Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra §2-4. Matrix Inverses

Le Chen¹

Emory University, 2020 Fall

(last updated on 10/26/2020)

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

Definition

For each $n \ge 2$, the $n \times n$ identity matrix, denoted I_n , is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $n \ge 2$.

Definition

For each $n \ge 2$, the $n \times n$ identity matrix, denoted I_n , is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $n \ge 2$.

Example

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Definition

Let $n \ge 2$. For each $j, 1 \le j \le n$, we denote by \vec{e}_j the j^{th} column of I_n .

Definition

Let $n \ge 2$. For each $j, 1 \le j \le n$, we denote by \vec{e}_j the j^{th} column of I_n .

Example

When
$$n = 3$$
, $\vec{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\vec{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\vec{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

Theorem

Let A be an $m \times n$ matrix. Then $AI_n = A$ and $I_m A = A$.

Theorem

Let A be an $m \times n$ matrix. Then $AI_n = A$ and $I_m A = A$.

Proof.

The (i, j)-entry of AI_n is the product of the i^{th} row of $A = [a_{ij}]$, namely $\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \end{bmatrix}$ with the j^{th} column of I_n , namely \vec{e}_j . Since \vec{e}_j has a one in row j and zeros elsewhere,

Since this is true for all $i \leq m$ and all $j \leq n$, $AI_n = A$.

The proof of $I_m A = A$ is analogous—work it out!

Instead of AI_n and I_mA we often write AI and IA, respectively, since the size of the identity matrix is clear from the context: the sizes of A and I must be compatible for matrix multiplication.

Instead of AI_n and I_mA we often write AI and IA, respectively, since the size of the identity matrix is clear from the context: the sizes of A and I must be compatible for matrix multiplication.

Thus

$$AI = A$$
 and $IA = A$

which is why I is called an identity matrix – it is an identity for matrix multiplication.

Definition (Matrix Inverses)

Let A be an $n\times n$ matrix. Then B is an inverse of A if and only if $AB=I_n$ and $BA=I_n.$

Definition (Matrix Inverses)

Let A be an $n\times n$ matrix. Then B is an inverse of A if and only if $AB=I_n$ and $BA=I_n.$

Remark

Note that since A and I_n are both $n\times n,$ B must also be an $n\times n$ matrix.

Definition (Matrix Inverses)

Let A be an $n\times n$ matrix. Then B is an inverse of A if and only if $AB=I_n$ and $BA=I_n.$

Remark

Note that since A and I_n are both $n \times n$, B must also be an $n \times n$ matrix.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$. Then
 $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Therefore, B is an inverse of A.

Does every square matrix have an inverse?

Does every square matrix have an inverse?

Solution

No! Take e.g. the zero matrix O_n (all entries of O_n are equal to 0)

$$AO_n = O_nA = O_n$$

for all $n \times n$ matrices A:

Does every square matrix have an inverse?

Solution

No! Take e.g. the zero matrix O_n (all entries of O_n are equal to 0)

$$AO_n = O_nA = O_n$$

for all $n \times n$ matrices A: The (i, j)-entry of $\mathbf{O}_{n}A$ is equal to $\sum_{k=1}^{n} 0a_{kj} = 0$.

Does every square matrix have an inverse?

Solution

No! Take e.g. the zero matrix O_n (all entries of O_n are equal to 0)

$$AO_n = O_nA = O_n$$

for all $n \times n$ matrices A: The (i, j)-entry of $\mathbf{O}_{n}A$ is equal to $\sum_{k=1}^{n} 0a_{kj} = 0$.

Problem

Does every nonzero square matrix have an inverse?

$\operatorname{Problem}$

Does the following matrix A have an inverse?

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right]$$

Does the following matrix A have an inverse?

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right]$$

Solution

No! To see this, suppose

$$\mathbf{B} = \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array} \right]$$

is an inverse of A.

Does the following matrix A have an inverse?

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right]$$

Solution

No! To see this, suppose

$$\mathbf{B} = \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array} \right]$$

is an inverse of A. Then

$$AB = \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[\begin{array}{cc} c & d \\ c & d \end{array} \right]$$

which is never equal to I_2 .

Does the following matrix A have an inverse?

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right]$$

Solution

No! To see this, suppose

$$\mathbf{B} = \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array} \right]$$

is an inverse of A. Then

$$AB = \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[\begin{array}{cc} c & d \\ c & d \end{array} \right]$$

which is never equal to I_2 . (Why?)

Theorem (Uniqueness of an Inverse)

If A is a square matrix and B and C are inverses of A, then B = C.

Theorem (Uniqueness of an Inverse) If A is a square matrix and B and C are inverses of A, then B = C.

Proof.

Since B and C are inverses of A, AB = I = BA and AC = I = CA. Then

C = CI = C(AB) = CAB

and

B = IB = (CA)B = CAB

so B = C.

Example (revisited)

For A =
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and B = $\begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$, we saw that
AB = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and BA = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The preceding theorem tells us that B is the inverse of A, rather than just an inverse of A.

Remark (notation)

Let A be a square matrix, i.e., an $n \times n$ matrix.

