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Determinants and Matrix Inverses

Theorem (Product Theorem)
If A and B are n × n matrices, then

det(AB) = det A det B.

Theorem (Determinant of Matrix Inverse)
An n × n matrix A is invertible if and only if det A 6= 0. In this case,

det(A−1) = (det A)−1 =
1

det A
.



Example

Find all values of c for which A =

 c 1 0
0 2 c

−1 c 5

 is invertible.

det A =

∣∣∣∣∣∣
c 1 0
0 2 c

−1 c 5

∣∣∣∣∣∣ = c
∣∣∣∣ 2 c

c 5

∣∣∣∣+ (−1)

∣∣∣∣ 1 0
2 c

∣∣∣∣
= c(10− c2)− c = c(9− c2) = c(3− c)(3 + c).

Therefore, A is invertible for all c 6= 0, 3,−3.



Theorem (Determinant of Matrix Transpose)

If A is an n × n matrix, then det(AT) = det A.

Proof.
1. This is trivially true for all elementary matrices.
2. If A is not invertible, then neither is AT (why?). Hence,

det A = 0 = det AT.
3. If A is invertible, then A = EkEk−1 · · ·E2E1. Hence, by case 1,

det A = · · · = det AT.

�



Example
Suppose A is a 3× 3 matrix. Find det A and det B if

det(2A−1) = −4 = det(A3(B−1)T).

First,

det(2A−1) = −4

23 det(A−1) = −4

1

det A
=

−4

8
= −1

2

Therefore, det A = −2.



Example (continued)
Now,

det(A3(B−1)T) = −4

(det A)3 det(B−1) = −4

(−2)3 det(B−1) = −4

(−8)det(B−1) = −4

1

det B
=

−4

−8
=

1

2

Therefore, det B = 2.



Example
Suppose A, B and C are 4× 4 matrices with

det A = −1, det B = 2, and det C = 1.

Find det(2A2(B−1)(CT)3B(A−1)).

det(2A2(B−1)(CT)3B(A−1)) = 24(det A)2
1

det B
(det C)3(det B)

1

det A
= 16(det A)(det C)3

= 16× (−1)× 13

= −16.



Example

A square matrix A is orthogonal if and only if AT = A−1. What are the
possible values of det A if A is orthogonal?

Since AT = A−1,

det AT = det(A−1)

det A =
1

det A
(det A)2 = 1

Assuming A is a real matrix, this implies that det A = ±1, i.e., det A = 1 or
det A = −1.



Adjugates

For a 2× 2 matrix A =

[
a b
c d

]
, we have already seen the adjugate of A

defined as

adj(A) =

[
d −b
−c a

]
,

and observed that

A(adjA) =

[
a b
c d

] [
d −b
−c a

]
=

[
ad − bc 0

0 ad − bc

]
= (det A)I2

Furthermore, if det A 6= 0, then A is invertible and

A−1 =
1

det A
adjA.



Definition
If A is an n × n matrix, then

adjA =
[

cij(A)
]T

,

where cij(A) is the (i, j)-cofactor of A, i.e., adjA is the transpose of the
cofactor matrix (matrix of cofactors).

Reminder. cij(A) = (−1)i+j det(Aij).



Example

Find adjA when A =

 2 1 3
5 −7 1
3 0 −6

.

Solution.

adjA =

 42 6 22
33 −21 13
21 3 −19


Notice that

A(adjA) =

 2 1 3
5 −7 1
3 0 −6

 42 6 22
33 −21 13
21 3 −19


=

 180 0 0
0 180 0
0 0 180





Example (continued)
Also,

det A =

∣∣∣∣∣∣
2 1 3
5 −7 1
3 0 −6

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2 1 3

19 0 22
3 0 −6

∣∣∣∣∣∣
= (−1)

∣∣∣∣ 19 22
3 −6

∣∣∣∣
= 180,

so in this example, we see that

A(adjA) = (det A)I



Theorem (The Adjugate Formula)
If A is an n × n matrix, then

A(adjA) = (det A)I = (adjA)A.

Furthermore, if det A 6= 0, then

A−1 =
1

det A
adjA.

Remark
Except in the case of a 2× 2 matrix, the adjugate formula is a very
inefficient method for computing the inverse of a matrix; the matrix
inversion algorithm is much more practical. However, the adjugate formula
is of theoretical significance.



Example

For an n × n matrix A, show that det(adjA) = (det A)n−1.

