Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra §2-5. Elementary Matrices

 ${\bf Le} \ {\bf Chen}^1$ Emory University, 2020 Fall

(last updated on 10/26/2020)

Inverses of elementary matrices

Smith Normal Form

Definition

An elementary matrix is a matrix obtained from an identity matrix by performing a single elementary row operation.

Definition

An elementary matrix is a matrix obtained from an identity matrix by performing a single elementary row operation. The type of an elementary matrix is given by the type of row operation used to obtain the elementary matrix.

Definition

An elementary matrix is a matrix obtained from an identity matrix by performing a single elementary row operation. The type of an elementary matrix is given by the type of row operation used to obtain the elementary matrix.

Remark

Three Types of Elementary Row Operations

- ► Type I: Interchange two rows.
- ► Type II: Multiply a row by a nonzero number.
- ► Type III: Add a (nonzero) multiple of one row to a different row.

$$E = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right], F = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right], G = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right],$$

are examples of elementary matrices of types I, II and III, respectively.

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

are examples of elementary matrices of types I, II and III, respectively. Let

$$A = \begin{bmatrix} 2 & 2 \\ 3 & 2 \\ 4 & 4 \end{bmatrix}$$

$$E = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right], F = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right], G = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right],$$

are examples of elementary matrices of types I, II and III, respectively. Let

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix}$$

We are interested in the effect that (left) multiplication of A by E, F and G has on the matrix A.

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

are examples of elementary matrices of types I, II and III, respectively. Let

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix}$$

We are interested in the effect that (left) multiplication of A by E, F and G has on the matrix A. Computing EA, FA, and GA ...

$$EA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix}$$

$$EA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix}$$

$$FA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ -6 & -6 \\ 4 & 4 \end{bmatrix}$$

$$EA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix}$$

$$FA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ -6 & -6 \\ 4 & 4 \end{bmatrix}$$

$$GA = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 4 \end{bmatrix} \begin{bmatrix} 4 & 4 \end{bmatrix} \begin{bmatrix} 4 & 4 \end{bmatrix}$$

$$GA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 0 & 0 \\ 4 & 4 \end{bmatrix}$$

$$\begin{aligned} \operatorname{EA} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix} \\ \operatorname{FA} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ -6 & -6 \\ 4 & 4 \end{bmatrix} \\ \operatorname{GA} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 0 & 0 \\ 4 & 4 \end{bmatrix} \end{aligned}$$

Remark

Notice that EA is the matrix obtained from A by interchanging row 2 and row 4,

$$EA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix}$$

$$FA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ -6 & -6 \\ 4 & 4 \end{bmatrix}$$

$$GA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 0 & 0 \\ 4 & 4 \end{bmatrix}$$

Remark

Notice that EA is the matrix obtained from A by interchanging row 2 and row 4, which is the same row operation used to obtain E from I_4 .

$$EA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix}$$

$$FA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ -6 & -6 \\ 4 & 4 \end{bmatrix}$$

$$GA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 0 & 0 \\ 4 & 4 \end{bmatrix}$$

Remark

Notice that EA is the matrix obtained from A by interchanging row 2 and row 4, which is the same row operation used to obtain E from I₄. What about FA and GA?

Theorem (Multiplication by an Elementary Matrix)

Let A be an $m \times n$ matrix.

If B is obtained from A by performing one single elementary row operation,

then B = EA

where E is the elementary matrix obtained from I_m by performing the same elementary operation on I_m as was performed on A.

$$\begin{array}{ccc} A \longrightarrow B \\ & \text{El. Op.} & \Longrightarrow & A = EB \\ I \longrightarrow E \end{array}$$

Let

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 \\ 2 & -1 \end{bmatrix}$$

Find elementary matrices E and F so that C = FEA.

Let

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix}$$

Find elementary matrices E and F so that C = FEA.

Solution

Let

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix}$$

Find elementary matrices E and F so that C = FEA.

Solution

$$A = \left[\begin{array}{cc} 4 & 1 \\ 1 & 3 \end{array} \right]$$

Let

$$\mathbf{A} = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{C} = \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix}$$

Find elementary matrices E and F so that C = FEA.