▶ The inverse of A, if it exists, is denoted A^{-1} , and

 $\mathrm{AA}^{-1} = \mathrm{I} = \mathrm{A}^{-1}\mathrm{A}$

Remark (notation)

Let A be a square matrix, i.e., an $n \times n$ matrix.

• The inverse of A, if it exists, is denoted A^{-1} , and

 $AA^{-1} = I = A^{-1}A$

▶ If A has an inverse, then we say that A is invertible.

Example

Suppose that
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

Example

Suppose that
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then there is a formula for A^{-1} :
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Example

Suppose that
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then there is a formula for A^{-1} :
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

This can easily be verified by computing the products AA^{-1} and $A^{-1}A$.

Example

Suppose that
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then there is a formula for A^{-1} :
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

This can easily be verified by computing the products AA^{-1} and $A^{-1}A$.

$$AA^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$= \frac{1}{ad - bc} \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \right)$$
$$= \frac{1}{ad - bc} \begin{bmatrix} ad - bc & 0 \\ 0 & -bc + ad \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Example

Suppose that
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then there is a formula for A^{-1} :
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

This can easily be verified by computing the products AA^{-1} and $A^{-1}A$.

$$AA^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$= \frac{1}{ad - bc} \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \right)$$
$$= \frac{1}{ad - bc} \begin{bmatrix} ad - bc & 0 \\ 0 & -bc + ad \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Showing that $A^{-1}A = I_2$ is left as an exercise.

Remark

Here are some terminology related to this example:

1. Determinant:

$$det \begin{pmatrix} a & b \\ c & d \end{pmatrix} := ad - cd$$

2. Adjugate:

$$\operatorname{adj} \begin{pmatrix} a & b \\ c & d \end{pmatrix} := \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$\operatorname{Problem}$

Suppose that A is any $n \times n$ matrix.

$\operatorname{Problem}$

Suppose that A is any $n\times n$ matrix.

• How do we know whether or not A^{-1} exists?

Suppose that A is any $n \times n$ matrix.

- ▶ How do we know whether or not A^{-1} exists?
- ▶ If A^{-1} exists, how do we find it?

Problem

Suppose that A is any $n \times n$ matrix.

- How do we know whether or not A^{-1} exists?
- ▶ If A^{-1} exists, how do we find it?

Solution

The matrix inversion algorithm!

Problem

Suppose that A is any $n\times n$ matrix.

- How do we know whether or not A^{-1} exists?
- ▶ If A^{-1} exists, how do we find it?

Solution

The matrix inversion algorithm!

Although the formula for the inverse of a 2×2 matrix is quicker and easier to use than the matrix inversion algorithm, the general formula for the inverse an $n \times n$ matrix, $n \ge 3$ (which we will see later), is more complicated and difficult to use than the matrix inversion algorithm. To find inverses of square matrices that are not 2×2 , the matrix inversion algorithm is the most efficient method to use.

The Matrix Inversion Algorithm

Let A be an $n \times n$ matrix. To find A^{-1} , if it exists,

Step 1 take the $n \times 2n$ matrix

 $\left[\begin{array}{c|c} A & I_n \end{array} \right]$

obtained by augmenting A with the $n \times n$ identity matrix, I_n .

Step 2 Perform elementary row operations to transform [A | I_n] into a reduced row-echelon matrix.

The Matrix Inversion Algorithm

Let A be an $n \times n$ matrix. To find A^{-1} , if it exists,

Step 1 take the $n \times 2n$ matrix

$$\left[\begin{array}{c|c} A & I_n \end{array} \right]$$

obtained by augmenting A with the $n \times n$ identity matrix, I_n .

Step 2 Perform elementary row operations to transform [A | $I_{\rm n}$] into a reduced row-echelon matrix.

Theorem (Matrix Inverses)

Let A be an $n \times n$ matrix. Then the following conditions are equivalent.

- 1. A is invertible.
- 2. the reduced row-echelon form on A is I.
- 3. $\begin{bmatrix} A & I_n \end{bmatrix}$ can be transformed into $\begin{bmatrix} I_n & A^{-1} \end{bmatrix}$ using the Matrix Inversion Algorithm.

Problem

Find, if possible, the inverse of

$$\left[\begin{array}{rrrr} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{array}\right]$$

Find, if possible, the inverse of

$$\left[\begin{array}{rrrr} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{array}\right]$$

Solution

Find, if possible, the inverse of

$$\left[\begin{array}{rrrr} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{array}\right]$$

Solution

Find, if possible, the inverse of

$$\begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$

Solution

$$\left[\begin{array}{ccc|c} 1 & 0 & -1 & 1 & 0 & 0 \\ -2 & 1 & 3 & 0 & 1 & 0 \\ -1 & 1 & 2 & 0 & 0 & 1 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \end{array}\right]$$

Find, if possible, the inverse of

$$f \begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$

Solution

Using the matrix inversion algorithm

$$\begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ -2 & 1 & 3 & | & 0 & 1 & 0 \\ -1 & 1 & 2 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 0 & 0 & | & -1 & -1 & 1 \end{bmatrix}$$

From this, we see that A has no inverse.

