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NOTE: Much of this chapter is what you would learn in Multivariable Calculus.
You might find it interesting/useful to read.

But I will only cover the material important to this course.



Vector Norms

I The word “norm” in linear algebra is used to mean “length”.
I There are actually many ways to define length, the most usual Euclidean:

– In 2D and 3D:

– In general, if ~v ∈ Rn, the Euclidean norm of ~v is:

‖~v‖ =
√
~v · ~v =

√
~vT~v =

√
v2
1 + v2

2 + · · · + v2
n
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Example:

If ~v =


1
0
1
2

−1

, find ‖~v‖.

Example: Show that ‖c~v‖ = |c|‖~v‖ for any scalar c and any vector ~v ∈ Rn.



Definition
‖ · ‖ : Rn → R is a vector norm if it satisfies the following properties:

1. ‖v‖ ≥ 0 for all v ∈ Rn, and ‖v‖ = 0 if and only if v = 0,
2. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v ∈ Rn and w ∈ Rn,
3. ‖cv‖ = |c|‖v‖ for all vectors v ∈ Rn and all scalars c.



Remark
There many vector norms, so sometimes we include a subscript, such as
‖ · ‖p, to indicate precisely which norm we are using. Here are some
examples:
I The 2-norm is the standard Euclidean length:

‖~v‖2 =
√
~vT~v =

√
v2
1 + v2

2 + · · ·+ v2
n .

I The 1-norm is defined as ‖~v‖1 = |v1|+ |v2|+ · · ·+ |vn| .
I The ∞-norm is defined as ‖~v‖∞ = max1≤i≤n{|vi|} .
I In general, if 1 ≤ p < ∞, then the p-norm is defined as

‖~v‖p =

(
n∑

i=1

|vi|p
)1/p

.

Although other norms are used in certain applications, we usually use the
2-norm, and omit the subscript:

‖~v‖ ≡ ‖~v‖2



Definition
A unit vector is a vector having norm equal to 1.

Example

Check if ~e1 =


1
0
0
0

 , ~v =


1/2

−1/2
1/2

−1/2

 , ~w =


1
1
1
1

 are unit vectors.
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Remark
We can scale any nonzero vector to have norm equal to 1.
If ~v ∈ Rn, ~v 6= ~0, then

~u =
1

‖~v‖~v is a unit vector

Problem

Scale ~w =


1
1
1
1

 to a unit vector.



Definition
The distance between two vectors is defined as:

dist(~u,~v) = ‖~u − ~v‖

~u =

(
u1

u2

)

~v =

(
v1

v2

)



Parallel Vectors

Definition
Two vectors are called parallel if they lie on the same line. Equivalently,
two vectors are parallel if they are scalar multiples of each other.

Example

Determine if ~v, ~w, ~z are parallel to ~u =

 3
−2
1


~v =

 6
−4
2



~w =

 −6
4

−2



~z =

 1
1
1
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The following slides are for you to study by yourself

as reviewing matereial...



Scalar quantities versus vector quantities

I A scalar quantity has only magnitude; e.g. time, temperature.

I A vector quantity has both magnitude and direction; e.g. displacement,
force, wind velocity.

Whereas two scalar quantities are equal if they are represented by the same
value, two vector quantities are equal if and only if they have the same
magnitude and direction.
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R2 and R3

Vectors in R2 and R3 have convenient geometric representations as position
vectors of points in the 2-dimensional (Cartesian) plane and in 3-dimensional
space, respectively.





Notation
I If P is a point in R3 with coordinates (x, y, x) we denote this by

P = (x, y, z).

I If P = (x, y, z) is a point in R3, then

−→
0P =

 x
y
z


is often used to denote the position vector of the point.

I Instead of using a capital letter to denote the vector (as we generally do
with matrices), we emphasize the importance of the geometry and the
direction with an arrow over the name of the vector.
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Notation and Terminology

I The notation −→
0P emphasizes that this vector goes from the origin 0 to the

point P. We can also use lower case letters for names of vectors. In this
case, we write −→

0P = ~p.

