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Why Diagonalization?

Example

Let A =

[
4 −2

−1 3

]
. Find A100.

How can we do this efficiently?

Consider the matrix P =

[
1 −2
1 1

]
. Observe that P is invertible (why?),

and that

P−1 =
1

3

[
1 2

−1 1

]
.

Furthermore,

P−1AP =
1

3

[
1 2

−1 1

] [
4 −2

−1 3

] [
1 −2
1 1

]
=

[
2 0
0 5

]
= D,

where D is a diagonal matrix.



Example (continued)
This is significant, because

P−1AP = D
P(P−1AP)P−1 = PDP−1

(PP−1)A(PP−1) = PDP−1

IAI = PDP−1

A = PDP−1,

and so

A100 = (PDP−1)100

= (PDP−1)(PDP−1)(PDP−1) · · · (PDP−1)

= PD(P−1P)D(P−1P)D(P−1 · · ·P)DP−1

= PDIDIDI · · · IDP−1

= PD100P−1.



Example (continued)
Now,

D100 =

[
2 0
0 5

]100
=

[
2100 0
0 5100

]
.

Therefore,

A100 = PD100P−1

=

[
1 −2
1 1

] [
2100 0
0 5100

](
1

3

)[
1 2

−1 1

]

=
1

3

[
2100 + 2 · 5100 2100 − 2 · 5100
2100 − 5100 2 · 2100 + 5100

]

=
1

3

[
2100 + 2 · 5100 2100 − 2 · 5100
2100 − 5100 2101 + 5100

]



Theorem (Diagonalization and Matrix Powers)

If A = PDP−1, then Ak = PDkP−1 for each k = 1, 2, 3, . . .

The process of finding an invertible matrix P and a diagonal matrix D so
that A = PDP−1 is referred to as diagonalizing the matrix A, and P is
called the diagonalizing matrix for A.

Problem
I When is it possible to diagonalize a matrix?
I How do we find a diagonalizing matrix?



Eigenvalues and Eigenvectors

Definition

Let A be an n × n matrix, λ a real number, and ~x 6= ~0 an n-vector. If
A~x = λ~x, then λ is an eigenvalue of A, and ~x is an eigenvector of A
corresponding to λ, or a λ-eigenvector.

Example

Let A =

[
1 2
1 2

]
and ~x =

[
1
1

]
. Then

A~x =

[
1 2
1 2

] [
1
1

]
=

[
3
3

]
= 3

[
1
1

]
= 3~x.

This means that 3 is an eigenvalue of A, and
[

1
1

]
is an eigenvector of A

corresponding to 3 (or a 3-eigenvector of A).



Suppose that A is an n × n matrix, ~x 6= 0 an n-vector, λ ∈ R, and that
A~x = λ~x.

Then

λ~x − A~x = ~0

λI~x − A~x = ~0

(λI − A)~x = ~0

Since ~x 6= ~0, the matrix λI − A has no inverse, and thus

det(λI − A) = 0.



Definition
The characteristic polynomial of an n × n matrix A is

cA(x) = det(xI − A).

Example

The characteristic polynomial of A =

[
4 −2

−1 3

]
is

cA(x) = det
([

x 0
0 x

]
−
[

4 −2
−1 3

])
= det

[
x − 4 2
1 x − 3

]
= (x − 4)(x − 3)− 2

= x2 − 7x + 10



Theorem (Eigenvalues and Eigenvectors of a Matrix)
Let A be an n × n matrix.

1. The eigenvalues of A are the roots of cA(x).
2. The λ-eigenvectors ~x are the nontrivial solutions to (λI − A)~x = ~0.

Example (continued)

For A =

[
4 −2

−1 3

]
, we have

cA(x) = x2 − 7x + 10 = (x − 2)(x − 5),

so A has eigenvalues λ1 = 2 and λ2 = 5.

To find the 2-eigenvectors of A, solve (2I − A)~x = ~0:[
−2 2 0
1 −1 0

]
→
[

1 −1 0
−2 2 0

]
→
[

1 −1 0
0 0 0

]



Example (continued)
The general solution, in parametric form, is

~x =

[
t
t

]
= t

[
1
1

]
where t ∈ R.

