Math 221: LINEAR ALGEBRA

Chapter 3. Determinants and Diagonalization §3-3. Determinants and Diagonalization

 ${\bf Le} \ {\bf Chen}^1$ ${\bf Emory} \ {\bf University, 2020 \ Fall}$

(last updated on 10/26/2020)

Why Diagonalization?

Eigenvalues and Eigenvectors

Geometric Interpretation of Eigenvalues and Eigenvectors

Diagonalization

Linear Dynamical Systems

Why Diagonalization?

Example

Let
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
. Find A^{100} .

How can we do this efficiently?

Consider the matrix $P = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$. Observe that P is invertible (why?), and that

$$P^{-1} = \frac{1}{3} \left[\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array} \right].$$

Furthermore,

$$P^{-1}AP = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} = D,$$

where D is a diagonal matrix.

This is significant, because

$$P^{-1}AP = D$$
 $P(P^{-1}AP)P^{-1} = PDP^{-1}$
 $(PP^{-1})A(PP^{-1}) = PDP^{-1}$
 $IAI = PDP^{-1}$
 $A = PDP^{-1}$,

and so

$$\begin{array}{lll} A^{100} & = & (PDP^{-1})^{100} \\ & = & (PDP^{-1})(PDP^{-1})(PDP^{-1})\cdots(PDP^{-1}) \\ & = & PD(P^{-1}P)D(P^{-1}P)D(P^{-1}\cdots P)DP^{-1} \\ & = & PDIDIDI\cdots IDP^{-1} \\ & = & PD^{100}P^{-1}. \end{array}$$

Now,

$$D^{100} = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}^{100} = \begin{bmatrix} 2^{100} & 0 \\ 0 & 5^{100} \end{bmatrix}$$

 $= \frac{1}{3} \begin{bmatrix} 2^{100} + 2 \cdot 5^{100} & 2^{100} - 2 \cdot 5^{100} \\ 2^{100} - 5^{100} & 2^{101} + 5^{100} \end{bmatrix}$

Therefore,

Therefore,
$$A^{100} = PD^{100}P^{-1}$$

$$= \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^{100} & 0 \\ 0 & 5^{100} \end{bmatrix} (\frac{1}{3}) \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 2^{100} + 2 \cdot 5^{100} & 2^{100} - 2 \cdot 5^{100} \\ 2^{100} - 5^{100} & 2 \cdot 2^{100} + 5^{100} \end{bmatrix}$$

Theorem (Diagonalization and Matrix Powers)

If $A = PDP^{-1}$, then $A^k = PD^kP^{-1}$ for each k = 1, 2, 3, ...

The process of finding an invertible matrix P and a diagonal matrix D so that $A = PDP^{-1}$ is referred to as diagonalizing the matrix A, and P is called the diagonalizing matrix for A.

Problem

- ▶ When is it possible to diagonalize a matrix?
- ► How do we find a diagonalizing matrix?

Eigenvalues and Eigenvectors

Definition

Let A be an $n \times n$ matrix, λ a real number, and $\vec{x} \neq \vec{0}$ an n-vector. If $A\vec{x} = \lambda \vec{x}$, then λ is an eigenvalue of A, and \vec{x} is an eigenvector of A corresponding to λ , or a λ -eigenvector.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
 and $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Then
$$A\vec{x} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3\vec{x}.$$

This means that 3 is an eigenvalue of A, and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A corresponding to 3 (or a 3-eigenvector of A).

Suppose that A is an $n \times n$ matrix, $\vec{x} \neq 0$ an n-vector, $\lambda \in \mathbb{R}$, and that $A\vec{x} = \lambda \vec{x}$.

Then

$$\lambda \vec{x} - A \vec{x} = \vec{0}$$
$$\lambda I \vec{x} - A \vec{x} = \vec{0}$$
$$(\lambda I - A) \vec{x} = \vec{0}$$

Since $\vec{x} \neq \vec{0}$, the matrix $\lambda I - A$ has no inverse, and thus $\det(\lambda I - A) = 0$

$$\det(\lambda I - A) = 0.$$

Definition

The characteristic polynomial of an $n \times n$ matrix A is

$$c_A(x) = \det(xI - A).$$

Example

The characteristic polynomial of
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
 is
$$c_A(x) = \det \begin{pmatrix} \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} - \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \end{pmatrix}$$
$$= \det \begin{bmatrix} x-4 & 2 \\ 1 & x-3 \end{bmatrix}$$
$$= (x-4)(x-3) - 2$$
$$= x^2 - 7x + 10$$

Theorem (Eigenvalues and Eigenvectors of a Matrix)

Let A be an $n \times n$ matrix.