Solution

$$\mathbf{A} = \left[\begin{array}{cc} 4 & 1 \\ 1 & 3 \end{array} \right] \stackrel{\rightarrow}{=} \left[\begin{array}{cc} 1 & 3 \\ 4 & 1 \end{array} \right]$$

Let

$$\mathbf{A} = \left[\begin{array}{cc} 4 & 1 \\ 1 & 3 \end{array} \right] \quad \text{and} \quad \mathbf{C} = \left[\begin{array}{cc} 1 & 3 \\ 2 & -5 \end{array} \right]$$

Find elementary matrices E and F so that C = FEA.

Solution

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \stackrel{\rightarrow}{\to} \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix} \stackrel{\rightarrow}{\to} \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix} = C$$

Let

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix}$$

Find elementary matrices E and F so that C = FEA.

Solution

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \stackrel{\rightarrow}{\to} \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix} \stackrel{\rightarrow}{\to} \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix} = C$$

where
$$E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Let

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix}$$

Find elementary matrices E and F so that C = FEA.

Solution

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \xrightarrow{\stackrel{\rightarrow}{E}} \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix} \xrightarrow{\stackrel{\rightarrow}{F}} \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix} = C$$

where
$$E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $F = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$.

Let

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix}$$

Find elementary matrices E and F so that C = FEA.

Solution

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \xrightarrow{\stackrel{\rightarrow}{E}} \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix} \xrightarrow{\stackrel{\rightarrow}{F}} \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix} = C$$

where
$$E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $F = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$. Thus we have the sequence $A \to EA \to F(EA) = C$.

Let

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix}$$

Find elementary matrices E and F so that C = FEA.

Solution

Note. The statement of the problem implies that C can be obtained from A by a sequence of two elementary row operations, represented by elementary matrices E and F.

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \xrightarrow{\mathbf{E}} \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix} \xrightarrow{\mathbf{F}} \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix} = \mathbf{C}$$

where $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $F = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$. Thus we have the sequence $A \to EA \to F(EA) = C$, so C = FEA, i.e.,

$$\begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$$

Let

$$\mathbf{A} = \left[\begin{array}{cc} 4 & 1 \\ 1 & 3 \end{array} \right] \quad \text{and} \quad \mathbf{C} = \left[\begin{array}{cc} 1 & 3 \\ 2 & -5 \end{array} \right]$$

Find elementary matrices E and F so that C = FEA.

Solution

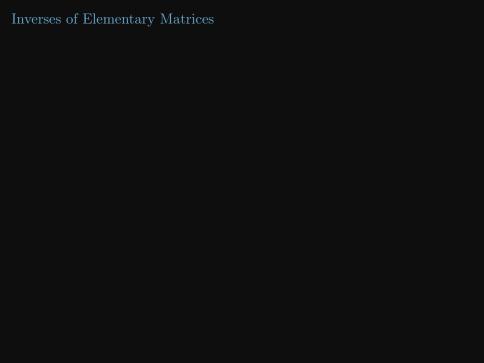
Note. The statement of the problem implies that C can be obtained from A by a sequence of two elementary row operations, represented by elementary matrices E and F.

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \xrightarrow{E} \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix} \xrightarrow{F} \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix} = C$$

where $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $F = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$. Thus we have the sequence $A \to EA \to F(EA) = C$, so C = FEA, i.e.,

$$\left[\begin{array}{cc} 1 & 3 \\ 2 & -5 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ -2 & 1 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{cc} 4 & 1 \\ 1 & 3 \end{array}\right]$$

You can check your work by doing the matrix multiplication.



Lemma

Every elementary matrix E is invertible, and E^{-1} is also an elementary matrix (of the same type). Moreover, E^{-1} corresponds to the inverse of the row operation that produces E.

Lemma

Every elementary matrix E is invertible, and E^{-1} is also an elementary matrix (of the same type). Moreover, E^{-1} corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type	Operation	Inverse Operation
I	Interchange rows p and q	Interchange rows p and q
II	Multiply row p by $k \neq 0$	Multiply row p by 1/k
III	Add k times row p to row $q \neq p$	Subtract k times row p from row q

Note that elementary matrices of type I are self-inverse.

Example

Without using the matrix inversion algorithm, find $\overline{\text{the}}$ inverse of the elementary matrix

$$G = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Example

Without using the matrix inversion algorithm, find the inverse of the elementary matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hint. What row operation can be applied to G to transform it to I_4 ?