Using the adjugate formula,

A(adjA) = (det A)I
det(A(adjA)) = det((det A)I)

(det A)× det(adjA) = (det A)n(det I)
(det A)× det(adjA) = (det A)n

If det A 6= 0, then divide both sides of the last equation by det A:

det(adjA) = (det A)n−1.



Example (continued)
For the case det A = 0, we claim that

det A = 0 ⇒ det(adjA) = 0, (?)

which implies that

det(adjA) = 0 = 0n−1 = (det A)n−1.

Proof. (of (?))

We will prove (?) by contradiction. Indeed, if det A = 0, then

A(adjA) = (det A)I = (0)I = O,

i.e., A(adjA) is the zero matrix. If det(adjA) 6= 0, then adjA would be
invertible, and A(adjA) = 0 would imply A = O. However, if A = O, then
adjA = 0 and is not invertible, and thus has determinant equal to zero, i.e.,
det(adjA) = 0, (a contradiction!) Therefore, det(adjA) = 0, i.e., (?) is true.
�



Problem

Let A and B be n × n matrices. Show that det(A + BT) = det(AT + B).

Solution
Notice that

(A + BT)T = AT + (BT)T = AT + B.

Since a matrix and it’s transpose have the same determinant

det(A + BT) = det((A + BT)T)

= det(AT + B).



Example
For each of the following statements, determine if it is true or false, and
supply a proof or a counterexample.
(a) If adj(A) exists, then A is invertible.
(c) If A and B are n × n matrices, then det(AB) = det(BTA).

Example
Prove or give a counterexample to the following statement:

If det A = 1, then adjA = A.



Cramer’s Rule

If A is an n × n invertible matrix, then the solution to A~x = ~b can be given
in terms of determinants of matrices.

Theorem (Cramer’s Rule)

Let A be an n × n invertible matrix, the solution to the system A~x = ~b of n
equations in teh variables x1, x2 · · · xn is given by

x1 =
det

(
A1(~b)

)
det A

, x2 =
det

(
A2(~b)

)
det A

, · · · , xn =
det

(
An(~b)

)
det A

where, for each j, the matrix Aj(~b) is obtained from A by replacing column
j with ~b:

Aj(~b) =
[
~a1 · · · ~aj−1

~b ~aj+1 · · · ~an

]



Proof.
I Notice that

Aj(~b) =
[

~a1 · · · ~aj−1
~b ~aj+1 · · · ~an

]
=

[
A~e1 · · · A~ej−1 A~x A~ej+1 · · · A~en

]
= A

[
~e1 · · · ~ej−1 ~x ~ej+1 · · · ~en

]
= A Ij(~x)

where

Ij(~x) =
[
~e1 · · · ~ej−1 ~x ~ej+1 · · · ~en

]

=



1 x1

. . .
...

1 xj−1

xj

xj+1 1
...

. . .
xn 1





Proof. (continued)
I Hence, by taking the determinants on both sides, we have

det(Aj(~b)) = det(A Ij(~x))
= det(A) det(Ij(~x))

I And because det(A) 6= 0, we can then write:

det(Ij(~x)) =
det(Aj(~b))

det(A)

I Finally, notice that det(Ij(~x)) = · · · = xj.
�



Example
Solve for x3:

3x1 + x2 − x3 = −1
5x1 + 2x2 = 2
x1 + x2 − x3 = 1

By Cramer’s rule, x3 = det A3
det A , where

A =

 3 1 −1
5 2 0
1 1 −1

 and A3 =

 3 1 −1
5 2 2
1 1 1

 .

Computing the determinants of these two matrices,

det A = −4 and det A3 = −6.

Therefore, x3 = −6
−4

= 3
2
.



Example (continued)
For practice, you should compute det A1 and det A2, where

A1 =

 −1 1 −1
2 2 0
1 1 −1

 and A2 =

 3 −1 −1
5 2 0
1 1 −1

 ,

and then solve for x1 and x2.

Solution. x1 = −1, x2 = 7
2
.



Polynomial Interpolation and Vandermonde Determinant

Problem
Given data points (0, 1), (1, 2), (2, 5) and (3, 10), find an interpolating
polynomial p(x) of degree at most three, and then estimate the value of y
corresponding to x = 3/2.

x

y

(0, 1)

(1, 2)

(2, 5)

(3, 10)

1 2 3 4

2

3

4

5

6

7

8

9

10

3
2



Solution
We want to find the coefficients r0, r1, r2 and r3 of

p(x) = r0 + r1x + r2x2 + r3x3

so that p(0) = 1, p(1) = 2, p(2) = 5, and p(3) = 10.

p(0) = r0 = 1

p(1) = r0 + r1 + r2 + r3 = 2

p(2) = r0 + 2r1 + 4r2 + 8r3 = 5

p(3) = r0 + 3r1 + 9r2 + 27r3 = 10



Example (continued)
Solve this system of four equations in the four variables r0, r1, r2 and r3.