- 1. The eigenvalues of A are the roots of $c_A(x)$.
- 2. The λ -eigenvectors \vec{x} are the nontrivial solutions to $(\lambda I A)\vec{x} = \vec{0}$.

Example (continued)

For
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
, we have

$$c_A(x) = x^2 - 7x + 10 = (x - 2)(x - 5),$$

so A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 5$.

To find the 2-eigenvectors of A, solve $(2I - A)\vec{x} = \vec{0}$:

$$\left[\begin{array}{cc|c} -2 & 2 & 0 \\ 1 & -1 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & -1 & 0 \\ -2 & 2 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

The general solution, in parametric form, is

$$\vec{x} = \begin{bmatrix} t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 where $t \in \mathbb{R}$.

To find the 5-eigenvectors of A, solve $(5I - A)\vec{x} = \vec{0}$:

$$\left[\begin{array}{cc|c} 1 & 2 & 0 \\ 1 & 2 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & 2 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

The general solution, in parametric form, is

$$\vec{x} = \begin{bmatrix} -2s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
 where $s \in \mathbb{R}$.

Definition

A basic eigenvector of an $n \times n$ matrix A is any nonzero multiple of a basic solution to $(\lambda I - A)\vec{x} = \vec{0}$, where λ is an eigenvalue of A.

Example (continued)

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$ are basic eigenvectors of the matrix

$$A = \left[\begin{array}{cc} 4 & -2 \\ -1 & 3 \end{array} \right]$$

corresponding to eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 5$, respectively.

Problem

For
$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$
, find $c_A(x)$, the eigenvalues of A, and the corresponding basic eigenvectors.

Solution

$$\det(xI - A) = \begin{vmatrix} x - 3 & 4 & -2 \\ -1 & x + 2 & -2 \\ -1 & 5 & x - 5 \end{vmatrix} = \begin{vmatrix} x - 3 & 4 & -2 \\ 0 & x - 3 & -x + 3 \\ -1 & 5 & x - 5 \end{vmatrix}$$
$$= \begin{vmatrix} x - 3 & 4 & 2 \\ 0 & x - 3 & 0 \\ -1 & 5 & x \end{vmatrix} = (x - 3) \begin{vmatrix} x - 3 & 2 \\ -1 & x \end{vmatrix}$$
$$= (x - 3)(x^2 - 3x + 2) = (x - 3)(x - 2)(x - 1) = c_A(x).$$

Therefore, the eigenvalues of A are $\lambda_1 = 3, \lambda_2 = 2$, and $\lambda_3 = 1$.

Basic eigenvectors corresponding to $\lambda_1 = 3$: solve $(3I - A)\vec{x} = \vec{0}$.

$$\left[\begin{array}{cc|c} 0 & 4 & -2 & 0 \\ -1 & 5 & -2 & 0 \\ -1 & 5 & -2 & 0 \end{array}\right] \to \cdots \to \left[\begin{array}{cc|c} 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Thus
$$\vec{\mathbf{x}} = \begin{bmatrix} \frac{1}{2}t \\ \frac{1}{2}t \end{bmatrix} = t \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, t \in \mathbb{F}$$

Choosing
$$t = 2$$
 gives us $\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ as a basic eigenvector corresponding to

$$\lambda_1 = 3.$$

Basic eigenvectors corresponding to $\lambda_2 = 2$: solve $(2I - A)\vec{x} = \vec{0}$.

$$\begin{bmatrix} -1 & 4 & -2 & 0 \\ -1 & 4 & -2 & 0 \\ -1 & 5 & -3 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus
$$\vec{x} = \begin{bmatrix} 2s \\ s \\ s \end{bmatrix} = s \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $s \in \mathbb{R}$.