I Any vector

~x =

 x1

x2

x3

 in R3

is associated with the point (x1, x2, x3).
I Often, there is no distinction made between the vector ~x and the point

(x1, x2, x3), and we say that both (x1, x2, x3) ∈ R3 and ~x =

 x1

x2

x3

 ∈ R3.



Notation and Terminology

I The notation −→
0P emphasizes that this vector goes from the origin 0 to the

point P. We can also use lower case letters for names of vectors. In this
case, we write −→

0P = ~p.
I Any vector

~x =

 x1

x2

x3

 in R3

is associated with the point (x1, x2, x3).

I Often, there is no distinction made between the vector ~x and the point

(x1, x2, x3), and we say that both (x1, x2, x3) ∈ R3 and ~x =

 x1

x2

x3

 ∈ R3.



Notation and Terminology

I The notation −→
0P emphasizes that this vector goes from the origin 0 to the

point P. We can also use lower case letters for names of vectors. In this
case, we write −→

0P = ~p.
I Any vector

~x =

 x1

x2

x3

 in R3

is associated with the point (x1, x2, x3).
I Often, there is no distinction made between the vector ~x and the point

(x1, x2, x3),

and we say that both (x1, x2, x3) ∈ R3 and ~x =

 x1

x2

x3

 ∈ R3.



Notation and Terminology

I The notation −→
0P emphasizes that this vector goes from the origin 0 to the

point P. We can also use lower case letters for names of vectors. In this
case, we write −→

0P = ~p.
I Any vector

~x =

 x1

x2

x3

 in R3

is associated with the point (x1, x2, x3).
I Often, there is no distinction made between the vector ~x and the point

(x1, x2, x3), and we say that both (x1, x2, x3) ∈ R3 and ~x =

 x1

x2

x3

 ∈ R3.



Length and Direction

Theorem

Let ~v =

 x
y
z

 and ~w =

 x1

y1

z1

 be vectors in R3. Then

1. ~v = ~w if and only if x = x1, y = y1, and z = z1.
2. ||~v|| =

√
x2 + y2 + z2.

3. ~v = ~0 if and only if ||~v|| = 0.
4. For any scalar a, ||a~v|| = |a| · ||~v||.

Remark
Analogous results hold for ~v, ~w ∈ R2, i.e.,

~v =

[
x
y

]
, ~w =

[
x1

y1

]
.

In this case, ||~v|| =
√

x2 + y2.
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Example

Let ~p =

[
−3
4

]
, ~q =

 3
−1
−2

, and −2~q =

 −6
2
4

,

Then
||~p|| =

√
(−3)2 + 42 =

√
9 + 16 = 5,

||~q|| =
√

(3)2 + (−1)2 + (−2)2 =
√
9 + 1 + 3 =

√
14,

and

|| − 2~q|| =
√

(−6)2 + 22 + 42

=
√
36 + 4 + 16

=
√
56 =

√
4× 14

= 2
√
14 = 2||~q||.
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Geometric Vectors

Let A and B be two points in R2 or R3.

0 x

y

B

A

•
−→
AB is the geometric vector from A to B.

• A is the tail of −→AB.

• B is the tip of −→AB.

• the magnitude of −→AB is its length, and is
denoted ||

−→
AB||.
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Let A and B be two points in R2 or R3.

0 x

y

B

A

•
−→
AB is the geometric vector from A to B.

• A is the tail of −→AB.

• B is the tip of −→AB.

• the magnitude of −→AB is its length, and is
denoted ||
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0 x

y

A

B

C

D

•
−→
AB is the vector from A(1, 0) to B(2, 2).

•
−→
CD is the vector from C(−1,−1)

to D(0, 1).

•
−→
AB =

−→
CD because the vectors have

the same length and direction.



Definition
A vector is in standard position if its tail is at the origin.

We co-ordinatize vectors by putting them in standard position, and then
identifying them with their tips.

0 x

y

A

BP

Thus −→
AB =

−→
0P where P = P(1, 2), and we write −→

0P =

[
1
2

]
=

−→
AB.

−→
0P is the position vector for P(1, 2).



More generally, if P(x, y, z) is a point in R3, then
−→
0P =

 x
y
z

 is the

position vector for P.