Problem

Let
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
. Find the inverse of A, if it exists

Solution

Solution

$$\begin{bmatrix} A & | I \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 & | 1 & 0 & 0 \\ 1 & -1 & 3 & | 0 & 1 & 0 \\ 1 & 2 & 4 & | 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & | 0 & 1 & 0 \\ 3 & 1 & 2 & | 1 & 0 & 0 \\ 1 & 2 & 4 & | 0 & 0 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & -1 & 3 & | 0 & 1 & 0 \\ 0 & 4 & -7 & | 1 & -3 & 0 \\ 0 & 3 & 1 & | 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & | 0 & 1 & 0 \\ 0 & 1 & -8 & | 1 & -2 & -1 \\ 0 & 3 & 1 & | 0 & -1 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & -5 & | 1 & -1 & -1 \\ 0 & 1 & -8 & | 1 & -2 & -1 \\ 0 & 0 & 25 & | -3 & 5 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -5 & | 1 & -1 & -1 \\ 0 & 1 & -8 & | 1 & -2 & -1 \\ 0 & 0 & 1 & | -\frac{3}{25} & \frac{5}{25} & \frac{4}{25} \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & | \frac{10}{25} & 0 & -\frac{5}{25} \\ 0 & 1 & 0 & | \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\ 0 & 0 & 1 & | -\frac{3}{25} & \frac{5}{25} & \frac{4}{25} \end{bmatrix} = \begin{bmatrix} I & | A^{-1} \end{bmatrix}$$

Solution (continued)

Therefore, A^{-1} exists, and

$$\mathbf{A}^{-1} = \begin{bmatrix} \frac{10}{25} & 0 & -\frac{5}{25} \\ \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\ -\frac{3}{25} & \frac{5}{25} & \frac{4}{25} \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 10 & 0 & -5 \\ 1 & -10 & 7 \\ -3 & 5 & 4 \end{bmatrix}$$

Solution (continued)

Therefore, A^{-1} exists, and

$$\mathbf{A}^{-1} = \begin{bmatrix} \frac{10}{25} & 0 & -\frac{5}{25} \\ \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\ -\frac{3}{25} & \frac{5}{25} & \frac{4}{25} \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 10 & 0 & -5 \\ 1 & -10 & 7 \\ -3 & 5 & 4 \end{bmatrix}$$

You can check your work by computing AA^{-1} and $A^{-1}A$.

Suppose that a system of n linear equations in n variables is written in matrix form as $A\vec{x} = \vec{b}$, and suppose that A is invertible.

Suppose that a system of n linear equations in n variables is written in matrix form as $A\vec{x} = \vec{b}$, and suppose that A is invertible.

Example

The system of linear equations

$$2x - 7y = 3$$

 $5x - 18y = 8$

can be written in matrix form as $A\vec{x} = \vec{b}$:

$$\left[\begin{array}{cc} 2 & -7\\ 5 & -18 \end{array}\right] \left[\begin{array}{c} x\\ y \end{array}\right] = \left[\begin{array}{c} 3\\ 8 \end{array}\right]$$

Suppose that a system of n linear equations in n variables is written in matrix form as $A\vec{x} = \vec{b}$, and suppose that A is invertible.

Example

The system of linear equations

$$2x - 7y = 3$$

 $5x - 18y = 8$

can be written in matrix form as $A\vec{x} = \vec{b}$:

$$\begin{bmatrix} 2 & -7 \\ 5 & -18 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \end{bmatrix}$$

You can check that $A^{-1} = \begin{bmatrix} 18 & -7 \\ 5 & -2 \end{bmatrix}$.

$$A\vec{x} = \vec{b}$$

$$\begin{array}{rcl} \mathbf{A}\vec{\mathbf{x}} &=& \vec{\mathbf{b}}\\ \mathbf{A}^{-1}(\mathbf{A}\vec{\mathbf{x}}) &=& \mathbf{A}^{-1}\vec{\mathbf{b}} \end{array}$$

$$\begin{aligned} \mathbf{A} \vec{\mathbf{x}} &= \vec{\mathbf{b}} \\ \mathbf{A}^{-1}(\mathbf{A} \vec{\mathbf{x}}) &= \mathbf{A}^{-1} \vec{\mathbf{b}} \\ \vec{\mathbf{x}} \mathbf{A}^{-1} \mathbf{A}) \vec{\mathbf{x}} &= \mathbf{A}^{-1} \vec{\mathbf{b}} \end{aligned}$$

$$\begin{aligned} \mathbf{A}\vec{\mathbf{x}} &= \vec{\mathbf{b}} \\ \mathbf{A}^{-1}(\mathbf{A}\vec{\mathbf{x}}) &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \mathbf{A}^{-1}\mathbf{A})\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \mathbf{I}\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \end{aligned}$$

$$\begin{aligned} \mathbf{A}\vec{\mathbf{x}} &= \vec{\mathbf{b}} \\ \mathbf{A}^{-1}(\mathbf{A}\vec{\mathbf{x}}) &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ (\mathbf{A}^{-1}\mathbf{A})\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \mathbf{I}\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \end{aligned}$$

Since A^{-1} exists and has the property that $A^{-1}A = I$, we obtain the following.

$$\begin{aligned} \mathbf{A}\vec{\mathbf{x}} &= \vec{\mathbf{b}} \\ \mathbf{A}^{-1}(\mathbf{A}\vec{\mathbf{x}}) &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \mathbf{A}^{-1}\mathbf{A})\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \mathbf{I}\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \end{aligned}$$

i.e., $A\vec{x} = \vec{b}$ has the unique solution given by $\vec{x} = A^{-1}\vec{b}$.