Choosing
$$s = 1$$
 gives us $\vec{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ as a basic eigenvector corresponding to $\lambda_2 = 2$.

Basic eigenvectors corresponding to $\lambda_3 = 1$: solve $(I - A)\vec{x} = \vec{0}$.

$$\begin{bmatrix} -2 & 4 & -2 & 0 \\ -1 & 3 & -2 & 0 \\ -1 & 5 & -4 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$ext{Thus } ec{ ext{x}} = \left[egin{array}{c|c} r & = r & 1 \ r & 1 \end{array}
ight], \, r \in \mathbb{R}.$$

Choosing
$$r = 1$$
 gives us $\vec{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ as a basic eigenvector corresponding to

$$\lambda_3 = 1.$$

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2×2 matrix. Then A can be interpreted as a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 .

Problem

How does the linear transformation affect the eigenvectors of the matrix?

Definition

Let $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ be a nonzero vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is the set of all scalar multiples of \vec{v} , i.e.,

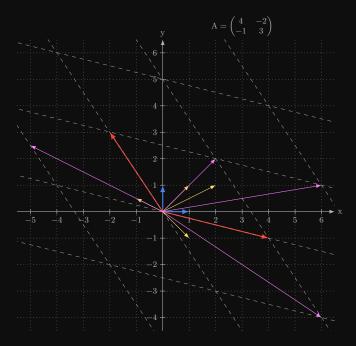
$$L_{\vec{v}} = \mathbb{R} \vec{v} = \left\{ t \vec{v} \mid t \in \mathbb{R} \right\}.$$

Example (revisited)

$$A = \begin{pmatrix} 4 & -2 \\ -1 & 3 \end{pmatrix}$$
 has two eigenvalues: $\lambda_1 = 2$ and $\lambda_2 = 5$ with corresponding eigenvectors

as two eigenvalues:
$$\lambda_1 = 2$$
 and $\lambda_2 = 5$ with a
vectors

 $\vec{\mathbf{v}}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\vec{\mathbf{v}}_2 = \begin{pmatrix} -1 \\ 1/2 \end{pmatrix}$

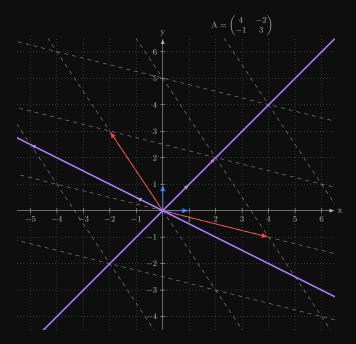


Definition

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector $A\vec{x}$ lies in L whenever \vec{x} lies in L, i.e., $A\vec{x}$ is a scalar multiple of \vec{x} , i.e., $A\vec{x} = \lambda \vec{x}$ for some scalar $\lambda \in \mathbb{R}$, i.e., \vec{x} is an eigenvector of A.

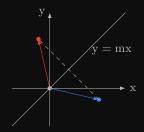
Theorem (A-Invariance)

Let A be a 2×2 matrix and let $\vec{v} \neq 0$ be a vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is A-invariant if and only if \vec{v} is an eigenvector of A.



Problem

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$, i.e., reflection in the line y = mx.

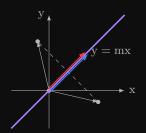


Recall that this is a matrix transformation induced by

$$A = \frac{1}{1 + m^2} \begin{bmatrix} 1 - m^2 & 2m \\ 2m & m^2 - 1 \end{bmatrix}.$$

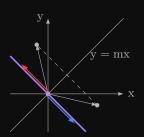
Find the lines that pass through origin and are A-invariant. Determine corresponding eigenvalues.

Solution



Let $\vec{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$. Then $L_{\vec{x}_1}$ is A-invariant, that is, \vec{x}_1 is an eigenvector. Since the vector won't change, its eigenvalue should be 1. Indeed, one can verify that

$$A\vec{x}_1 = \frac{1}{1+m^2} \left[\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right] \begin{pmatrix} 1 \\ m \end{pmatrix} = ... = \begin{pmatrix} 1 \\ m \end{pmatrix} = \vec{x}_1.$$



Let $\vec{x}_2 = \begin{bmatrix} -m \\ 1 \end{bmatrix}$. Then $L_{\vec{x}_2}$ is A-invariant, that is, \vec{x}_2 is an eigenvector.