Example

Without using the matrix inversion algorithm, find the inverse of the elementary matrix

$$G = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Hint. What row operation can be applied to G to transform it to I_4 ? The row operation $G \to I_4$ is to add three times row one to row three,

Example

Without using the matrix inversion algorithm, find the inverse of the elementary matrix

$$G = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Hint. What row operation can be applied to G to transform it to I₄? The row operation $G \to I_4$ is to add three times row one to row three, and thus

$$G^{-1} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Example

Without using the matrix inversion algorithm, find the inverse of the elementary matrix

$$G = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Hint. What row operation can be applied to G to transform it to I_4 ? The row operation $G \to I_4$ is to add three times row one to row three, and thus

$$G^{-1} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Check by computing $G^{-1}G$.

Similarly,										
		[1	0	0	0 -	$ ^{-1}$	[1	0	0	0
	$E^{-1} =$	0	0	0	1 0	=	0	0	0	1
		0	0	1	0		0	0	1	0
		1				l				

Similarly,
$$E^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{E}^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

and
$$\mathbf{F}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Suppose A is an $m \times n$ matrix and that B can be obtained from A by a sequence of k elementary row operations.

$$B = E_k(E_{k-1}(\cdots(E_2(E_1A))\cdots))$$

$$B = E_k(E_{k-1}(\cdots(E_2(E_1A))\cdots))$$

Since matrix multiplication is associative, we have

$$B = (E_k E_{k-1} \cdots E_2 E_1) A$$

$$B = E_k(E_{k-1}(\cdots(E_2(E_1A))\cdots))$$

Since matrix multiplication is associative, we have

$$B = (E_k E_{k-1} \cdots E_2 E_1) A$$

or, more concisely, B = UA where $U = E_k E_{k-1} \cdots E_2 E_1$.

$$B = E_k(E_{k-1}(\cdots(E_2(E_1A))\cdots))$$

Since matrix multiplication is associative, we have

$$B = (E_k E_{k-1} \cdots E_2 E_1) A$$

or, more concisely, B = UA where $U = E_k E_{k-1} \cdots E_2 E_1$.

To find U so that B = UA, we could find $E_1, E_2, ..., E_k$ and multiply these together (in the correct order), but there is an easier method for finding U.

Let A be an $m \times n$ matrix. We write

$$\mathbf{A} \to \mathbf{B}$$

if B can be obtained from A by a sequence of elementary row operations.

Let A be an $m \times n$ matrix. We write

$$A \to B$$

if B can be obtained from A by a sequence of elementary row operations. In this case, we call A and B are row-equivalent.

Let A be an $m \times n$ matrix. We write

$$A \to B$$

if B can be obtained from A by a sequence of elementary row operations. In this case, we call A and B are row-equivalent.

Theorem

Suppose A is an $m \times n$ matrix and that $A \to B$. Then

Let A be an $m \times n$ matrix. We write

$$A \to B$$

if B can be obtained from A by a sequence of elementary row operations. In this case, we call A and B are row-equivalent.

Theorem

Suppose A is an $m \times n$ matrix and that $A \to B$. Then

1. there exists an invertible $m \times m$ matrix U such that B = UA;

Let A be an $m \times n$ matrix. We write

$$\mathrm{A} \to \mathrm{B}$$

if B can be obtained from A by a sequence of elementary row operations. In this case, we call A and B are row-equivalent.

Theorem

Suppose A is an $m \times n$ matrix and that $A \to B$. Then

- 1. there exists an invertible $m \times m$ matrix U such that B = UA;
- 2. U can be computed by performing elementary row operations on $[A \mid I_m]$ to transform it into $[B \mid U]$;

Let A be an $m \times n$ matrix. We write

$$\mathrm{A} \to \mathrm{B}$$

if B can be obtained from A by a sequence of elementary row operations. In this case, we call A and B are row-equivalent.

Theorem

Suppose A is an $m \times n$ matrix and that $A \to B$. Then

- 1. there exists an invertible $m \times m$ matrix U such that B = UA;
- 2. U can be computed by performing elementary row operations on $[A \mid I_m]$ to transform it into $[B \mid U]$;
- 3. $U = E_k E_{k-1} \cdots E_2 E_1$, where E_1, E_2, \dots, E_k are elementary matrices corresponding, in order, to the elementary row operations used to obtain B from A.

Let $A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix}$, and let R be the reduced row-echelon form of A.

