0 1



→

 1 −1 3 0 1 0
0 4 −7 1 −3 0
0 3 1 0 −1 1

 →

 1 −1 3 0 1 0
0 1 −8 1 −2 −1
0 3 1 0 −1 1



→

 1 0 −5 1 −1 −1
0 1 −8 1 −2 −1
0 0 25 −3 5 4

 →

 1 0 −5 1 −1 −1
0 1 −8 1 −2 −1
0 0 1 − 3

25
5
25

4
25



→

 1 0 0 10
25

0 − 5
25

0 1 0 1
25

− 10
25

7
25

0 0 1 − 3
25

5
25

4
25

 =
[

I A−1
]



Solution (continued)

Therefore, A−1 exists, and

A−1 =

 10
25

0 − 5
25

1
25

− 10
25

7
25

− 3
25

5
25

4
25

 =
1

25

 10 0 −5
1 −10 7

−3 5 4


You can check your work by computing AA−1 and A−1A.



Suppose that a system of n linear equations in n variables is written in
matrix form as A~x = ~b, and suppose that A is invertible.

Example
The system of linear equations

2x − 7y = 3

5x − 18y = 8

can be written in matrix form as A~x = ~b:[
2 −7
5 −18

] [
x
y

]
=

[
3
8

]

You can check that A−1 =

[
18 −7
5 −2

]
.



Example (continued)

Since A−1 exists and has the property that A−1A = I, we obtain the
following.

A~x = ~b
A−1(A~x) = A−1~b

(A−1A)~x = A−1~b

I~x = A−1~b
~x = A−1~b

i.e., A~x = ~b has the unique solution given by ~x = A−1~b. Therefore,

~x = A−1

[
3
8

]
=

[
18 −7
5 −2

] [
3
8

]
=

[
−2
−1

]
You should verify that x = −2, y = −1 is a solution to the system. �



Remark
The last example illustrates another method for solving a system of linear
equations when the coefficient matrix is square and invertible. Unless that
coefficient matrix is 2× 2, this is generally NOT an efficient method for
solving a system of linear equations.



Example
Let A,B and C be matrices, and suppose that A is invertible.

1. If AB = AC, then

A−1(AB) = A−1(AC)

(A−1A)B = (A−1A)C
IB = IC
B = C

2. If BA = CA, then

(BA)A−1 = (CA)A−1

B(AA−1) = C(AA−1)

BI = CI
B = C

Problem
Can you find square matrices A,B and C for which AB = AC but B 6= C?



Properties of the Inverse

Example
Suppose A is an invertible matrix. Then

AT(A−1)T = (A−1A)T = IT = I

and
(A−1)TAT = (AA−1)T = IT = I

This means that (AT)−1 = (A−1)T.

Example
Suppose A and B are invertible n × n matrices. Then

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

This means that (AB)−1 = B−1A−1.



The previous two examples prove the first two parts of the following
theorem.

Theorem (Properties of Inverses)

1. If A is an invertible matrix, then (AT)−1 = (A−1)T.
2. If A and B are invertible matrices, then AB is invertible and

(AB)−1 = B−1A−1

3. If A1,A2, . . . ,Ak are invertible, then A1A2 · · ·Ak is invertible and

(A1A2 · · ·Ak)
−1 = A−1

k A−1
k−1 · · ·A

−1
2 A−1

1

(the third part is proved by iterating the above, or, more formally, by
using the mathematical induction)



Theorem ( More Properties of Inverses )

1. I is invertible, and I−1 = I.
2. If A is invertible, so is A−1, and (A−1)−1 = A.
3. If A is invertible, so is Ak, and (Ak)−1 = (A−1)k.

(Ak means A multiplied by itself k times)
4. If A is invertible and p ∈ R is nonzero, then pA is invertible, and

(pA)−1 = 1
pA−1.



Example

Given (3I − AT)−1 = 2

[
1 1
2 3

]
, we wish to find the matrix A. Taking

inverses of both sides of the equation:

3I − AT =

(
2

[
1 1
2 3

])−1

=
1

2

[
1 1
2 3

]−1

=
1

2

[
3 −1

−2 1

]
=

[ 3
2

− 1
2

−1 1
2

]



Example (continued)

3I − AT =

[ 3
2

− 1
2

−1 1
2

]
−AT =

[ 3
2

− 1
2

−1 1
2

]
− 3I

−AT =

[ 3
2

− 1
2

−1 1
2

]
−

[
3 0
0 3

]
−AT =

[
− 3

2
− 1

2

−1 − 5
2

]
A =

[ 3
2

1
1
2

5
2

]



Problem
True or false? Justify your answer.