Since A^{-1} exists and has the property that $A^{-1}A = I$, we obtain the following.

$$\begin{aligned} \mathbf{A}\vec{\mathbf{x}} &= \vec{\mathbf{b}} \\ \mathbf{A}^{-1}(\mathbf{A}\vec{\mathbf{x}}) &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \mathbf{A}^{-1}\mathbf{A})\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \mathbf{I}\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \end{aligned}$$

i.e., $A\vec{x} = \vec{b}$ has the unique solution given by $\vec{x} = A^{-1}\vec{b}$. Therefore,

$$\vec{\mathbf{x}} = \mathbf{A}^{-1} \begin{bmatrix} 3\\8 \end{bmatrix} = \begin{bmatrix} 18&-7\\5&-2 \end{bmatrix} \begin{bmatrix} 3\\8 \end{bmatrix} = \begin{bmatrix} -2\\-1 \end{bmatrix}$$

Since A^{-1} exists and has the property that $A^{-1}A = I$, we obtain the following.

$$\begin{aligned} \mathbf{A}\vec{\mathbf{x}} &= \vec{\mathbf{b}} \\ \mathbf{A}^{-1}(\mathbf{A}\vec{\mathbf{x}}) &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \mathbf{A}^{-1}\mathbf{A})\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \mathbf{I}\vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \\ \vec{\mathbf{x}} &= \mathbf{A}^{-1}\vec{\mathbf{b}} \end{aligned}$$

i.e., $A\vec{x} = \vec{b}$ has the unique solution given by $\vec{x} = A^{-1}\vec{b}$. Therefore,

$$\vec{\mathbf{x}} = \mathbf{A}^{-1} \begin{bmatrix} 3\\8 \end{bmatrix} = \begin{bmatrix} 18&-7\\5&-2 \end{bmatrix} \begin{bmatrix} 3\\8 \end{bmatrix} = \begin{bmatrix} -2\\-1 \end{bmatrix}$$

You should verify that x = -2, y = -1 is a solution to the system.

Remark

The last example illustrates another method for solving a system of linear equations when the coefficient matrix is square and invertible.

Remark

The last example illustrates another method for solving a system of linear equations when the coefficient matrix is square and invertible. Unless that coefficient matrix is 2×2 , this is generally NOT an efficient method for solving a system of linear equations.

Let A, B and C be matrices, and suppose that A is invertible.

Let A, B and C be matrices, and suppose that A is invertible.

1. If AB = AC, then

 $A^{-1}(AB) = A^{-1}(AC)$

Let A, B and C be matrices, and suppose that A is invertible.

$$A^{-1}(AB) = A^{-1}(AC)$$
$$(A^{-1}A)B = (A^{-1}A)C$$

Let A, B and C be matrices, and suppose that A is invertible.

$$A^{-1}(AB) = A^{-1}(AC)$$
$$(A^{-1}A)B = (A^{-1}A)C$$
$$IB = IC$$

Let A, B and C be matrices, and suppose that A is invertible.

$$A^{-1}(AB) = A^{-1}(AC)$$
$$(A^{-1}A)B = (A^{-1}A)C$$
$$IB = IC$$
$$B = C$$

Let A, B and C be matrices, and suppose that A is invertible.

1. If AB = AC, then

$$A^{-1}(AB) = A^{-1}(AC)$$
$$(A^{-1}A)B = (A^{-1}A)C$$
$$IB = IC$$
$$B = C$$

2. If BA = CA, then

Let A, B and C be matrices, and suppose that A is invertible. 1. If AB = AC, then

$$A^{-1}(AB) = A^{-1}(AC)$$
$$(A^{-1}A)B = (A^{-1}A)C$$
$$IB = IC$$
$$B = C$$

2. If BA = CA, then

$$\begin{array}{rcl} (BA)A^{-1} & = & (CA)A^{-1}\\ B(AA^{-1}) & = & C(AA^{-1})\\ BI & = & CI\\ B & = & C\end{array}$$

Let A, B and C be matrices, and suppose that A is invertible.

1. If AB = AC, then

$$A^{-1}(AB) = A^{-1}(AC)$$
$$(A^{-1}A)B = (A^{-1}A)C$$
$$IB = IC$$
$$B = C$$

2. If BA = CA, then

$$(BA)A^{-1} = (CA)A^{-1}$$
$$B(AA^{-1}) = C(AA^{-1})$$
$$BI = CI$$
$$B = C$$

Problem

Can you find square matrices A, B and C for which AB = AC but $B \neq C$?