If we aren’t concerned with the locations of the tail and tip, we simply

write ~v =

 x
y
z
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Intrinsic Description of Vectors

I vector equality: same length and direction.

I ~0: the vector with length zero and no direction.

I scalar multiplication: if ~v 6= ~0 and a ∈ R, a 6= 0, then a~v has length
|a| · ||~v|| and

– the same direction as ~v if a > 0;
– direction opposite to ~v if a < 0.

I addition: ~u + ~v is the diagonal of the parallelogram defined by ~u and ~v,
and having the same tail as ~u and ~v.

~u

~u + ~v

~v

parallelogram law
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If we have a coordinate system, then

I vector equality: ~u = ~v if and only if ~u and ~v are equal as matrices.
I ~0: has all coordinates equal to zero.
I scalar multiplication: a~v is obtained from ~v by multiplying each entry of ~v

by a (matrix scalar multiplication).
I addition: ~u + ~v is represented by the matrix sum of the columns ~u and ~v.
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Tip-to-Tail Method for Vector Addition

For points A, B and C,
−→
AB +

−→
BC =

−→
AC.

A

B

C

−→
AB

−→
BC

−→
AC

−→
AB

−→
BC



Problem
Show that the diagonals of any parallelogram bisect each other.

Proof.
Denote the parallelogram by its vertices, ABCD.

A

B C

D

M

• Let M denote the midpoint

of
−→
AC.

Then
−−→
AM =

−−→
MC.

• It now suffices to show

that
−−→
BM =

−−→
MD.

−−→
BM =

−→
BA +

−−→
AM =

−→
CD +

−−→
MC =

−−→
MC +

−→
CD =

−−→
MD.

Since
−−→
BM =

−−→
MD, these vectors have the same magnitude and direction,

implying that M is the midpoint of
−→
BD.

Therefore, the diagonals of ABCD bisect each other. �
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Vector Subtraction

I If we have a coordinate system, then subtract the vectors as you would
subtract matrices.

I For the intrinsic description:

~v

~u

~u

−~v~u − ~v

~u−~v = ~u+ (−~v) and is the diagonal from the tip of ~v to the tip of ~u in the
parallelogram defined by ~u and ~v.
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Theorem
Let P1(x1, y1, z1) and P2(x2, y2, z2) be two points. Then

1.
−−−→
P1P2 =

 x2 − x1

y2 − y1

z2 − z1

 .

2. The distance between P1 and P2 is√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Proof.

0 P10 P10

P2

−−→
0P1 +

−−−→
P1P2 =

−−→
0P2, so

−−−→
P1P2 =

−−→
0P2 −

−−→
0P1

and the distance between P1 and P2 is ||
−−−→
P1P2||.
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Example
For P(1,−1, 3) and Q(3, 1, 0)

−→
PQ =

 3− 1
1− (−1)
0− 3

 =

 2
2

−3


and the distance between P and Q is ||

−→
PQ|| =

√
22 + 22 + (−3)2 =

√
17.

Definition
A unit vector is a vector of length one.

Example 1
0
0

,

 0
1
0

,

 0
0
1

,


√

2
2

0√
2

2

, are examples of unit vectors.
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Example

~v =

 −1
3
2

 is not a unit vector, since ||~v|| =
√
14.

However,

~u =
1√
14

~v =


−1√
14
3√
14
2√
14


is a unit vector in the same direction as ~v, i.e.,

||~u|| = 1√
14

||~v|| = 1√
14

√
14 = 1.
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Example

If ~v 6= ~0, then
1

||~v||~v

is a unit vector in the same direction as ~v.



Problem
Find the point, M, that is midway between P1(−1,−4, 3) and P2(5, 0,−3).

P2

0

P1

M

Solution

−→
0M =

−−→
0P1 +

−−→
P1M =

−−→
0P1 +

1

2

−−−→
P1P2 =

 −1
−4
3

+
1

2

 6
4

−6


=

 −1
−4
3

+

 3
2

−3

 =

 2
−2
0

 .

Therefore, M = M(2,−2, 0).
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Problem
Find the two points trisecting the segment between P(2, 3, 5) and
Q(8,−6, 2).