Since the vector won't change the size, only flip the direction, its eigenvalue should be -1. Indeed, one can verify that

$$A\vec{x}_2 = \frac{1}{1+m^2} \left[\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right] \begin{pmatrix} -m \\ 1 \end{pmatrix} = \cdots = \begin{pmatrix} m \\ -1 \end{pmatrix} = -\vec{x}_2.$$

Example

Let θ be a real number, and $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Claim: A has no real eigenvalues unless θ is an integer multiple of π , i.e., $\pm \pi, \pm 2\pi, \pm 3\pi$, etc.

Consequence: a line L in \mathbb{R}^2 is A invariant if and only if θ is an integer multiple of π .

Diagonalization

Denote an $n \times n$ diagonal matrix by

$$\mathrm{diag}(a_1,a_2,\ldots,a_n) = \left[\begin{array}{cccccc} a_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & a_n \end{array} \right]$$

Recall that if A is an $n \times n$ matrix and P is an invertible $n \times n$ matrix so that $P^{-1}AP$ is diagonal, then P is called a diagonalizing matrix of A, and A is diagonalizable.

► Suppose we have n eigenvalue-eigenvector pairs:

$$A\vec{x}_j = \lambda_j \vec{x}_j$$
, $j = 1, 2, \dots, n$

▶ Pack the above n columns vectors into a matrix:

▶ By denoting:

we see that

$$AP = PD$$

► Hence, provided P is invertible, we have

$$A = PDP^{-1}$$
 or equivalently $D = P^{-1}AP$

that is, A is diagonalizable.

Theorem (Matrix Diagonalization)

Let A be an $n \times n$ matrix.

1. A is diagonalizable if and only if it has eigenvectors $\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_n$ so that

$$P = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{bmatrix}$$

is invertible.

2. If P is invertible, then

$$P^{-1}AP = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

where λ_i is the eigenvalue of A corresponding to the eigenvector \vec{x}_i , i.e., $A\vec{x}_i = \lambda_i \vec{x}_i$.

Example

$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$
 has eigenvalues and corresponding basic eigenvectors

$$\lambda_1 = 3$$
 and $\vec{\mathbf{x}}_1 = \begin{bmatrix} 1\\1\\2 \end{bmatrix};$
 $\lambda_2 = 2$ and $\vec{\mathbf{x}}_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix};$
 $\lambda_3 = 1$ and $\vec{\mathbf{x}}_3 = \begin{bmatrix} 1\\1 \end{bmatrix}.$

Let
$$P = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \vec{x}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$
. Then P is invertible (check

this!), so by the above Theorem,

$$P^{-1}AP = diag(3, 2, 1) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Remark

It is not always possible to find n eigenvectors so that P is invertible.

Example

Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1 \end{bmatrix}$$
.

Then

$$c_{A}(x) = \begin{vmatrix} x-1 & 2 & -3 \\ -2 & x-6 & 6 \\ -1 & -2 & x+1 \end{vmatrix} = \dots = (x-2)^{3}.$$

A has only one eigenvalue, $\lambda_1 = 2$, with multiplicity three. Sometimes, one writes

$$\lambda_1 = \lambda_2 = \lambda_3 = 2.$$

To find the 2-eigenvectors of A, solve the system $(2I - A)\vec{x} = \vec{0}$.

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ -2 & -4 & 6 & 0 \\ -1 & -2 & 3 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution in parametric form is

$$\vec{x} = \begin{bmatrix} -2s + 3t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, s, t \in \mathbb{R}.$$

Since the system has only two basic solutions, there are only two basic eigenvectors, implying that the matrix A is not diagonalizable.

Example

Diagonalize, if possible, the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.

Diagonalize, if possible, the matrix
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$
.
$$c_A(x) = \det(xI - A) = \begin{vmatrix} x - 1 & 0 & -1 \\ 0 & x - 1 & 0 \\ 0 & 0 & x + 3 \end{vmatrix} = (x - 1)^2(x + 3).$$

A has eigenvalues $\lambda_1 = 1$ of multiplicity two; $\lambda_2 = -3$ of multiplicity one.