Example

Suppose A is an invertible matrix. Then

$$\mathbf{A}^{\mathrm{T}}(\mathbf{A}^{-1})^{\mathrm{T}} =$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} =$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} =$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

$$(A^{-1})^{\mathrm{T}}A^{\mathrm{T}}$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

$$(\mathbf{A}^{-1})^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} = (\mathbf{A}\mathbf{A}^{-1})^{\mathrm{T}}$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T$$

Example

Suppose A is an invertible matrix. Then

$$\mathbf{A}^{\mathrm{T}}(\mathbf{A}^{-1})^{\mathrm{T}} = (\mathbf{A}^{-1}\mathbf{A})^{\mathrm{T}} = \mathbf{I}^{\mathrm{T}} = \mathbf{I}$$

and

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

Suppose A is an invertible matrix. Then

$$\mathbf{A}^{\mathrm{T}}(\mathbf{A}^{-1})^{\mathrm{T}} = (\mathbf{A}^{-1}\mathbf{A})^{\mathrm{T}} = \mathbf{I}^{\mathrm{T}} = \mathbf{I}$$

and

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

Suppose A and B are invertible $n \times n$ matrices. Then

 $(AB)(B^{-1}A^{-1})$

Example

Suppose A is an invertible matrix. Then

$$\mathbf{A}^{\mathrm{T}}(\mathbf{A}^{-1})^{\mathrm{T}} = (\mathbf{A}^{-1}\mathbf{A})^{\mathrm{T}} = \mathbf{I}^{\mathrm{T}} = \mathbf{I}$$

and

$$(A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

and

$$(A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1}$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

and

$$(A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1}$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

and

$$(A^{-1})^{T}A^{T} = (AA^{-1})^{T} = I^{T} = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

Example

Suppose A is an invertible matrix. Then

$$\mathbf{A}^{\mathrm{T}}(\mathbf{A}^{-1})^{\mathrm{T}} = (\mathbf{A}^{-1}\mathbf{A})^{\mathrm{T}} = \mathbf{I}^{\mathrm{T}} = \mathbf{I}$$

and

$$(A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

Suppose A and B are invertible $n \times n$ matrices. Then

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

$$(B^{-1}A^{-1})(AB)$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

and

$$(A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

Suppose A and B are invertible $n \times n$ matrices. Then

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$$

Example

Suppose A is an invertible matrix. Then

$$\mathbf{A}^{\mathrm{T}}(\mathbf{A}^{-1})^{\mathrm{T}} = (\mathbf{A}^{-1}\mathbf{A})^{\mathrm{T}} = \mathbf{I}^{\mathrm{T}} = \mathbf{I}$$

and

$$(A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

Suppose A and B are invertible $n \times n$ matrices. Then

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB$$

Example

Suppose A is an invertible matrix. Then

$$\mathbf{A}^{\mathrm{T}}(\mathbf{A}^{-1})^{\mathrm{T}} = (\mathbf{A}^{-1}\mathbf{A})^{\mathrm{T}} = \mathbf{I}^{\mathrm{T}} = \mathbf{I}$$

and

$$(A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

Suppose A and B are invertible $n \times n$ matrices. Then

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

and

$$(\mathbf{A}^{-1})^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} = (\mathbf{A}\mathbf{A}^{-1})^{\mathrm{T}} = \mathbf{I}^{\mathrm{T}} = \mathbf{I}$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

Suppose A and B are invertible $n \times n$ matrices. Then

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$

Example

Suppose A is an invertible matrix. Then

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

and

$$(A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} = I$$

This means that $(A^{T})^{-1} = (A^{-1})^{T}$

Example

Suppose A and B are invertible $n \times n$ matrices. Then

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

and

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$

This means that $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem (Properties of Inverses)

1. If A is an invertible matrix, then $(A^T)^{-1} = (A^{-1})^T$.

Theorem (Properties of Inverses)

- 1. If A is an invertible matrix, then $(A^T)^{-1} = (A^{-1})^T$.
- 2. If A and B are invertible matrices, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

Theorem (Properties of Inverses)

- 1. If A is an invertible matrix, then $(A^T)^{-1} = (A^{-1})^T$.
- 2. If A and B are invertible matrices, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

3. If A_1, A_2, \ldots, A_k are invertible, then $A_1 A_2 \cdots A_k$ is invertible and

$$(A_1A_2\cdots A_k)^{-1} = A_k^{-1}A_{k-1}^{-1}\cdots A_2^{-1}A_1^{-1}$$

(the third part is proved by iterating the above, or, more formally, by using the mathematical induction)

1. I is invertible, and $I^{-1} = I$.

- 1. I is invertible, and $I^{-1} = I$.
- 2. If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.

- 1. I is invertible, and $I^{-1} = I$.
- 2. If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- If A is invertible, so is A^k, and (A^k)⁻¹ = (A⁻¹)^k.
 (A^k means A multiplied by itself k times)

- 1. I is invertible, and $I^{-1} = I$.
- 2. If A is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- 3. If A is invertible, so is A^k , and $(A^k)^{-1} = (A^{-1})^k$. (A^k means A multiplied by itself k times)
- 4. If A is invertible and $p \in \mathbb{R}$ is nonzero, then pA is invertible, and $(pA)^{-1} = \frac{1}{p}A^{-1}$.