Q

0

P
A

B

Solution

−→
0A =

−→
0P + 1

3

−→
PQ and

−→
0B =

−→
0P + 2

3

−→
PQ.

Since
−→
PQ =

 6
−9
−3

,

−→
0A =

 2
3
5

+

 2
−3
−1

 =

 4
0
4

, and
−→
0B =

 2
3
5

+

 4
−6
−2

 =

 6
−3
3

.

Therefore, the two points are A(4, 0, 4) and B(6,−3, 3).
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Problem
Let ABCD be an arbitrary quadrilateral. Show that the midpoints of the
four sides of ABCD are the vertices of a parallelogram.

Proof.

A

B

C

D

Let M1 denote the midpoint of
−→
AB,

M2 the midpoint of
−→
BC,

M3 the midpoint of
−→
CD, and

M4 the midpoint of
−→
DA.

M1 M2

M3

M4

We need to prove that
−−−−→
M1M2 =

−−−−→
M4M3 and

−−−−→
M1M4 =

−−−−→
M2M3.
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Proof. (continued)

We will show
−−−−→
M1M4 =

−−−−→
M2M3, the other relation can be shown in the same

way.

Notice that

−−→
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1

2

−→
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0C +

1

2

−→
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2
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1

2
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2

(−→
AD −

−→
AB
)
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2

−→
BD
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2

(−→
CD −

−→
CB
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=

1

2
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BD

Therefore,
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Definition
Two nonzero vectors are called parallel if and only if they have the same
direction or opposite directions.

Theorem
Two nonzero vectors ~v and ~w are parallel if and only if one is a scalar
multiple of the other.

In particular, if ~v and ~w are nonzero and have the same direction, then
~v = ||~v||

||~w|| ~w; if ~v and ~w have opposite directions, then ~v = − ||~v||
||~w|| ~w.
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Equations of lines

Let L be a line, P0(x0, y0, z0) a fixed point on L, P(x, y, z) an arbitrary point

on L, and ~d =

 a
b
c

 a direction vector for L, i.e., a vector parallel to L.

P
P0

L

~d

0

Then −→
0P =

−−→
0P0 +

−−→
P0P, and −−→

P0P is parallel

to ~d, so −−→
P0P = t~d for some t ∈ R.

Definition

Vector Equation of a Line:
−→
0P =

−−→
0P0 + t ~d, t ∈ R.

Remark

Notation in the text: ~p =
−→
0P, ~p0 =

−−→
0P0, so ~p = ~p0 + t~d.
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In component form, this is written as x
y
z

 =

 x0

y0

z0

+ t

 a
b
c

 , t ∈ R.

Parametric Equations of a Line

x = x0 + ta
y = y0 + tb
z = z0 + tc

, t ∈ R.
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Problem
Find an equation for the line through two points P(2,−1, 7) and Q(−3, 4, 5).

Solution
A direction vector for this line is

~d =
−→
PQ =

 −5
5

−2

 .

Therefore, a vector equation of this line is

 x
y
z

 =

 2
−1
7

+ t

 −5
5

−2

 .
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Problem
Find an equation for the line through Q(4,−7, 1) and parallel to the line

L :

 x
y
z

 =

 1
−1
1

+ t

 2
−5
3

 .

Solution
The line has equation x

y
z

 =

 4
−7
1

+ t

 2
−5
3

 , t ∈ R.
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Problem
Given two lines L1 and L2, find the point of intersection, if it exists.

L1 :
x = 3 + t
y = 1− 2t
z = 3 + 3t

L2 :
x = 4 + 2s
y = 6 + 3s
z = 1 + s

Solution
Lines L1 and L2 intersect if and only if there are values s, t ∈ R such that

3 + t = 4 + 2s
1− 2t = 6 + 3s
3 + 3t = 1 + s

i.e., if and only if the system

2s − t = −1
3s + 2t = −5
s − 3t = 2

is consistent.
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Solution (continued) 2 −1 −1
3 2 −5
1 −3 2

→ · · · →

 1 0 −1
0 1 −1
0 0 0



L1 and L2 intersect when s = −1 and t = −1.

Using the equation for L1 and setting t = −1, the point of intersection is

P(3 + (−1), 1− 2(−1), 3 + 3(−1)) = P(2, 3, 0).