To find the 5-eigenvectors of A, solve (5I − A)~x = ~0:[
1 2 0
1 2 0

]
→
[

1 2 0
0 0 0

]

The general solution, in parametric form, is

~x =

[
−2s

s

]
= s

[
−2
1

]
where s ∈ R.



Definition
A basic eigenvector of an n × n matrix A is any nonzero multiple of a basic
solution to (λI − A)~x = ~0, where λ is an eigenvalue of A.

Example (continued)[
1
1

]
and

[
−2
1

]
are basic eigenvectors of the matrix

A =

[
4 −2

−1 3

]
corresponding to eigenvalues λ1 = 2 and λ2 = 5, respectively.



Problem

For A =

 3 −4 2
1 −2 2
1 −5 5

, find cA(x), the eigenvalues of A, and the

corresponding basic eigenvectors.

Solution

det(xI − A) =

∣∣∣∣∣∣
x − 3 4 −2
−1 x + 2 −2
−1 5 x − 5

∣∣∣∣∣∣ =
∣∣∣∣∣∣

x − 3 4 −2
0 x − 3 −x + 3
−1 5 x − 5

∣∣∣∣∣∣
=

∣∣∣∣∣∣
x − 3 4 2
0 x − 3 0
−1 5 x

∣∣∣∣∣∣ = (x − 3)

∣∣∣∣ x − 3 2
−1 x

∣∣∣∣
= (x − 3)(x2 − 3x + 2) = (x − 3)(x − 2)(x − 1) = cA(x).



Solution (continued)
Therefore, the eigenvalues of A are λ1 = 3, λ2 = 2, and λ3 = 1.

Basic eigenvectors corresponding to λ1 = 3: solve (3I − A)~x = ~0. 0 4 −2 0
−1 5 −2 0
−1 5 −2 0

→ · · · →

 1 0 − 1
2

0
0 1 − 1

2
0

0 0 0 0



Thus ~x =

 1
2
t

1
2
t
t

 = t

 1
2
1
2

1

, t ∈ R.

Choosing t = 2 gives us ~x1 =

 1
1
2

 as a basic eigenvector corresponding to

λ1 = 3.



Solution (continued)

Basic eigenvectors corresponding to λ2 = 2: solve (2I − A)~x = ~0. −1 4 −2 0
−1 4 −2 0
−1 5 −3 0

→ · · · →

 1 0 −2 0
0 1 −1 0
0 0 0 0



Thus ~x =

 2s
s
s

 = s

 2
1
1

, s ∈ R.

Choosing s = 1 gives us ~x2 =

 2

1
1

 as a basic eigenvector corresponding to

λ2 = 2.



Solution (continued)

Basic eigenvectors corresponding to λ3 = 1: solve (I − A)~x = ~0. −2 4 −2 0
−1 3 −2 0
−1 5 −4 0

→ · · · →

 1 0 −1 0
0 1 −1 0
0 0 0 0



Thus ~x =

 r
r
r

 = r

 1
1
1

, r ∈ R.

Choosing r = 1 gives us ~x3 =

 1
1
1

 as a basic eigenvector corresponding to

λ3 = 1. �



Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2× 2 matrix. Then A can be interpreted as a linear
transformation from R2 to R2.

Problem
How does the linear transformation affect the eigenvectors of the matrix?

Definition

Let ~v =

[
a
b

]
be a nonzero vector in R2. Then L~v is the set of all scalar

multiples of ~v, i.e.,
L~v = R~v = {t~v | t ∈ R} .



Example (revisited)

A =

(
4 −2
−1 3

)
has two eigenvalues: λ1 = 2 and λ2 = 5 with

corresponding eigenvectors

~v1 =

(
1
1

)
and ~v2 =

(
−1
1/2

)



x

y

−5 −4 −3 −2 −1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

5

6

A =

(
4 −2
−1 3

)



Definition
Let A be a 2× 2 matrix and L a line in R2 through the origin. Then L is
said to be A-invariant if the vector A~x lies in L whenever ~x lies in L,
i.e., A~x is a scalar multiple of ~x,
i.e., A~x = λ~x for some scalar λ ∈ R,
i.e., ~x is an eigenvector of A.