1 0 0 0 1
1 1 1 1 2
1 2 4 8 5
1 3 9 27 10

 → · · · →


1 0 0 0 1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0


Therefore r0 = 1, r1 = 0, r2 = 1, r3 = 0, and so

p(x) = 1 + x2.

The estimate is

y = p
(
3

2

)
= 1 +

(
3

2

)2

=
13

4
.



x

y

(0, 1)

(1, 2)

(2, 5)

(3, 10)

1 2 3 4

2

3

4

5

6

7

8

9

10

3
2

13
4

1 + x2



Theorem (Polynomial Interpolation)

Given n data points (x1, y1), (x2, y2), . . . , (xn, yn) with the xi distinct, there
is a unique polynomial

p(x) = r0 + r1x + r2x2 + · · ·+ rn−1xn−1

such that p(xi) = yi for i = 1, 2, . . . , n.

The polynomial p(x) is called the interpolating polynomial for the data.



To find p(x), set up a system of n linear equations in the n variables
r0, r1, r2, . . . , rn−1. p(x) = r0 + r1x + r2x2 + · · ·+ rn−1xn−1:

r0 + r1x1 + r2x2
1 + · · ·+ rn−1xn−1

1 = y1

r0 + r1x2 + r2x2
2 + · · ·+ rn−1xn−1

2 = y2

r0 + r1x3 + r2x2
3 + · · ·+ rn−1xn−1

3 = y3

...
...

...

r0 + r1xn + r2x2
n + · · ·+ rn−1xn−1

n = yn

The coefficient matrix for this system is
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2

...
...

...
...

...
1 xn x2

n · · · xn−1
n



The determinant of a matrix of this form is called a Vandermonde
determinant.



Theorem (Vandermonde Determinant )
Let a1, a2, . . . , an be real numbers, n ≥ 2. The corresponding Vandermonde
determinant is

det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2

...
...

...
...

...
1 an a2

n · · · an−1
n

 =
∏

1≤j<i≤n

(ai − aj).

i

j

1

1

2

2

3

3

4

4



Proof.
We will prove this by induction. It is clear that when n = 2,

det
(
1 a1

1 a2

)
= a2 − a1 =

∏
1≤j<i≤2

(ai − aj).

Assume that it is true for n − 1. Now let’s consider the case n. Denote

p(x) := det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2

...
...

...
...

...
1 an−1 a2

n−1 · · · an−1
n−1

1 x x2 · · · xn−1

 .



Proof. (continued)

Because p(a1) = · · · = p(an−1) = 0 (why?), p(x) has to take the following
form:

p(x) = c(x − a1)(x − a2) · · · (x − an−1).

To identify the constant c, notice that c is the coefficient for xn−1. By
cofactor expansion of the determinant along the last row,

c = (−1)n+n det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2

...
...

...
...

...
1 an−1 a2

n−1 · · · an−1
n−1


=

∏
1≤j<i≤n−1

(ai − aj).



Proof. (continued)
Hence,

p(an) =

 ∏
1≤j<i≤n−1

(ai − aj)

× (an − a1)(an − a2) · · · (an − an−1)

=
∏

1≤j<i≤n

(ai − aj).

�

i

j

1 2 · · · n − 1 n

1

2

...

n − 1

n

an − a1

an − a2

...

an − an−1



Example
In our earlier example with the data points (0, 1), (1, 2), (2, 5) and (3, 10),
we have

a1 = 0, a2 = 1, a3 = 2, a4 = 3

giving us the Vandermonde determinant∣∣∣∣∣∣∣∣
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

∣∣∣∣∣∣∣∣
According to the previous theorem, this determinant is equal to

(a2 − a1)(a3 − a1)(a3 − a2)(a4 − a1)(a4 − a2)(a4 − a3)

= (1− 0)(2− 0)(2− 1)(3− 0)(3− 1)(3− 2) = 2× 3× 2

= 12.



As a consequence of the theorem, the Vandermonde determinant is nonzero
if a1, a2, . . . , an are distinct.

This means that given n data points (x1, y1), (x2, y2), . . . , (xn, yn) with
distinct xi, then there is a unique interpolating polynomial

p(x) = r0 + r1x + r2x2 + · · ·+ rn−1xn−1.
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