Note. You can check your work by setting s = −1 in the equation for L2.
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0 0 0
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Using the equation for L1 and setting t = −1, the point of intersection is

P(3 + (−1), 1− 2(−1), 3 + 3(−1)) = P(2, 3, 0).

Note. You can check your work by setting s = −1 in the equation for L2.
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Using the equation for L1 and setting t = −1, the point of intersection is

P(3 + (−1), 1− 2(−1), 3 + 3(−1)) = P(2, 3, 0).

Note. You can check your work by setting s = −1 in the equation for L2.



Solution (continued) 2 −1 −1
3 2 −5
1 −3 2

→ · · · →

 1 0 −1
0 1 −1
0 0 0


L1 and L2 intersect when s = −1 and t = −1.

Using the equation for L1 and setting t = −1, the point of intersection is

P(3 + (−1), 1− 2(−1), 3 + 3(−1)) = P(2, 3, 0).

Note. You can check your work by setting s = −1 in the equation for L2.



Problem
Find equations for the lines through P(1, 0, 1) that meet the line

L :

 x
y
z

 =

 1
2
0

+ t

 2
−1
2


at points distance three from P0(1, 2, 0).

Q1 P0

Q2

P

Solution
Find points Q1 and Q2 on L that are distance three from P0, and then find
equations for the lines through P and Q1, and through P and Q2.



Problem
Find equations for the lines through P(1, 0, 1) that meet the line

L :

 x
y
z

 =

 1
2
0

+ t

 2
−1
2


at points distance three from P0(1, 2, 0).

Q1 P0

Q2

P

Solution
Find points Q1 and Q2 on L that are distance three from P0, and then find
equations for the lines through P and Q1, and through P and Q2.



Solution (continued)

Q1
P0(1, 2, 0)

Q2

P(1, 0, 1)

~d =

 2
−1
2



First, ||~d|| =
√

22 + (−1)2 + 22 =
√
9 = 3, so

−→
0Q1 =

−−→
0P0 + 1~d, and

−→
0Q2 =

−−→
0P0 − 1~d.

−→
0Q1 =

 1
2
0

+

 2
−1
2

 =

 3
1
2

 and
−→
0Q2 =

 1
2
0

−

 2
−1
2

 =

 −1
3

−2

 ,

so Q1 = Q1(3, 1, 2) and Q2 = Q2(−1, 3,−2).



Solution (continued)

Q1
P0(1, 2, 0)

Q2

P(1, 0, 1)

~d =

 2
−1
2



First, ||~d|| =
√

22 + (−1)2 + 22 =
√
9 = 3, so

−→
0Q1 =

−−→
0P0 + 1~d, and

−→
0Q2 =

−−→
0P0 − 1~d.

−→
0Q1 =

 1
2
0

+

 2
−1
2

 =

 3
1
2

 and
−→
0Q2 =

 1
2
0

−

 2
−1
2

 =

 −1
3

−2

 ,

so Q1 = Q1(3, 1, 2) and Q2 = Q2(−1, 3,−2).



Solution (continued)

Q1
P0(1, 2, 0)

Q2

P(1, 0, 1)

~d =

 2
−1
2



First, ||~d|| =
√

22 + (−1)2 + 22 =
√
9 = 3, so

−→
0Q1 =

−−→
0P0 + 1~d, and

−→
0Q2 =

−−→
0P0 − 1~d.

−→
0Q1 =

 1
2
0

+

 2
−1
2

 =

 3
1
2

 and
−→
0Q2 =

 1
2
0

−

 2
−1
2

 =

 −1
3

−2

 ,

so Q1 = Q1(3, 1, 2) and Q2 = Q2(−1, 3,−2).



Solution (continued)
Equations for the lines:
I the line through P(1, 0, 1) and Q1(3, 1, 2) x

y
z

 =
−→
0P +

−→
PQ1 =

 1
0
1

+ t

 2
1
1



I the line through P(1, 0, 1) and Q2(−1, 3,−2) x
y
z

 =
−→
0P +

−→
PQ2 =

 1
0
1

+ t

 −2
3

−3

 .
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