Theorem (A-Invariance)

Let A be a 2× 2 matrix and let ~v 6= 0 be a vector in R2. Then L~v is
A-invariant if and only if ~v is an eigenvector of A.



x

y

−5 −4 −3 −2 −1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

5

6

A =

(
4 −2
−1 3

)



Problem
Let m ∈ R and consider the linear transformation Qm : R2 → R2, i.e.,
reflection in the line y = mx.

x

y

y = mx

Recall that this is a matrix transformation induced by

A =
1

1 + m2

[
1− m2 2m
2m m2 − 1

]
.

Find the lines that pass through origin and are A-invariant. Determine
corresponding eigenvalues.



Solution

x

y

y = mx

Let ~x1 =

[
1
m

]
. Then L~x1 is A-invariant, that is, ~x1 is an eigenvector.

Since the vector won’t change, its eigenvalue should be 1. Indeed, one can
verify that

A~x1 =
1

1 + m2

[
1− m2 2m
2m m2 − 1

](
1
m

)
= ... =

(
1
m

)
= ~x1.



Solution (continued)

x

y

y = mx

Let ~x2 =

[
−m
1

]
. Then L~x2 is A-invariant, that is, ~x2 is an eigenvector.

Since the vector won’t change the size, only flip the direction, its eigenvalue
should be −1. Indeed, one can verify that

A~x2 =
1

1 + m2

[
1− m2 2m
2m m2 − 1

](
−m
1

)
= · · · =

(
m
−1

)
= −~x2.



Example

Let θ be a real number, and Rθ : R2 → R2 rotation through an angle of θ,
induced by the matrix

A =

[
cos θ − sin θ
sin θ cos θ

]
.

Claim: A has no real eigenvalues unless θ is an integer multiple of π, i.e.,
±π,±2π,±3π, etc.

Consequence: a line L in R2 is A invariant if and only if θ is an integer
multiple of π.



Diagonalization

Denote an n × n diagonal matrix by

diag(a1, a2, . . . , an) =



a1 0 0 · · · 0 0
0 a2 0 · · · 0 0
0 0 a3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · an−1 0
0 0 0 · · · 0 an



Recall that if A is an n × n matrix and P is an invertible n × n matrix so
that P−1AP is diagonal, then P is called a diagonalizing matrix of A, and A
is diagonalizable.



I Suppose we have n eigenvalue-eigenvector pairs:

A~xj = λj~xj , j = 1, 2, . . . , n

I Pack the above n columns vectors into a matrix:

[
A~x1 A~x2 · · · A~xn

]
=

[
λ1~x1 λ2~x2 · · · λn~xn

]
||

A
[
~x1 ~x2 · · · ~xn

]
||

[
~x1 ~x2 · · · ~xn

]


λ1

λ2

. . .
λn





I By denoting:

P =
[
~x1 ~x2 · · · ~xn

]
and D = diag (λ1, · · · , λn)

we see that

AP = PD

I Hence, provided P is invertible, we have

A = PDP−1 or equivalently D = P−1AP

that is, A is diagonalizable.



Theorem (Matrix Diagonalization)
Let A be an n × n matrix.

1. A is diagonalizable if and only if it has eigenvectors ~x1,~x2, . . . ,~xn so
that

P =
[
~x1 ~x2 · · · ~xn

]
is invertible.

2. If P is invertible, then

P−1AP = diag(λ1, λ2, . . . , λn)

where λi is the eigenvalue of A corresponding to the eigenvector ~xi, i.e.,
A~xi = λi~xi.



Example

A =

 3 −4 2
1 −2 2
1 −5 5

 has eigenvalues and corresponding basic eigenvectors

λ1 = 3 and ~x1 =

 1
1
2

 ;

λ2 = 2 and ~x2 =

 2
1
1

 ;

λ3 = 1 and ~x3 =

 1
1
1

 .



Example (continued)

Let P =
[
~x1 ~x2 ~x3

]
=

 1 2 1
1 1 1
2 1 1

. Then P is invertible (check

this!), so by the above Theorem,

P−1AP = diag(3, 2, 1) =

 3 0 0
0 2 0
0 0 1

 .



Remark
It is not always possible to find n eigenvectors so that P is invertible.

