
Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra
§2-7. LU Factorization

Le Chen1

Emory University, 2020 Fall
(last updated on 10/26/2020)

Creative Commons License
(CC BY-NC-SA)

1Slides are adapted from those by Karen Seyffarth from University of Calgary.



LU Factorization

Why do we need LU Factorization?

Finding the LU

Multiplier Method



LU Factorization

Definition
A matrix A = [aij] is called upper triangular if aij = 0 whenever i > j. Thus
the entries below the main diagonal equal 0.

0 0 0

A lower triangular matrix is defined similarly, as a matrix for which all
entries above the main diagonal are equal to zero.

0 0 0
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An LU factorization of a matrix A is written

A = LU

where L is lower triangular matrix and U is upper triangular.

We often require either L or U to have only 1’s on the main diagonal.
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Why do we need LU Factorization?

The LU factorization often helps to quickly solve equations of the form
A~x = ~b.

Suppose we wish to find all solutions ~x to the system A~x = B. The LU
factorization of A can assist in this process.

Consider the following reduction:

A~x = B
(LU)~x = B
L(U~x) = B

L~y = B

Therefore, if we can solve L~y = B for ~y, then all that remains is to solve
U~x = ~y for ~x.
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Example
Find all solutions to 1 3 2 0

3 10 5 1
0 −1 2 1




x1

x2

x3

x4

 =

 2
4
6



Solution
Using a method of your choice, verify that the LU factorization of A gives

L =

 1 0 0
3 1 0
0 −1 1

 ,U =

 1 3 2 0
0 1 −1 1
0 0 1 2
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Solution (continued)

Let ~y =

 y1

y2

y3

 and solve L~y = ~b.

 1 0 0
3 1 0
0 −1 1

 y1

y2

y3

 =
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4
6



The solution is ~y =
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4

.
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Let ~y =
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Solution (continued)

Multiplying and solving (or finding the reduced row-echelon form ), the
general solution is given by

~x =


−12

2
4
0

+


13
−3
−2
1

 t, ∀t ∈ R.

�



Finding the LU Factorization

An LU factorization can be found for a matrix A provided that the
row-echelon form of A can be calculated without interchanging rows. In
this case, we call that A can be lower reduced.

Example
Determine if the LU factorization of A exists, and if so, find it.

A =

 1 1 2
2 3 0
1 0 5



Solution
Because the row-echelon form can be obtained without interchanging rows: 1 1 2

2 3 0
1 0 5

 r2−2r1−−−−→

 1 1 2
0 1 −4
1 0 5

 r3−r1−−−−→

 1 1 2
0 1 −4
0 −1 3

 r3+r2−−−−→

 1 1 2
0 1 −4
0 0 −1


the LU factorization exists, or A can be lower reduced.
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Solution (continued)
We proceed to finding L and U. Assign variables to the unknown entries
and multiply.

A =

 1 1 2
2 3 0
1 0 5

 =

 1 0 0
x 1 0
y z 1

 a d e
0 b f
0 0 c


=

 a d e
ax dx + b ex + f
ay dy + bz ey + fz + c



Solving each entry will give us values for the unknown entries.
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Solution (continued)

 1 1 2
2 3 0
1 0 5

 =

 a d e
ax dx + b ex + f
ay dy + bz ey + fz + c



We see easily that a = 1,d = 1, and e = 2. Continuing to solve the first
column gives x = 2, y = 1. The other values are calculated as follows.

dx + b = 3

(1)(2) + b = 3

b = 1

dy + bz = 0

(1)(1) + (1)z = 0

z = −1

ex + f = 0

(2)(2) + f = 0

f = −4

ey + fz + c = 5

(2)(1) + (−4)(−1) + c = 5

c = −1
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Solution (continued)
Therefore,

L
|| 1 0 0

x 1 0
y z 1


|| 1 0 0

2 1 0
1 −1 1



U
|| a d e

0 b f
0 0 c


|| 1 1 2

0 1 −4
0 0 −1


You should multiply these and check that they equal A!
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Solution (continued)
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Solution (continued)
If you want the diagonal terms of U to be all 1’s: 1 0 0

2 1 0
1 −1 1

1 0 0
0 1 0
0 0 −1

1 0 0
0 1 0
0 0 −1

 1 1 2
0 1 −4
0 0 −1


||

 1 0 −0
2 1 −0
1 −1 −1

 1 1 2
0 1 −4

−0 −0 1


�



Multiplier Method

The following process for finding L and U, called the multiplier method,
can be more efficient.

Example

Find the LU factorization of A =

 1 1 2
2 3 0
1 0 5


Solution
First, write A as  1 1 2

2 3 0
1 0 5


||

 1 0 0
0 1 0
0 0 1

 1 1 2
2 3 0
1 0 5


Now we will use row operations (except for interchanging rows) to
transform the right side into the appropriate L and U.
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Solution (continued)
To do so, we use row operations to remove the entries of A below the main
diagonal. For every operation we apply to A (the matrix on the right), we
apply the inverse operation to the identity matrix (on the left). This
ensures the product remains the same.

The first step is to add (−2) times the first row of A to the second row. To
preserve the product, add (2) times the second column to the first column,
for the matrix on the left.

||

 1 0 0
0 1 0
0 0 1

1 0 0
2 1 0
0 0 1

 1 0 0
−2 1 0
0 0 1

 1 1 2
2 3 0
1 0 5


||

c1 + 2c2 → c1

 1 0 0
2 1 0
0 0 1

 1 1 2
0 1 −4
1 0 5

 r2 − 2r1 → r2
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Solution (continued)
We proceed in the same way.

c1 + c3 → c1

 1 0 0
2 1 0
1 0 1

 1 1 2
0 1 −4
0 −1 3

 r3 − r1 → r3

c2 − c3 → c2

 1 0 0
2 1 0
1 −1 1

 1 1 2
0 1 −4
0 0 −1

 r3 + r2 → r3

At this point we have a lower triangular matrix L on the left, and an upper
triangular matrix U on the right so we are done. You can (and should!)
check that this product equals A.

If you want the diagonal terms of U to be all 1’s:

−1× c3 → c3

 1 0 0
2 1 0
1 −1 −1

 1 1 2
0 1 −4
0 0 1

 − 1× r3 → r3
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Problem
Use the multiplier method to verify the LU factorization for

A =

 1 4 2
3 13 5

−2 −7 −4



Solution

A =

 1 4 2
3 13 5

−2 −7 −4

 =

 1 0 0
3 1 0

−2 1 1

 1 4 2
0 1 −1
0 0 1

 = LU
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The multiplier method can be simplified using so-called LU-Algorithm.
See Examples 2.7.2 – 2.7.4 on the book.
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