Find a matrix U so that R = UA.

Let $A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix}$, and let R be the reduced row-echelon form of A.

Find a matrix U so that R = UA.

Solution

$$\begin{bmatrix} 3 & 0 & 1 & 1 & 0 \\ 2 & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & -1 \\ 2 & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & -1 \\ 0 & -3 & -2 & -2 & 3 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & 2/3 & 2/3 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1/3 & 1/3 & 0 \\ 0 & 1 & 2/3 & 2/3 & -1 \end{bmatrix}$$

Let $A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix}$, and let R be the reduced row-echelon form of A.

Find a matrix U so that R = UA.

Solution

$$\begin{bmatrix} 3 & 0 & 1 & 1 & 0 \\ 2 & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 2 & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & -3 & -2 & -2 & 3 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & 2/3 & 2/3 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1/3 & 1/3 & 0 \\ 0 & 1 & 2/3 & 2/3 & -1 \end{bmatrix}$$

Starting with $[A \mid I]$, we've obtained $[R \mid U]$.

Let $A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix}$, and let R be the reduced row-echelon form of A. Find a matrix U so that R = UA.

Solution

$$\begin{bmatrix} 3 & 0 & 1 & 1 & 0 \\ 2 & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 2 & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & -1 \\ 0 & -3 & -2 & -2 & 3 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & 2/3 & 2/3 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1/3 & 1/3 & 0 \\ 0 & 1 & 2/3 & 2/3 & -1 \end{bmatrix}$$

Starting with [A | I], we've obtained [R | U].

Therefore R = UA, where

$$U = \begin{bmatrix} 1/3 & 0 \\ 2/3 & -1 \end{bmatrix}.$$

Let

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{array} \right].$$

Let

$$A = \begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix}.$$

Let

$$A = \begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -4 \\
-3 & -6 & 13 \\
0 & -1 & 2
\end{bmatrix}$$

Let

$$A = \begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_1} \begin{bmatrix} 1 & 2 & -4 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$

Let

$$A = \begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_1} \begin{bmatrix} 1 & 2 & -4 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_2} \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Let

$$A = \begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\overrightarrow{E}_1} \begin{bmatrix} 1 & 2 & -4 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\overrightarrow{E}_2} \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\overrightarrow{E}_3}$$

$$\left[\begin{array}{ccc}
1 & 2 & -4 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]$$

Let

$$A = \begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_{1}} \begin{bmatrix} 1 & 2 & -4 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_{2}} \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\mathbf{E}_{3}}$$

$$\begin{bmatrix} 1 & 2 & -4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\mathbf{E}_4} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Let

$$A = \begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{E_{1}} \begin{bmatrix} 1 & 2 & -4 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{E_{2}} \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{3}}$$
$$\begin{bmatrix} 1 & 2 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{4}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{5}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Let

$$A = \begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix}.$$

Suppose we do row operations to put A in reduced row-echelon form, and write down the corresponding elementary matrices.

$$\begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{E_1} \begin{bmatrix} 1 & 2 & -4 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{E_2} \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_3} \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Notice that the reduced row-echelon form of A equals I_3 . Now find the matrices E_1, E_2, E_3, E_4 and E_5 .

$$E_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right],$$

$$\mathbf{E}_1 = \left[\begin{array}{ccc|c} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right], \mathbf{E}_2 = \left[\begin{array}{ccc|c} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

$$\mathbf{E}_1 = \left[egin{array}{ccc} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight], \mathbf{E}_2 = \left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}
ight], \mathbf{E}_3 = \left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}
ight]$$

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathrm{E}_4 = \left[egin{array}{ccc} 1 & -2 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight],$$

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathrm{E}_4 = \left[egin{array}{ccc} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight], \mathrm{E}_5 = \left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}
ight]$$

$$\mathbf{E}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{E}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \mathbf{E}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{E}_{4} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{E}_{5} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