Eigenvectors for $\lambda_1 = 1$: solve $(I - A)\vec{x} = \vec{0}$.

$$\left[\begin{array}{cc|cc|c} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|cc|c} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

$$\vec{s} = \begin{bmatrix} s \\ t \end{bmatrix}$$
, s, $t \in \mathbb{R}$ so basic eigenvectors corresponding to $\lambda_1 = 1$ are

$$\left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right]$$

Eigenvectors for $\lambda_2 = -3$: solve $(-3I - A)\vec{x} = \vec{0}$.

$$\left[\begin{array}{cc|cc|c} -4 & 0 & -1 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|cc|c} 1 & 0 & \frac{1}{4} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

$$\vec{x} = \begin{bmatrix} -\frac{1}{4}t \\ 0 \\ t \end{bmatrix}$$
, $t \in \mathbb{R}$ so a basic eigenvector corresponding to $\lambda_2 = -3$ is

$$\begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix}$$

Let

$$\mathbf{P} = \left[\begin{array}{ccc} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & 0 & 0 \end{array} \right].$$

Then P is invertible, and

$$P^{-1}AP = \text{diag}(-3.1.1) = \begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}$$

Theorem (Matrix Diagonalization Test)

A square matrix A is diagonalizable if and only if every eigenvalue λ of multiplicity m yields exactly m basic eigenvectors, i.e., the solution to $(\lambda I - A)\vec{x} = \vec{0}$ has m parameters.

A special case of this is:

Theorem (Distinct Eigenvalues and Diagonalization)

An $n \times n$ matrix with distinct eigenvalues is diagonalizable.

Example

Show that
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is not diagonalizable.

First,
$$c_A(x) = \left| \begin{array}{ccc} x-1 & -1 & 0 \\ 0 & x-1 & 0 \\ 0 & 0 & x-2 \end{array} \right| = (x-1)^2 (x$$

so A has eigenvalues $\lambda_1 = 1$ of multiplicity two; $\lambda_2 = 2$ (of multiplicity one).

Eigenvectors for $\lambda_1 = 1$: solve $(I - A)\vec{x} = \vec{0}$.

$$\left[\begin{array}{ccc|c} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Therefore,
$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{s} \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{s} \in \mathbb{R}$.

Since $\lambda_1 = 1$ has multiplicity two, but has only one basic eigenvector, A is not diagonalizable.

Linear Dynamical Systems

Definition

A linear dynamical system consists of

- an $n \times n$ matrix A and an n-vector \vec{v}_0 ;
- a matrix recursion defining $\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots$ by $\vec{v}_{k+1} = A\vec{v}_k;$ i.e.,

$$\begin{array}{rcl} \vec{v}_1 & = & A \vec{v}_0 \\ \\ \vec{v}_2 & = & A \vec{v}_1 = A (A \vec{v}_0) = A^2 \vec{v}_0 \\ \\ \vec{v}_3 & = & A \vec{v}_2 = A (A^2 \vec{v}_0) = A^3 \vec{v}_0 \\ \\ \vdots & \vdots & \vdots \\ \\ \vec{v}_k & = & A^k \vec{v}_0. \end{array}$$

Remark

Linear dynamical systems are used, for example, to model the evolution of populations over time.

If A is diagonalizable, then

$$P^{-1}AP = D = diag(\lambda_1, \lambda_2, \dots, \lambda_n),$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the (not necessarily distinct) eigenvalues of A.

Thus $A = PDP^{-1}$, and $A^k = PD^kP^{-1}$. Therefore,

$$ec{\mathrm{v}}_{\mathtt{k}} = \mathrm{A}^{\mathtt{k}} ec{\mathrm{v}}_{0} = \mathrm{PD}^{\mathtt{k}} \mathrm{P}^{-1} ec{\mathrm{v}}_{0}.$$

Example

Consider the linear dynamical system $\vec{v}_{k+1} = A\vec{v}_k$ with

$$A = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}, \text{ and } \vec{v}_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Find a formula for \vec{v}_k .