Given
$$(3I - A^T)^{-1} = 2 \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
, we wish to find the matrix A.

$$3I - A^{T} = \left(2 \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array}\right]\right)^{-}$$

$$3\mathbf{I} - \mathbf{A}^{\mathrm{T}} = \left(2\begin{bmatrix}1&1\\2&3\end{bmatrix}\right)^{-1}$$
$$= \frac{1}{2}\begin{bmatrix}1&1\\2&3\end{bmatrix}^{-1}$$

$$3\mathbf{I} - \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 2\begin{bmatrix} 1 & 1\\ 2 & 3 \end{bmatrix} \end{pmatrix}^{-1}$$
$$= \frac{1}{2} \begin{bmatrix} 1 & 1\\ 2 & 3 \end{bmatrix}^{-1}$$
$$= \frac{1}{2} \begin{bmatrix} 3 & -1\\ -2 & 1 \end{bmatrix}$$

$$3I - A^{T} = \left(2\begin{bmatrix}1 & 1\\ 2 & 3\end{bmatrix}\right)^{-1}$$
$$= \frac{1}{2}\begin{bmatrix}1 & 1\\ 2 & 3\end{bmatrix}^{-1}$$
$$= \frac{1}{2}\begin{bmatrix}3 & -1\\ -2 & 1\end{bmatrix}$$
$$= \begin{bmatrix}\frac{3}{2} & -\frac{1}{2}\\ -1 & \frac{1}{2}\end{bmatrix}$$

Example (continued)

$$3\mathbf{I} - \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix}$$

Example (continued)

$$BI - A^{T} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix}$$
$$-A^{T} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} - 3I$$

Example (continued)

$$\begin{aligned} \mathbf{B}\mathbf{I} - \mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} \\ -\mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} - 3\mathbf{I} \\ -\mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \end{aligned}$$

$$\begin{aligned} \mathbf{H} - \mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} \\ -\mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} - 3\mathbf{I} \\ -\mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \\ -\mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} -\frac{3}{2} & -\frac{1}{2} \\ -1 & -\frac{5}{2} \end{bmatrix} \end{aligned}$$

$$\begin{split} \mathbf{I} - \mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} \\ -\mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} - 3\mathbf{I} \\ -\mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \\ -\mathbf{A}^{\mathrm{T}} &= \begin{bmatrix} -\frac{3}{2} & -\frac{1}{2} \\ -1 & -\frac{5}{2} \end{bmatrix} \\ \mathbf{A} &= \begin{bmatrix} \frac{3}{2} & 1 \\ \frac{1}{2} & \frac{5}{2} \end{bmatrix} \end{split}$$

True or false? Justify your answer.

If $A^3 = 4I$, then A is invertible.

True or false? Justify your answer.

If $A^3 = 4I$, then A is invertible.

Solution

If $A^3 = 4I$, then

$$\frac{1}{4}A^3 = 1$$

True or false? Justify your answer.

If $A^3 = 4I$, then A is invertible.

Solution

If $A^3 = 4I$, then

$$\frac{1}{4}A^3 = I$$

 \mathbf{so}

$$(\frac{1}{4}A^2)A=I \quad and \quad$$

True or false? Justify your answer.

If $A^3 = 4I$, then A is invertible.

Solution

If $A^3 = 4I$, then

$$\frac{1}{4}A^3 = I$$

 \mathbf{so}

$$(\frac{1}{4}A^2)A = I$$
 and $A(\frac{1}{4}A^2) = I.$

True or false? Justify your answer.

If $A^3 = 4I$, then A is invertible.

Solution

If $A^3 = 4I$, then

$$\frac{1}{4}A^3 = I$$

 \mathbf{so}

$$(\frac{1}{4}A^2)A = I$$
 and $A(\frac{1}{4}A^2) = I.$

Therefore, A is invertible, and $A^{-1} = \frac{1}{4}A^2$.

- 1. A is invertible.
- 2. The rank of A is n.
- 3. The reduced row echelon form of A is I_n .
- 4. $A\vec{x} = \vec{0}$ has only the trivial solution, $\vec{x} = \vec{0}$.
- 5. A can be transformed to $\mathrm{I_n}$ by elementary row operations.

- 1. A is invertible.
- 2. The rank of A is n.
- 3. The reduced row echelon form of A is I_n .
- 4. $A\vec{x} = \vec{0}$ has only the trivial solution, $\vec{x} = \vec{0}$.
- 5. A can be transformed to $\mathrm{I_n}$ by elementary row operations.
- 6. The system $A\vec{x} = \vec{b}$ has a unique solution \vec{x} for any choice of \vec{b} .

- 1. A is invertible.
- 2. The rank of A is n.
- 3. The reduced row echelon form of A is I_n .
- 4. $A\vec{x} = \vec{0}$ has only the trivial solution, $\vec{x} = \vec{0}$.
- 5. A can be transformed to $\mathrm{I_n}$ by elementary row operations.
- 6. The system $A\vec{x} = \vec{b}$ has a unique solution \vec{x} for any choice of \vec{b} .
- 7. The system $A\vec{x} = \vec{b}$ has at least one solution \vec{x} for any choice of \vec{b} .