Example

Let A =

 1 −2 3
2 6 −6
1 2 −1

.

Then

cA(x) =

∣∣∣∣∣∣
x − 1 2 −3
−2 x − 6 6
−1 −2 x + 1

∣∣∣∣∣∣ = · · · = (x − 2)3.

A has only one eigenvalue, λ1 = 2, with multiplicity three. Sometimes, one
writes

λ1 = λ2 = λ3 = 2.



Example (continued)

To find the 2-eigenvectors of A, solve the system (2I − A)~x = ~0. 1 2 −3 0
−2 −4 6 0
−1 −2 3 0

→ · · · →

 1 2 −3 0
0 0 0 0
0 0 0 0


The general solution in parametric form is

~x =

 −2s + 3t
s
t

 = s

 −2
1
0

+ t

 3
0
1

 , s, t ∈ R.

Since the system has only two basic solutions, there are only two basic
eigenvectors, implying that the matrix A is not diagonalizable.



Example

Diagonalize, if possible, the matrix A =

 1 0 1
0 1 0
0 0 −3

.

cA(x) = det(xI − A) =

∣∣∣∣∣∣
x − 1 0 −1
0 x − 1 0
0 0 x + 3

∣∣∣∣∣∣ = (x − 1)2(x + 3).

A has eigenvalues λ1 = 1 of multiplicity two; λ2 = −3 of multiplicity one.



Example (continued)

Eigenvectors for λ1 = 1: solve (I − A)~x = ~0. 0 0 −1 0
0 0 0 0
0 0 4 0

→

 0 0 1 0
0 0 0 0
0 0 0 0



~x =

 s
t
0

, s, t ∈ R so basic eigenvectors corresponding to λ1 = 1 are 1
0
0

 ,

 0
1
0





Example (continued)

Eigenvectors for λ2 = −3: solve (−3I − A)~x = ~0. −4 0 −1 0
0 −4 0 0
0 0 0 0

→

 1 0 1
4

0
0 1 0 0
0 0 0 0



~x =

 − 1
4
t

0
t

, t ∈ R so a basic eigenvector corresponding to λ2 = −3 is

 −1
0
4





Example (continued)
Let

P =

 −1 1 0
0 0 1
4 0 0

 .

Then P is invertible, and

P−1AP = diag(−3, 1, 1) =

 −3 0 0
0 1 0
0 0 1

 .



Theorem (Matrix Diagonalization Test)
A square matrix A is diagonalizable if and only if every eigenvalue λ of
multiplicity m yields exactly m basic eigenvectors, i.e., the solution to
(λI − A)~x = ~0 has m parameters.

A special case of this is:

Theorem (Distinct Eigenvalues and Diagonalization)
An n × n matrix with distinct eigenvalues is diagonalizable.



Example

Show that A =

 1 1 0
0 1 0
0 0 2

 is not diagonalizable.

First,

cA(x) =

∣∣∣∣∣∣
x − 1 −1 0
0 x − 1 0
0 0 x − 2

∣∣∣∣∣∣ = (x − 1)2(x − 2),

so A has eigenvalues λ1 = 1 of multiplicity two; λ2 = 2 (of multiplicity one).



Example (continued)

Eigenvectors for λ1 = 1: solve (I − A)~x = ~0. 0 −1 0 0
0 0 0 0
0 0 −1 0

→

 0 1 0 0
0 0 1 0
0 0 0 0



Therefore, ~x =

 s
0
0

, s ∈ R.

Since λ1 = 1 has multiplicity two, but has only one basic eigenvector, A is
not diagonalizable.



Linear Dynamical Systems

Definition
A linear dynamical system consists of

– an n × n matrix A and an n-vector ~v0;
– a matrix recursion defining ~v1,~v2,~v3, . . . by ~vk+1 = A~vk; i.e.,

~v1 = A~v0

~v2 = A~v1 = A(A~v0) = A2~v0

~v3 = A~v2 = A(A2~v0) = A3~v0

...
...

...
~vk = Ak~v0.

Remark
Linear dynamical systems are used, for example, to model the evolution of
populations over time.