First, $c_A(x) = (x-2)(x+1)$, so A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -1$, and thus is diagonalizable.

Solve $(2I - A)\vec{x} = \vec{0}$:

$$\left[\begin{array}{cc|c} 0 & 0 & 0 \\ -3 & 3 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

has general solution $\vec{x} = \begin{bmatrix} s \\ s \end{bmatrix}$, $s \in \mathbb{R}$, and basic solution $\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

$$\begin{bmatrix} -3 & 0 & 0 & 0 \\ -3 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $P^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$, and $P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$.

 $\begin{vmatrix} -3 & 0 & 0 \\ -3 & 0 & 0 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$

Thus, $P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ is a diagonalizing matrix for A,

$$\begin{bmatrix} -3 \\ -3 \end{bmatrix}$$

$$\text{lve } (-\mathbf{I} - \mathbf{A})\vec{\mathbf{x}} = \vec{\mathbf{0}}:$$

Solve $(-I - A)\vec{x} = \vec{0}$:

Therefore,

Therefore,
$$\begin{split} \vec{v}_k &= A^k \vec{v}_0 \\ &= PD^k P^{-1} \vec{v}_0 \\ &= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}^k \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^k & 0 \\ 0 & (-1)^k \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \\ &= \begin{bmatrix} 2^k & 0 \\ 2^k & (-1)^k \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

 $=\begin{bmatrix} 2^{k} \\ 2^{k} - 2(-1)^{k} \end{bmatrix}$

Remark

Often, instead of finding an exact formula for \vec{v}_k , it suffices to estimate \vec{v}_k as k gets large.

This can easily be done if A has a dominant eigenvalue with multiplicity one: an eigenvalue λ_1 with the property that

$$|\lambda_1| > |\lambda_j|$$
 for $j = 2, 3, \dots, n$.

Suppose that

$$\vec{\mathbf{v}}_{\mathbf{k}} = \mathbf{P} \mathbf{D}^{\mathbf{k}} \mathbf{P}^{-1} \vec{\mathbf{v}}_{0},$$

and assume that A has a dominant eigenvalue, λ_1 , with corresponding basic eigenvector \vec{x}_1 as the first column of P.

For convenience, write $P^{-1}\vec{v}_0 = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}^T$.

Then

$$= \lambda_1^k \left(b_1 \vec{x}_1 + b_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k \vec{x}_2 + \dots + b_n \left(\frac{\lambda_n}{\lambda_1} \right)^k \vec{x}_n \right)$$

Now,
$$\left|\frac{\lambda_j}{\lambda_1}\right| < 1$$
 for $j = 2, 3, \dots n$, and thus $\left(\frac{\lambda_j}{\lambda_1}\right)^k \to 0$ as $k \to \infty$.

= $b_1\lambda_1^k\vec{x}_1 + b_2\lambda_2^k\vec{x}_2 + \cdots + b_n\lambda_n^k\vec{x}_n$

Therefore, for large values of k, $\vec{v}_k \approx \lambda_1^k b_1 \vec{x}_1$.

Example

If

$$A = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$$
, and $\vec{v}_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$,

estimate \vec{v}_k for large values of k.

In our previous example, we found that A has eigenvalues 2 and -1. This means that $\lambda_1 = 2$ is a dominant eigenvalue; let $\lambda_2 = -1$.

As before $\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is a basic eigenvector for $\lambda_1 = 2$, and $\vec{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basic eigenvector for $\lambda_2 = -1$, giving us

$$P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
, and $P^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$

$$P^{-1}\vec{v}_0 = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

For large values of k,

$$ec{v}_k pprox \lambda_1^k b_1 ec{x}_1 = 2^k (1) \left[egin{array}{c} 1 \\ 1 \end{array}
ight] = \left[egin{array}{c} 2^k \\ 2^k \end{array}
ight]$$

Let's compare this to the formula for \vec{v}_k that we obtained earlier:

Let's compare this to the formula for v_k that we obtained earlie

$$ec{\mathrm{v}}_{\mathrm{k}} = \left[egin{array}{c} 2^{\mathrm{k}} \ 2^{\mathrm{k}} - 2(-1)^{\mathrm{k}} \end{array}
ight.$$