- 1. A is invertible.
- 2. The rank of A is n.
- 3. The reduced row echelon form of A is I_n .
- 4. $A\vec{x} = \vec{0}$ has only the trivial solution, $\vec{x} = \vec{0}$.
- 5. A can be transformed to $\mathrm{I_n}$ by elementary row operations.
- 6. The system $A\vec{x} = \vec{b}$ has a unique solution \vec{x} for any choice of \vec{b} .
- 7. The system $A\vec{x} = \vec{b}$ has at least one solution \vec{x} for any choice of \vec{b} .
- 8. There exists an $n \times n$ matrix C with the property that $CA = I_n$.

- 1. A is invertible.
- 2. The rank of A is n.
- 3. The reduced row echelon form of A is I_n .
- 4. $A\vec{x} = \vec{0}$ has only the trivial solution, $\vec{x} = \vec{0}$.
- 5. A can be transformed to $\mathrm{I_n}$ by elementary row operations.
- 6. The system $A\vec{x} = \vec{b}$ has a unique solution \vec{x} for any choice of \vec{b} .
- 7. The system $A\vec{x} = \vec{b}$ has at least one solution \vec{x} for any choice of \vec{b} .
- 8. There exists an $n \times n$ matrix C with the property that $CA = I_n$.
- 9. There exists an $n \times n$ matrix C with the property that $AC = I_n$.

(1), (2), (4), (5) and (6) are all equivalent to (3) since each involves transforming A to its RREF, and A being square, to verifying whether the identity matrix is obtained.

(1), (2), (4), (5) and (6) are all equivalent to (3) since each involves transforming A to its RREF, and A being square, to verifying whether the identity matrix is obtained.

(6) \Rightarrow (7) is clear. As for (7) \Rightarrow (8), let \vec{c}_j be one of the solution of $A\vec{x} = \vec{e}_j$. The

$$A[\vec{c}_1,\cdots,\vec{c}_n]=[\vec{e}_1,\cdots,\vec{e}_n]=I$$

Hence, (8) holds with $C = [\vec{c}_1, \cdots, \vec{c}_n].$

(1), (2), (4), (5) and (6) are all equivalent to (3) since each involves transforming A to its RREF, and A being square, to verifying whether the identity matrix is obtained.

(6) \Rightarrow (7) is clear. As for (7) \Rightarrow (8), let \vec{c}_j be one of the solution of $A\vec{x} = \vec{e}_j$. The

$$A[\vec{c}_1,\cdots,\vec{c}_n]=[\vec{e}_1,\cdots,\vec{e}_n]=I$$

Hence, (8) holds with $C = [\vec{c}_1, \cdots, \vec{c}_n].$

(1) \Rightarrow (8) and (9): Using C = A⁻¹.

(1), (2), (4), (5) and (6) are all equivalent to (3) since each involves transforming A to its RREF, and A being square, to verifying whether the identity matrix is obtained.

(6) \Rightarrow (7) is clear. As for (7) \Rightarrow (8), let \vec{c}_j be one of the solution of $A\vec{x} = \vec{e}_j$. The

$$A[\vec{c}_1,\cdots,\vec{c}_n]=[\vec{e}_1,\cdots,\vec{e}_n]=I$$

Hence, (8) holds with $C = [\vec{c}_1, \cdots, \vec{c}_n].$

(1) \Rightarrow (8) and (9): Using $C = A^{-1}$.

(8) \Rightarrow (4): If $A\vec{x} = \vec{0}$, then $\vec{x} = I\vec{x} = CA\vec{x} = C\vec{0} = \vec{0}$ is the only solution. Since $\vec{x} = \vec{0}$ is always a solution, then it is the only one.

(1), (2), (4), (5) and (6) are all equivalent to (3) since each involves transforming A to its RREF, and A being square, to verifying whether the identity matrix is obtained.

(6) \Rightarrow (7) is clear. As for (7) \Rightarrow (8), let \vec{c}_j be one of the solution of $A\vec{x} = \vec{e}_j$. The

$$A[\vec{c}_1,\cdots,\vec{c}_n]=[\vec{e}_1,\cdots,\vec{e}_n]=I$$

Hence, (8) holds with $C = [\vec{c}_1, \cdots, \vec{c}_n].$

(1) \Rightarrow (8) and (9): Using $C = A^{-1}$.

(8) \Rightarrow (4): If $A\vec{x} = \vec{0}$, then $\vec{x} = I\vec{x} = CA\vec{x} = C\vec{0} = \vec{0}$ is the only solution. Since $\vec{x} = \vec{0}$ is always a solution, then it is the only one.

 $(9) \Rightarrow (1)$: By reversing the roles of A and C in the previous argument, (9) implies that $C\vec{x} = \vec{0}$ has only the trivial solution, and we already know that this implies C is invertible. Thus A is the inverse of C, and hence A is itself invertible.

The following is an important and useful consequence of the theorem.

The following is an important and useful consequence of the theorem.

Corollary

If A and B are $n \times n$ matrices such that AB = I, then BA = I. Furthermore, A and B are invertible, with $B = A^{-1}$ and $A = B^{-1}$.

The following is an important and useful consequence of the theorem.

Corollary

If A and B are $n \times n$ matrices such that AB = I, then BA = I. Furthermore, A and B are invertible, with $B = A^{-1}$ and $A = B^{-1}$.