It follows that

$$\begin{array}{rcl} (E_5(E_4(E_3(E_2(E_1A))))) & = & I \\ \\ (E_5E_4E_3E_2E_1)A & = & I \end{array}$$

and therefore

$$A^{-1} = E_5 E_4 E_3 E_2 E_1$$

Since
$$A^{-1} = E_5 E_4 E_3 E_2 E_1$$
,

$$A^{-1} = E_5 E_4 E_3 E_2 E_1$$

$$(A^{-1})^{-1} = (E_5E_4E_3E_2E_1)^{-1}$$

 $A = E_7^{-1}E_9^{-1}E_9^{-1}E_4^{-1}E_7^{-1}$

$$A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} E_5^{-1}$$

Since
$$A^{-1} = E_5 E_4 E_3 E_2 E_1$$
,

$$\begin{array}{rcl} A^{-1} & = & E_5 E_4 E_3 E_2 E_1 \\ (A^{-1})^{-1} & = & (E_5 E_4 E_3 E_2 E_1)^{-1} \\ A & = & E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} E_5^{-1} \end{array}$$

This example illustrates the following result.

Since
$$A^{-1} = E_5 E_4 E_3 E_2 E_1$$
,
$$A^{-1} = E_5 E_4 E_3 E_2 E_1$$
$$(A^{-1})^{-1} = (E_5 E_4 E_3 E_2 E_1)^{-1}$$
$$A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} E_5^{-1}$$

This example illustrates the following result.

Theorem

Let A be an $n \times n$ matrix. Then, A^{-1} exists if and only if A can be written as the product of elementary matrices.

Example (revisited – Matrix inversion algorithm)

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & 2 & -4 \\ -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix} I$$

$$\begin{bmatrix} A & 1 \end{bmatrix} = \begin{bmatrix} -3 & -6 & 13 \\ 0 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 2 \end{bmatrix}$$

$$\mathbf{E}_{1} \begin{bmatrix} \mathbf{A} \mid \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 2 & -4 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix} \quad \mathbf{E}_{1} \begin{bmatrix} 1 & 2 & -4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 & 0 \\ 0 & -1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$E_3 E_2 E_1 [\begin{array}{ccc|c} A & I \end{array}] = \begin{bmatrix} \begin{array}{ccc|c} 1 & 2 & -4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array} \middle| E_3 E_2 E_1 \end{bmatrix} \qquad = \begin{bmatrix} \begin{array}{ccc|c} 1 & 2 & -4 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 3 & 1 & 0 \end{bmatrix}$$

$$\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1}[\ \mathbf{A}\ |\ \mathbf{I}\] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1} \\ = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 2 \\ 0 & 1 & -2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 3 & 1 & 0 \end{bmatrix}$$

$$\mathbf{E}_{5}\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1}[\ A\ |\ I\] = \begin{bmatrix} \ 1 & 0 & 0 \\ \ 0 & 1 & 0 \\ \ 0 & 0 & 1 \end{bmatrix} \mathbf{E}_{5}\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1} \end{bmatrix} \quad = \begin{bmatrix} \ 1 & 0 & 0 \\ \ 0 & 1 & 0 \\ \ 0 & 0 & 1 \end{bmatrix} \mathbf{E}_{5}\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1}$$

$$\mathbf{A}^{-1} = \mathbf{E}_5 \mathbf{E}_4 \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 = \begin{bmatrix} 1 & 0 & 2 \\ 6 & 2 & -1 \\ 3 & 1 & 0 \end{bmatrix}$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ 2 & 2 \end{bmatrix}$$
 as a product of elementary matrices

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices

$$\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices

$$\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_1} \begin{bmatrix} 1 & 3 \\ -3 & 2 \end{bmatrix}$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices

$$\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_1} \begin{bmatrix} 1 & 3 \\ -3 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_2} \begin{bmatrix} 1 & 3 \\ 0 & 11 \end{bmatrix}$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices

$$\left[\begin{array}{cc} 4 & 1 \\ -3 & 2 \end{array}\right] \xrightarrow{\mathrm{E}_1} \left[\begin{array}{cc} 1 & 3 \\ -3 & 2 \end{array}\right] \xrightarrow{\mathrm{E}_2} \left[\begin{array}{cc} 1 & 3 \\ 0 & 11 \end{array}\right] \xrightarrow{\mathrm{E}_3} \left[\begin{array}{cc} 1 & 3 \\ 0 & 1 \end{array}\right]$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices

$$\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \xrightarrow{E_1} \begin{bmatrix} 1 & 3 \\ -3 & 2 \end{bmatrix} \xrightarrow{E_2} \begin{bmatrix} 1 & 3 \\ 0 & 11 \end{bmatrix} \xrightarrow{E_3} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \xrightarrow{E_4} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices

Solution

$$\left[\begin{array}{cc} 4 & 1 \\ -3 & 2 \end{array}\right] \xrightarrow{\operatorname{E}_1} \left[\begin{array}{cc} 1 & 3 \\ -3 & 2 \end{array}\right] \xrightarrow{\operatorname{E}_2} \left[\begin{array}{cc} 1 & 3 \\ 0 & 11 \end{array}\right] \xrightarrow{\operatorname{E}_3} \left[\begin{array}{cc} 1 & 3 \\ 0 & 1 \end{array}\right] \xrightarrow{\operatorname{E}_4} \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

$$E_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices.

Solution

$$\left[\begin{array}{cc} 4 & 1 \\ -3 & 2 \end{array}\right] \xrightarrow{\operatorname{E}_1} \left[\begin{array}{cc} 1 & 3 \\ -3 & 2 \end{array}\right] \xrightarrow{\operatorname{E}_2} \left[\begin{array}{cc} 1 & 3 \\ 0 & 11 \end{array}\right] \xrightarrow{\operatorname{E}_3} \left[\begin{array}{cc} 1 & 3 \\ 0 & 1 \end{array}\right] \xrightarrow{\operatorname{E}_4} \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

$$\mathbf{E}_1 = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], \mathbf{E}_2 = \left[\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array} \right],$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices.

Solution

$$\left[\begin{array}{cc}4&1\\-3&2\end{array}\right]\xrightarrow{\operatorname{E}_1}\left[\begin{array}{cc}1&3\\-3&2\end{array}\right]\xrightarrow{\operatorname{E}_2}\left[\begin{array}{cc}1&3\\0&11\end{array}\right]\xrightarrow{\operatorname{E}_3}\left[\begin{array}{cc}1&3\\0&1\end{array}\right]\xrightarrow{\operatorname{E}_4}\left[\begin{array}{cc}1&0\\0&1\end{array}\right]$$

$$E_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{11} \end{bmatrix},$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices.

Solution

$$\left[\begin{array}{cc}4&1\\-3&2\end{array}\right]\xrightarrow{\mathrm{E}_1}\left[\begin{array}{cc}1&3\\-3&2\end{array}\right]\xrightarrow{\mathrm{E}_2}\left[\begin{array}{cc}1&3\\0&11\end{array}\right]\xrightarrow{\mathrm{E}_3}\left[\begin{array}{cc}1&3\\0&1\end{array}\right]\xrightarrow{\mathrm{E}_4}\left[\begin{array}{cc}1&0\\0&1\end{array}\right]$$

$$E_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{11} \end{bmatrix}, E_4 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$$

Express
$$A = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
 as a product of elementary matrices.

Solution

$$\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_1} \begin{bmatrix} 1 & 3 \\ -3 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_2} \begin{bmatrix} 1 & 3 \\ 0 & 11 \end{bmatrix} \xrightarrow{\mathbf{E}_3} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \xrightarrow{\mathbf{E}_4} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

with

$$\mathbf{E}_1 = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], \mathbf{E}_2 = \left[\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array} \right], \mathbf{E}_3 = \left[\begin{array}{cc} 1 & 0 \\ 0 & \frac{1}{11} \end{array} \right], \mathbf{E}_4 = \left[\begin{array}{cc} 1 & -3 \\ 0 & 1 \end{array} \right]$$

Since $E_4E_3E_2E_1A = I$, $A^{-1} = E_4E_3E_2E_1$, and hence

$$A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1}$$

Solution (continued)

Therefore,

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}^{-1} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}^{-1}$$

Solution (continued)

Therefore,

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{11} \end{bmatrix}^{-1} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}^{-1}$$

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{11} \end{bmatrix} \quad \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$$
.e.,

Solution (continued)

Therefore,

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{11} \end{bmatrix}^{-1} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}^{-1}$$

i.e.,

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

Check your work by computing the product

One result that we have assumed in all our work involving reduced row-echelon matrices is the following.

One result that we have assumed in all our work involving reduced row-echelon matrices is the following.

Theorem (Uniqueness of the Reduced Echelon Form)

If A is an $m \times n$ matrix and R and S are reduced row-echelon forms of A, then R = S.

One result that we have assumed in all our work involving reduced row-echelon matrices is the following.