If A3 = 4I, then A is invertible.

Solution
If A3 = 4I, then

1

4
A3 = I

so
(
1

4
A2)A = I and A(

1

4
A2) = I.

Therefore, A is invertible, and A−1 = 1
4
A2. �



Theorem

Let A be an n × n matrix, and let ~x, ~b be n × 1 vectors. The following
conditions are equivalent.

1. A is invertible.
2. The rank of A is n.
3. The reduced row echelon form of A is In.
4. A~x = ~0 has only the trivial solution, ~x = ~0.
5. A can be transformed to In by elementary row operations.
6. The system A~x = ~b has a unique solution ~x for any choice of ~b.
7. The system A~x = ~b has at least one solution ~x for any choice of ~b.
8. There exists an n × n matrix C with the property that CA = In.
9. There exists an n × n matrix C with the property that AC = In.



Proof.
(1), (2), (4), (5) and (6) are all equivalent to (3) since each involves
transforming A to its RREF, and A being square, to verifying whether the
identity matrix is obtained.

(6) ⇒ (7) is clear. As for (7) ⇒ (8), let ~cj be one of the solution of A~x = ~ej.
The

A[~c1, · · · ,~cn] = [~e1, · · · ,~en] = I

Hence, (8) holds with C = [~c1, · · · ,~cn].

(1) ⇒ (8) and (9): Using C = A−1.

(8) ⇒ (4): If A~x = ~0, then ~x = I~x = CA~x = C~0 = ~0 is the only solution.
Since ~x = ~0 is always a solution, then it is the only one.

(9) ⇒ (1): By reversing the roles of A and C in the previous argument, (9)
implies that C~x = ~0 has only the trivial solution, and we already know that
this implies C is invertible. Thus A is the inverse of C, and hence A is itself
invertible. �



The following is an important and useful consequence of the theorem.

Corollary
If A and B are n× n matrices such that AB = I, then BA = I. Furthermore,
A and B are invertible, with B = A−1 and A = B−1.

Remark
Important Fact In Corollary, it is essential that the matrices be square.



Theorem
If A and B are matrices such that AB = I and BA = I, then A and B are
square matrices (of the same size).



Example

Let A =

[
1 1 0

−1 4 1

]
and B =

 1 0
0 0
1 1

. Then

AB =

[
1 1 0

−1 4 1

] 1 0
0 0
1 1

 =

[
1 0
0 1

]
= I2

and

BA =

 1 0
0 0
1 1

[
1 1 0

−1 4 1

]
=

 1 1 0
0 0 0
0 5 1

 6= I3.

Remark
This example illustrates why “an inverse” of a non-square matrix doesn’t
make sense. If A is m × n and B is n × m, where m 6= n, then even if
AB = I, it will never be the case that BA = I.



Inverse of Transformations

Definition
Suppose T : Rn → Rn and S : Rn → Rn are transformations such that for
each ~x ∈ Rn,

(S ◦ T)(~x) = ~x and (T ◦ S)(~x) = ~x.

Then T and S are invertible transformations; S is called an inverse of T,
and T is called an inverse of S. (Geometrically, S reverses the action of T,
and T reverses the action of S.)

Theorem
Let T : Rn → Rn be a matrix transformation induced by matrix A. Then A
is invertible if and only if T has an inverse. In the case where T has an
inverse, the inverse is unique and is denoted T−1. Furthermore,
T−1 : Rn → Rn is induced by the matrix A−1.



Fundamental Identities relating T and T−1

1. T−1 ◦ T = 1Rn

2. T ◦ T−1 = 1Rn



Example

Let T : R2 7→ R2 be a transformation given by

T
[

x
y

]
=

[
x + y

y

]

Then T is a linear transformation induced by A =

[
1 1
0 1

]
.

Notice that the matrix A is invertible. Therefore the transformation T has
an inverse, T−1, induced by

A−1 =

[
1 −1
0 1

]



Example (continued)

Consider the action of T and T−1:

T
[

x
y

]
=

[
1 1
0 1

] [
x
y

]
=

[
x + y

y

]
;

T−1

[
x + y

y

]
=

[
1 −1
0 1

] [
x + y

y

]
=

[
x
y

]
.

Therefore,

T−1

(
T
[

x
y

])
=

[
x
y

]
.

�
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