Remark

Important Fact In Corollary, it is essential that the matrices be square.

If A and B are matrices such that AB = I and BA = I, then A and B are square matrices (of the same size).

Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$.

Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$. Then
 $AB = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$

Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$. Then
 $AB = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$

Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$. Then
 $AB = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$

and

$$BA = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$. Then
 $AB = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$

and

$$BA = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 5 & 1 \end{bmatrix} \neq I_3.$$

Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$. Then
 $AB = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$
and
 $BA = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$

$$BA = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 5 & 1 \end{bmatrix} \neq I_3.$$

Remark

This example illustrates why "an inverse" of a non-square matrix doesn't make sense. If A is $m \times n$ and B is $n \times m$, where $m \neq n$, then even if AB = I, it will never be the case that BA = I.

Definition

Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ and $S : \mathbb{R}^n \to \mathbb{R}^n$ are transformations such that for each $\vec{x} \in \mathbb{R}^n$,

Definition

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^n$ are transformations such that for each $\vec{x} \in \mathbb{R}^n$,

 $(S \circ T)(\vec{x}) = \vec{x}$ and $(T \circ S)(\vec{x}) = \vec{x}$.

Definition

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^n$ are transformations such that for each $\vec{x} \in \mathbb{R}^n$,

 $(S \circ T)(\vec{x}) = \vec{x}$ and $(T \circ S)(\vec{x}) = \vec{x}$.

Then T and S are invertible transformations;

Definition

Suppose $T:\mathbb{R}^n\to\mathbb{R}^n$ and $S:\mathbb{R}^n\to\mathbb{R}^n$ are transformations such that for each $\vec{x}\in\mathbb{R}^n,$

 $(S \circ T)(\vec{x}) = \vec{x} \quad \text{and} \quad (T \circ S)(\vec{x}) = \vec{x}.$

Then T and S are invertible transformations; S is called an inverse of T,

Definition

Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ and $S : \mathbb{R}^n \to \mathbb{R}^n$ are transformations such that for each $\vec{x} \in \mathbb{R}^n$,

 $(S \circ T)(\vec{x}) = \vec{x}$ and $(T \circ S)(\vec{x}) = \vec{x}$.

Then T and S are invertible transformations; S is called an inverse of T, and T is called an inverse of S. (Geometrically, S reverses the action of T, and T reverses the action of S.)

Definition

Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^n$ are transformations such that for each $\vec{x} \in \mathbb{R}^n$,

 $(S \circ T)(\vec{x}) = \vec{x}$ and $(T \circ S)(\vec{x}) = \vec{x}$.

Then T and S are invertible transformations; S is called an inverse of T, and T is called an inverse of S. (Geometrically, S reverses the action of T, and T reverses the action of S.)

Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a matrix transformation induced by matrix A. Then A is invertible if and only if T has an inverse. In the case where T has an inverse, the inverse is unique and is denoted T^{-1} . Furthermore, $T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is induced by the matrix A^{-1} .

Fundamental Identities relating T and T^{-1}

- 1. $\mathrm{T}^{-1} \circ \mathrm{T} = 1_{\mathbb{R}^n}$
- 2. $T \circ T^{-1} = 1_{\mathbb{R}^n}$

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a transformation given by

$$T\left[\begin{array}{c} x\\ y\end{array}\right] = \left[\begin{array}{c} x+y\\ y\end{array}\right]$$

Then T is a linear transformation induced by $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Let $T : \mathbb{R}^2 \mapsto \mathbb{R}^2$ be a transformation given by

$$T\left[\begin{array}{c} x\\ y\end{array}\right] = \left[\begin{array}{c} x+y\\ y\end{array}\right]$$

Then T is a linear transformation induced by $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Notice that the matrix A is invertible. Therefore the transformation T has an inverse, T^{-1} , induced by

$$\mathbf{A}^{-1} = \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right]$$

Consider the action of T and T^{-1} :

Consider the action of T and T^{-1} :

$$\mathbf{T} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{x} + \mathbf{y} \\ \mathbf{y} \end{bmatrix};$$

Consider the action of T and T^{-1} :

$$T\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} 1 & 1\\ 0 & 1\end{bmatrix} \begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} x+y\\ y\end{bmatrix};$$
$$T^{-1}\begin{bmatrix} x+y\\ y\end{bmatrix} = \begin{bmatrix} 1 & -1\\ 0 & 1\end{bmatrix} \begin{bmatrix} x+y\\ y\end{bmatrix} = \begin{bmatrix} x\\ y\end{bmatrix}.$$

Consider the action of T and T^{-1} :

$$T\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} 1 & 1\\ 0 & 1\end{bmatrix} \begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} x+y\\ y\end{bmatrix};$$
$$\Gamma^{-1}\begin{bmatrix} x+y\\ y\end{bmatrix} = \begin{bmatrix} 1 & -1\\ 0 & 1\end{bmatrix} \begin{bmatrix} x+y\\ y\end{bmatrix} = \begin{bmatrix} x\\ y\end{bmatrix}.$$

Therefore,

$$T^{-1}\left(T\left[\begin{array}{c} x\\ y\end{array}\right]\right)=\left[\begin{array}{c} x\\ y\end{array}\right].$$