If A is diagonalizable, then

P−1AP = D = diag(λ1, λ2, . . . , λn),

where λ1, λ2, . . . , λn are the (not necessarily distinct) eigenvalues of A.

Thus A = PDP−1, and Ak = PDkP−1. Therefore,

~vk = Ak~v0 = PDkP−1~v0.



Example
Consider the linear dynamical system ~vk+1 = A~vk with

A =

[
2 0
3 −1

]
, and ~v0 =

[
1

−1

]
.

Find a formula for ~vk.

First, cA(x) = (x− 2)(x+ 1), so A has eigenvalues λ1 = 2 and λ2 = −1, and
thus is diagonalizable.

Solve (2I − A)~x = ~0: [
0 0 0
−3 3 0

]
→
[

1 −1 0
0 0 0

]

has general solution ~x =

[
s
s

]
, s ∈ R, and basic solution ~x1 =

[
1
1

]
.



Example (continued)

Solve (−I − A)~x = ~0: [
−3 0 0
−3 0 0

]
→
[

1 0 0
0 0 0

]

has general solution ~x =

[
0
t

]
, t ∈ R, and basic solution ~x2 =

[
0
1

]
.

Thus, P =

[
1 0
1 1

]
is a diagonalizing matrix for A,

P−1 =

[
1 0
−1 1

]
, and P−1AP =

[
2 0
0 −1

]
.



Example (continued)
Therefore,

~vk = Ak~v0

= PDkP−1~v0

=

[
1 0
1 1

] [
2 0
0 −1

]k [
1 0
−1 1

] [
1
−1

]
=

[
1 0
1 1

] [
2k 0

0 (−1)k

] [
1
−2

]
=

[
2k 0

2k (−1)k

] [
1
−2

]
=

[
2k

2k − 2(−1)k

]



Remark
Often, instead of finding an exact formula for ~vk, it suffices to estimate ~vk

as k gets large.

This can easily be done if A has a dominant eigenvalue with multiplicity
one: an eigenvalue λ1 with the property that

|λ1| > |λj| for j = 2, 3, . . . , n.

Suppose that
~vk = PDkP−1~v0,

and assume that A has a dominant eigenvalue, λ1, with corresponding basic
eigenvector ~x1 as the first column of P.
For convenience, write P−1~v0 =

[
b1 b2 · · · bn

]T.



Then

~vk = PDkP−1~v0

=
[
~x1 ~x2 · · · ~xn

]


λk
1 0 · · · 0

0 λk
2 · · · 0

...
...

...
...

0 0 · · · λk
n




b1

b2

...
bn


= b1λ

k
1~x1 + b2λ

k
2~x2 + · · ·+ bnλ

k
n~xn

= λk
1

(
b1~x1 + b2

(
λ2

λ1

)k

~x2 + · · ·+ bn

(
λn

λ1

)k

~xn

)

Now,
∣∣∣ λj
λ1

∣∣∣ < 1 for j = 2, 3, . . . n, and thus
(

λj
λ1

)k
→ 0 as k → ∞.

Therefore, for large values of k, ~vk ≈ λk
1b1~x1.



Example
If

A =

[
2 0
3 −1

]
, and ~v0 =

[
1

−1

]
,

estimate ~vk for large values of k.

In our previous example, we found that A has eigenvalues 2 and −1. This
means that λ1 = 2 is a dominant eigenvalue; let λ2 = −1.

As before ~x1 =

[
1
1

]
is a basic eigenvector for λ1 = 2, and ~x2 =

[
0
1

]
is a

basic eigenvector for λ2 = −1, giving us

P =

[
1 0
1 1

]
, and P−1 =

[
1 0

−1 1

]
.



Example (continued)

P−1~v0 =

[
1 0

−1 1

] [
1

−1

]
=

[
1

−2

]
=

[
b1

b2

]

For large values of k,

~vk ≈ λk
1b1~x1 = 2k(1)

[
1
1

]
=

[
2k

2k

]

Let’s compare this to the formula for ~vk that we obtained earlier:

~vk =

[
2k

2k − 2(−1)k

]


	Why Diagonalization?
	Eigenvalues and Eigenvectors
	Geometric Interpretation of Eigenvalues and Eigenvectors
	Diagonalization
	Linear Dynamical Systems