Theorem (Uniqueness of the Reduced Echelon Form)

If A is an $m \times n$ matrix and R and S are reduced row-echelon forms of A, then R = S.

Remark

This theorem ensures that the reduced row-echelon form of a matrix is unique,

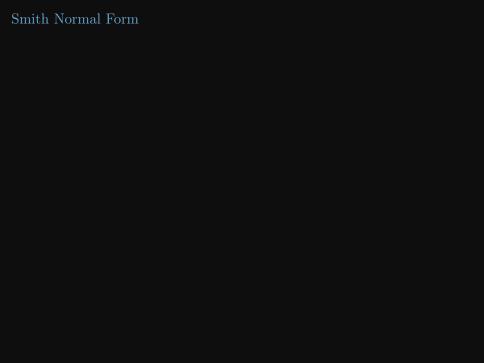
One result that we have assumed in all our work involving reduced row-echelon matrices is the following.

Theorem (Uniqueness of the Reduced Echelon Form)

If A is an m \times n matrix and R and S are reduced row-echelon forms of A, then R = S.

Remark

This theorem ensures that the reduced row-echelon form of a matrix is unique, and its proof follows from the results about elementary matrices.



Smith Normal Form

Definition

If A is an m \times n matrix of rank r, then the matrix $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}_{m \times n}$ is called the Smith normal form of A.

Theorem

If A is an $m \times n$ matrix of rank r, then there exist invertible matrices U and V of size $m \times m$ and $n \times n$, respectively, such that

$$UAV = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}_{m \times n}$$

Proof.

1. Apply the elementary row operations:

$$[A|I_{\mathrm{m}}] \stackrel{\mathrm{e.r.o.}}{\longrightarrow} [\mathrm{rref}\,(A)\,|U]$$

2. Apply the elementary column operations:

$$\begin{pmatrix} \operatorname{rref}(A) \\ I_n \end{pmatrix} \overset{\operatorname{e.c.o.}}{\longrightarrow} \begin{pmatrix} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}_{m \times n} \\ V \end{pmatrix}_{2m \times n}$$

Remark

The elementary column operations above are equivalent to the elementary row operations on the transpose:

$$\begin{bmatrix} \operatorname{rref}(A)^T \middle| I_n \end{bmatrix} \stackrel{\operatorname{e.r.o.}}{\longrightarrow} \begin{bmatrix} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}_{n \times m} \middle| V^T \end{bmatrix}_{n \times 2m}$$

Find the decomposition of $A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix}$ into the Smith normal form:

 $A=\widetilde{U}N\widetilde{V},$ where N is the Smith normal form of A and $\widetilde{U},\widetilde{V}$ are some invertible matrices.

Find the decomposition of $A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix}$ into the Smith normal form:

 $A = \widetilde{U}N\widetilde{V}$, where N is the Smith normal form of A and $\widetilde{U},\widetilde{V}$ are some invertible matrices.

Solution

We have seen that

$$[A|I_2] = \left[\begin{array}{cc|cc|c} 3 & 0 & 1 & 1 & 0 \\ 2 & -1 & 0 & 0 & 1 \end{array} \right] \rightarrow \left[\begin{array}{cc|cc|c} 1 & 0 & 1/3 & 1/3 & 0 \\ 0 & 1 & 2/3 & 2/3 & -1 \end{array} \right] = [\mathrm{rref}(A)|U]$$

Now,

$$\left(\operatorname{rref}(A)^{T} \middle| I_{3}\right) = \left[\begin{array}{cc|cc|c} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ \frac{1}{2} & \frac{2}{3} & 0 & 0 & 1 \end{array}\right] \rightarrow \left[\begin{array}{cc|cc|c} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{2} & -\frac{2}{3} & 1 \end{array}\right] = \left[N^{T}\middle|V^{T}\right]$$

Solution (Continued)

Hence, we find N = UAV, namely,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1/3 & 0 \\ 2/3 & -1 \end{pmatrix} \begin{bmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix} \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & -2/3 \\ 0 & 0 & 1 \end{pmatrix}$$

Finally, since U and V are invertible, we see that

$$A = U^{-1}NV^{-1},$$

namely,

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix} = \begin{pmatrix} 1/3 & 0 \\ 2/3 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & -2/3 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 0 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1/3 \\ 0 & 1 & 2/3 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \widetilde{U}N\widetilde{V}.$$